Precision W and Z cross sections and the first measurement of the W-boson mass with ATLAS

Jan Kretzschmar University of Liverpool

25.01.2017

The Large Hadron Collider & ATLAS

and the second sec

The highest Energy Collider ever built ATLAS one of the large experiments

Successfully collided protons at 7 TeV and 8 TeV in 2010-2012 (Run 1) Since 2015 protons collide at 13 TeV (Run 2)

The ATLAS Physics Menu

Large variety of searches and measurements

The ATLAS Physics Menu

Large variety of searches and measurements \dots focus on W and Z production

Jan Kretzschmar, 25.01.2017

LHC: A W and Z "Factory"

- ▶ W and Z massive gauge bosons of the electro-weak $SU(2)_L \times U(1)_Y$ symmetry, broken spontaneously by the Higgs mechanism
- ▶ Leptonic decays $Z \to \ell \ell$ and $W \to \ell \nu$ leave a unique signature at a hadron collider
- ▶ High integrated luminosity delivered by LHC means more $Z \rightarrow \ell \ell$ and $W \rightarrow \ell \nu$ events than any collider before have been produced
- ATLAS so far recorded > 10 million $Z \rightarrow \ell \ell$ and > 100 million $W \rightarrow \ell \nu$ events

LHC: A W and Z "Factory"

- ▶ W and Z massive gauge bosons of the electro-weak $SU(2)_L \times U(1)_Y$ symmetry, broken spontaneously by the Higgs mechanism
- Leptonic decays $Z \to \ell \ell$ and $W \to \ell \nu$ leave a unique signature at a hadron collider
- ▶ High integrated luminosity delivered by LHC means more $Z \rightarrow \ell \ell$ and $W \rightarrow \ell \nu$ events than any collider before have been produced
- ATLAS so far recorded > 10 million $Z \rightarrow \ell \ell$ and > 100 million $W \rightarrow \ell \nu$ events

$\ensuremath{\mathcal{W}}$ and $\ensuremath{\mathcal{Z}}$ Bosons Physics at LHC

- W^{\pm} and Z/γ^{*} bosons produced in Drell-Yan process
- Measurements primarily require lepton detection very high experimental precision can be achieved
- Precision cross-section measurement: probe of strong interaction and the proton structure (Parton Distribution Functions, PDFs), arXiv:1612.03016:
 - Major Liverpool contributions (Max, Uta, Jan) from initial planning in 2008 to paper writing
 - What can be learned beyond ep scattering?
- First measurement of the W-boson mass: test consistency of the Standard Model and constrain Beyond-SM physics, STDM-2014-18, submitted to arXiv:
 - Major collaborative effort of ATLAS W, Z group with strong Liverpool contributions in many areas
 - \blacktriangleright Can we go beyond Tevatron measurements of ~ 20 MeV uncertainty?

Predictions for W and Z Production in Hadron Collisions

- Cross section calculation with hadrons factorises in
 - Matrix element calculation, arranged in a perturbative series in α_s: Leading order (LO), Next-to-leading order (NLO), NNLO, ...
 - Parton distribution functions (PDFs)
- ▶ $W \rightarrow \ell \nu$ and $Z \rightarrow \ell \ell$ known to NLO since \sim 1980, initial NNLO results date back to early 1990's, fully differential calculation since 2006 in FEWZ and DYNNLO
- Next level of complexity mastered in last years (gg → H at N³LO and 2 → 2 processes like Z+jet at NNLO), but absolute cross sections predicted to ≤ 1% precision is still unique in hadron collisions
- Beyond fixed order QCD: higher order EWK $(\alpha_s^2 \sim \alpha)$ and resummation

$$d\sigma = \int dx_1 dx_2 f_i(x_1) f_j(x_2) d\sigma_{ij}(x_1, x_2) F_J \left(1 + \mathcal{O}(\Lambda_{\text{QCD}}/Q)\right)$$

Jan Kretzschmar, 25.01.2017

PDFs and Deep Inelastic Scattering [EPJC (2015) 75:580, EPJC (2009) 63:189]

- ► DIS experiments at SLAC in 1969 (*ep* → *eX*) found cross section to be ~independent of momentum transfer Q²: proton consists of point-like *quarks*
- Further precise measurements, e.g. at HERA ep collider, over wide range of x, Q^2 : neutral current (γ^* exchange) constrains $\sum e_q^2(q + \bar{q})$, at low momentum fraction x strong *scaling violations* due to gluons
- A big unknown is the flavour decomposition of light-quark sea at $x < 10^{-2}$: $\bar{u} \sim \bar{d}$, strange suppressed?

PDFs for *W* and *Z* **Production at LHC**

• At LO cross sections determined by sum of different $q\bar{q}$ combinations

- Different electro-weak couplings for γ^* (e_q^2) and Z $(v_q^2 + a_q^2)$ + their interference
- Weighted by CKM elements $V_{q\bar{q}}$ for W^{\pm}
- Different composition of flavours than constrained by the HERA dataset:
 - W-boson mass measurement subject to significant PDF uncertainties
 - Precise cross section measurements improves our knowledge of the proton structure
 - ► 2010 ATLAS *W*, *Z* data suggested a larger than expected strange-quark contribution: $r_s = \bar{s}/\bar{d} \approx 1$

W-boson mass and Electroweak fit

- ▶ With the discovery of the Higgs boson, the EW sector of the SM is over-constrained
- ► W-boson mass currently measured to ±15 MeV and predicted to ±8 MeV; many other EWK parameters measured far better than SM prediction
- ▶ m_W prediction sensitive to loop-corrections: QED, top, H, ... BSM?

$$m_W^2 \sin^2 heta_W = rac{\pi lpha}{\sqrt{2} G_F} (1 + \Delta r)$$

- Current Tevatron results use \sim 100,000 Z and 1 2M W events (+ J/ψ)
- \blacktriangleright Already 2011 ATLAS sample has \sim 2M Z and \sim 20M W events

W-boson mass and Electroweak fit

- ▶ With the discovery of the Higgs boson, the EW sector of the SM is over-constrained
- ► W-boson mass currently measured to ±15 MeV and predicted to ±8 MeV; many other EWK parameters measured far better than SM prediction
- ▶ m_W prediction sensitive to loop-corrections: QED, top, H, ... BSM?

$$m_W^2 \sin^2 heta_W = rac{\pi lpha}{\sqrt{2}G_F} (1 + \Delta r)$$

- Current Tevatron results use \sim 100,000 Z and 1 2M W events (+ J/ψ)
- \blacktriangleright Already 2011 ATLAS sample has \sim 2M Z and \sim 20M W events

Data sample

- Both analyses presented use the 2011 data set of $4.6 \, {\rm fb}^{-1}$:
 - Understanding of detector performance and analysis takes time!
 - Moderate pileup: "only" 9 simultaneous pp interactions on average
- LHC and ATLAS performance has been exceptional in the last years: none of the measurements presented are (directly) limited by data statistics, but detector systematics can typically be improved with larger calibration samples
- Analyse simultaneously both the electron- and muon-decay channels: $W \rightarrow e\nu, W \rightarrow \mu\nu, Z \rightarrow ee, Z \rightarrow \mu\mu$
 - \Rightarrow critical to gain confidence in results and achieve the ultimate precision

A $W \rightarrow e\nu$ candidate

A $Z \rightarrow \mu \mu$ candidate

Event reconstruction and selection

• $W \to \ell \nu$:

- ▶ one isolated lepton (e or μ) with $p_T^\ell > 25$ GeV and $|\eta^\ell| \lesssim 2.4$
- ▶ remainder of the event: "hadronic recoil" \vec{u}_T (u_T < 30 GeV for W mass)
- neutrino inferred using $\vec{p}_T^{\text{miss}} = -(\vec{p}_T^\ell + \vec{u}_T) > 25 \text{ GeV}$

► transverse mass $m_T = \sqrt{2 p_T^\ell p_T^{
m miss}} (1 - \cos \Delta \phi) > 40 \; {
m GeV}$

- ▶ $Z \rightarrow \ell \ell$: two isolated leptons (*ee* or $\mu \mu$) with $p_T^{\ell} > 20$ GeV and $|\eta^{\ell}| \lesssim 2.4$, invariant mass $m_{\ell \ell} = 46 150$ GeV
- ▶ Selection for cross-section measurements, for *W*-mass slightly tighter criteria applied

Analysis strategies

Cross-section analysis

 Binned event yields (N) corrected for background (B), efficiencies and migrations (C = N^{MC}_{rec}/N^{MC}_{gen}) to obtain (differential) cross sections

$$\sigma^{\rm fid} = \frac{N-B}{C \cdot \mathcal{L}_{\rm int}}$$

- Combination of e and μ channels
- Comparison to NNLO QCD + NLO EWK predictions, QCD analysis → new PDF set

W-boson mass analysis

- Simulated events reweighted best theory of W production and decay and a series of different m_W values
- ► Fit to sensitive distributions (p^ℓ_T, m_T) to determine best m_W value
- Initial blinding of m_W by an unknown, common offset

Common: detector performance needs to be understood at very high level

Detector calibration

Electron Efficiency

- Electron detection complicated by large amount of material in the detector and significant background from jets
- Efficiency controlled in several steps using "tag-and-probe": relies mostly on $Z \rightarrow \ell \ell$ events selected with looser criteria on one leg
- ▶ Simulation not perfect → correct simulation double-differentially in $(\eta^{\ell}, p_{T}^{\ell})$ by measured $\epsilon_{data}/\epsilon_{MC}$, known to typically $\sim 0.2 1\%$ in relevant range $p_{T}^{\ell} > 25$ GeV
- Directly relevant as systematics for cross-section measurement, important to control p_T^ℓ -dependent slopes for m_W
- Muon efficiencies controlled in similar way, just easier

Electron Efficiency

- Electron detection complicated by large amount of material in the detector and significant background from jets
- Efficiency controlled in several steps using "tag-and-probe": relies mostly on $Z \rightarrow \ell \ell$ events selected with looser criteria on one leg
- ▶ Simulation not perfect → correct simulation double-differentially in $(\eta^{\ell}, p_{T}^{\ell})$ by measured $\epsilon_{data}/\epsilon_{MC}$, known to typically $\sim 0.2 1\%$ in relevant range $p_{T}^{\ell} > 25$ GeV
- Directly relevant as systematics for cross-section measurement, important to control p_T^{ℓ} -dependent slopes for m_W
- Muon efficiencies controlled in similar way, just easier

- Overall electron energy scale and resolution set to match the Z-boson parameters known precisely from LEP
- Understand possible non-linearities in $Z \rightarrow W$ extrapolation from passive material: controlled with muons (MIPs), longitudinal shower development of electrons and photons
- ▶ Precision of 10^{-4} equals ±8 MeV on m_W : reached, secondary effect for cross-section measurement

- Overall electron energy scale and resolution set to match the Z-boson parameters known precisely from LEP
- Understand possible non-linearities in $Z \rightarrow W$ extrapolation from passive material: controlled with muons (MIPs), longitudinal shower development of electrons and photons
- Precision of 10⁻⁴ equals ±8 MeV on m_W: reached, secondary effect for cross-section measurement

Jan Kretzschmar, 25.01.2017

Muon Calibration

- ▶ Overall momentum scale and resolution set to match the Z-boson parameters
- \blacktriangleright Non-linearities controlled from $Z \rightarrow \mu \mu$ sample
- Reached the 10^{-4} precision required for W mass
- Rotational detector deformations and flaws in alignment procedure can introduce charge-dependent sagitta bias δ − best controlled with E/p in W[±] → e[±]ν events:

$$p_T^{\text{corr}} = rac{p_T}{1 + q \cdot \delta(\eta, \phi) \cdot p_T}$$

▶ Sagitta effect important to control W^+/W^- mass and cross-section ratio

Jan Kretzschmar, 25.01.2017

Muon Calibration

- ▶ Overall momentum scale and resolution set to match the Z-boson parameters
- ▶ Non-linearities controlled from $Z \rightarrow \mu\mu$ sample
- Reached the 10^{-4} precision required for W mass
- Rotational detector deformations and flaws in alignment procedure can introduce charge-dependent sagitta bias δ − best controlled with E/p in W[±] → e[±]ν events:

$$p_T^{\text{corr}} = rac{p_T}{1 + q \cdot \delta(\eta, \phi) \cdot p_T}$$

▶ Sagitta effect important to control W^+/W^- mass and cross-section ratio

- Hadronic recoil reconstructed from all calorimeter clusters in the event after removing cones around identified leptons & replacing by a "random" cone
- Affected by pileup and underlying event, all of which is not necessarily well modelled
- Reweighting to equalise event activity
- Scale and resolution calibration using projections parallel and transverse to Z direction

Hadronic Recoil Calibration

- Hadronic recoil reconstructed from all calorimeter clusters in the event after removing cones around identified leptons & replacing by a "random" cone
- Affected by pileup and underlying event, all of which is not necessarily well modelled
- Reweighting to equalise event activity
- Scale and resolution calibration using projections parallel and transverse to Z direction

Backgrounds

• Very small background for $Z \rightarrow ee$ and $Z \rightarrow \mu\mu$:

 $\sim 0.2\%$ at Z peak and a few % in off-peak region

- Background to $W \rightarrow \ell \nu$ more difficult:
 - $W \to \tau \nu$ and $Z \to \ell \ell$ taken from MC need to account for correct modelling of veto-efficiency for W-mass analysis!
 - Multi-jet background not large, but determination using a data template hard to control – done via extrapolation procedure

Backgrounds

- Very small background for $Z \rightarrow ee$ and $Z \rightarrow \mu\mu$:
 - $\sim 0.2\%$ at Z peak and a few % in off-peak region
- Background to $W \rightarrow \ell \nu$ more difficult:
 - $W \to \tau \nu$ and $Z \to \ell \ell$ taken from MC need to account for correct modelling of veto-efficiency for W-mass analysis!
 - Multi-jet background not large, but determination using a data template hard to control – done via extrapolation procedure

Backgrounds

• Very small background for $Z \rightarrow ee$ and $Z \rightarrow \mu\mu$:

 $\sim 0.2\%$ at Z peak and a few % in off-peak region

- Background to $W \rightarrow \ell \nu$ more difficult:
 - $W \to \tau \nu$ and $Z \to \ell \ell$ taken from MC need to account for correct modelling of veto-efficiency for W-mass analysis!
 - Multi-jet background not large, but determination using a data template hard to control – done via extrapolation procedure

Cross-section results

Integrated cross-section results and combination

- ► Integrated cross sections measured to 0.6 1.0% for W and 0.4% for Z plus 1.8% luminosity uncertainty
- Combination interpreted as test of $e \mu$ universality: most precise test for on-shell W, "only" factor 2 worse than LEP for Z

Differential cross-section combination

- ▶ 105 measurement points: W^{\pm} as function of charged lepton rapidity $|\eta^{\ell}|$, Z/γ^* as function of di-lepton rapidity $|y_{\ell\ell}|$
- Different detection challenges for electrons and muons
- $e \mu$ combination to 61 final points including all correlations: $\chi^2/n.d.f. = 59.5/53$

Differential cross-section combination

- ▶ 105 measurement points: W^{\pm} as function of charged lepton rapidity $|\eta^{\ell}|$, Z/γ^* as function of di-lepton rapidity $|y_{\ell\ell}|$
- Different detection challenges for electrons and muons
- $e \mu$ combination to 61 final points including all correlations: $\chi^2/n.d.f. = 59.5/53$

Differential cross-section combination

- ▶ 105 measurement points: W^{\pm} as function of charged lepton rapidity $|\eta^{\ell}|$, Z/γ^* as function of di-lepton rapidity $|y_{\ell\ell}|$
- Different detection challenges for electrons and muons
- $e \mu$ combination to 61 final points including all correlations: $\chi^2/n.d.f. = 59.5/53$

Integrated cross section vs. Theory

- Interpretation of measurement in terms of PDFs relies on accurate theory calculations at NNLO QCD and NLO EWK
- Measured integrated fiducial cross sections more precise than most PDF sets: W[±] well described, W/Z ratio systematically different

- Interpretation of measurement in terms of PDFs relies on accurate theory calculations at NNLO QCD and NLO EWK
- Measured integrated fiducial cross sections more precise than most PDF sets: W[±] well described, W/Z ratio systematically different

Differential cross section vs. Theory

- Challenge for theory to describe the data at sub-percent level
- Quantitative χ² analysis of theory/data agreement using all differential distributions: CT14 (χ²/n.d.f. = 103/61) best, NNPDF3.0 (χ²/n.d.f. = 147/61) worst

Data set	n.d.f.	ABM12	CT14	MMHT14	NNPDF3.0	ATLAS-epWZ12
$W^+ \rightarrow \ell^+ \nu$	11	11 21	10 26	11 37	11 18	12 15
$W^- \rightarrow \ell^- \bar{\nu}$	11	12 20	8.9 27	8.1 31	12 19	7.8 17
$Z/\gamma^* \rightarrow \ell \ell \ (m_{\ell \ell} = 46 - 66 \text{ GeV})$	6	17 21	11 30	18 24	21 22	28 36
$Z/\gamma^* \rightarrow \ell \ell \ (m_{\ell \ell} = 66 - 116 \text{ GeV})$	12	24 51	16 66	20 116	14 109	18 26
Forward $Z/\gamma^* \rightarrow \ell \ell \ (m_{\ell \ell} = 66 - 116 \text{ GeV})$	9	7.3 9.3	10 12	12 13	14 18	6.8 7.5
$Z/\gamma^* \rightarrow \ell \ell \ (m_{\ell \ell} = 116 - 150 \text{ GeV})$	6	6.1 6.6	6.3 6.1	5.9 6.6	6.1 8.8	6.7 6.6
Forward $Z/\gamma^* \to \ell\ell \ (m_{\ell\ell} = 116 - 150 \text{ GeV})$	6	4.2 3.9	5.1 4.3	5.6 4.6	5.1 5.0	3.6 3.5
Correlated χ^2		57 90	39 123	43 167	69 157	31 48
Total χ^2	61	136 222	103 290	118 396	147 351	113 159
					_	

 χ^2 {with | without} uncertainties from PDF sets

QCD fit analysis and the strange-quark density

Fit to final HERA DIS data and new ATLAS W and Z data \rightarrow ATLAS-epWZ16 PDF set

 QCD can describe data: nominal χ² = 108/61 high, theory at half of conventional μ_r, μ_f scales improves fit χ² significantly χ² = 85/61

μ_{r}	$\mu_{ m f}$	$\chi^2/n.d.t.$	$r_s = \frac{s + s}{2d}$	$R_s = \frac{s+s}{\bar{u}+\bar{d}}$
		Total 🔨 ATLAS		
1	1	1321 / 1102 108 / 61	1.193	1.131
1/2	1/2	1297 / 1102 85 / 61	1.093	1.066
2	2	1329 / 1102 115 / 61	1.270	1.186
1	1/2	1307 / 1102 94 / 61	1.166	1.115
1	2	1312 / 1102 100 / 61	1.201	1.130
1/2	1	1304 / 1102 94 / 61	1.128	1.088
2	1	1321 / 1102 107 / 61	1.241	1.165

- Confirmation of large strange-quark sea at low $Q^2 = 1.9 \text{ GeV}^2$ and low x = 0.023: $r_s = \bar{s}/\bar{d} = 1.19 \pm 0.05 \text{ (exp)} \pm 0.16 \text{ (fit + thy)}$
- For Tension with neutrino-fixed target DIS di-muon data, which favours $r_s \sim 0.5$?

	$r_s = \frac{s + \bar{s}}{2d}$	$R_s = \frac{s + \bar{s}}{\bar{u} + d}$
Central value	1.19	1.13
Experimental data	± 0.07	± 0.05
Model $(m_b, Q_{\min}^2, Q_0^2 \& m_c)$	± 0.02	± 0.02
Parameterization	$^{+0.02}_{-0.10}$	$^{+0.01}_{-0.06}$
$\alpha_{\rm S}$	$^{+0.00}_{-0.01}$	± 0.01
Beam energy ${\cal E}_p$	± 0.03	$^{+0.01}_{-0.02}$
EW corrections	± 0.01	± 0.00
QCD scales	$^{+0.08}_{-0.10}$	$^{+0.06}_{-0.07}$
FEWZ 3.1b2	+0.10	+0.08
Total uncertainty	$^{+0.15}_{-0.16}$	± 0.11

Jan Kretzschmar, 25.01.2017

W-boson mass results

Fully differential physics model for DY

- ▶ None of the standard MC generators provides a sufficiently precise description of production and decay of $W^{\pm} \rightarrow \ell \nu$ and $Z/\gamma^* \rightarrow \ell \ell$
- Factorisation of five-dimensional DY cross section allows reweighting

$$\frac{\mathrm{d}\sigma}{\mathrm{d}m_{\ell\ell}\mathrm{d}p_{\mathcal{T},\ell\ell}\mathrm{d}y_{\ell\ell}}\left[1+\cos^2\theta_{CS}+\sum_{i=0}^{7}\mathcal{A}_i(m_{\ell\ell},p_{\mathcal{T},\ell\ell},y_{\ell\ell})f_i(\theta_{CS},\phi_{CS})\right]$$

- ▶ $m_{\ell\ell}$: "simple" BW-resonance, scan m_W ...
- ▶ $y_{\ell\ell}$, angular coefficients A_i : fixed-order NNLO QCD with CT10 (large strange!), validated by measured W, Z cross-sections and $Z \rightarrow \ell \ell$ angular correlations (JHEP08(2016)159)
- ▶ p_{T,ℓℓ}: needs resummation or parton shower
- Higher order QED effects simulated, missing EWK pieces as systematics

Transverse momentum distribution

- Easy to measure for $Z \to \ell \ell$, hard for $W \to \ell \nu \to$ tune on Z, predict W
- $Z \rightarrow W$ translation: PDF and heavy-quark effects, large *cs* contribution to *W*
- Advanced resummed prediction like DYRES, ResBos etc (NNLO + NNLL) fail Pythia8 left as only working choice: validated by u_{\parallel}^{ℓ} distribution
- ▶ Perform variations on Pythia8: factorisation scale (separate for light and heavy quarks), m_c , m_b , PDF in parton shower and matrix element

Transverse momentum distribution

- ▶ Easy to measure for $Z \rightarrow \ell \ell$, hard for $W \rightarrow \ell \nu \rightarrow$ tune on Z, predict W
- $Z \rightarrow W$ translation: PDF and heavy-quark effects, large *cs* contribution to *W*
- Advanced resummed prediction like DYRES, ResBos etc (NNLO + NNLL) fail Pythia8 left as only working choice: validated by u_{\parallel}^{ℓ} distribution
- ▶ Perform variations on Pythia8: factorisation scale (separate for light and heavy quarks), m_c , m_b , PDF in parton shower and matrix element

Transverse momentum distribution

- Easy to measure for $Z \to \ell \ell$, hard for $W \to \ell \nu \to$ tune on Z, predict W
- $Z \rightarrow W$ translation: PDF and heavy-quark effects, large *cs* contribution to *W*
- Advanced resummed prediction like DYRES, ResBos etc (NNLO + NNLL) fail Pythia8 left as only working choice: validated by u_{\parallel}^{ℓ} distribution
- ▶ Perform variations on Pythia8: factorisation scale (separate for light and heavy quarks), m_c , m_b , PDF in parton shower and matrix element

W-like cross-checks with Z events

Extract Z-mass using W-like distributions of p_T^{ℓ} and m_T as closure test \Rightarrow statistics dominated, ok at $\sim 1.5\sigma$

W-boson mass fit distributions: p_T^{ℓ}

Jan Kretzschmar, 25.01.2017

W-boson mass fit distributions: m_T

Jan Kretzschmar, 25.01.2017

W-boson mass result per category

- Analysis binned in |η| and W[±]-charge categories and fit performed in both p^ℓ_T and m_T
- P(χ²) distribution over all fit categories: uncertainties well calibrated
- Combination including correlations: $\chi^2/n.d.f. = 29/27$

W-boson mass result per category

Channel	m_W	Stat.	Muon	Elec.	Recoil	Bckg.	QCD	EWK	PDF	Total
$m_{\rm T}$ -Fit	[MeV]	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.
$W^+ \rightarrow \mu\nu, \eta < 0.8$	80371.3	29.2	12.4	0.0	15.2	8.1	9.9	3.4	28.4	47.1
$W^+ \to \mu \nu, 0.8 < \eta < 1.4$	80354.1	32.1	19.3	0.0	13.0	6.8	9.6	3.4	23.3	47.6
$W^+ \to \mu \nu, 1.4 < \eta < 2.0$	80426.3	30.2	35.1	0.0	14.3	7.2	9.3	3.4	27.2	56.9
$W^+ \to \mu\nu, 2.0 < \eta < 2.4$	80334.6	40.9	112.4	0.0	14.4	9.0	8.4	3.4	32.8	125.5
$W^- \rightarrow \mu\nu$, $ \eta < 0.8$	80375.5	30.6	11.6	0.0	13.1	8.5	9.5	3.4	30.6	48.5
$W^- \to \mu \nu, 0.8 < \eta < 1.4$	80417.5	36.4	18.5	0.0	12.2	7.7	9.7	3.4	22.2	49.7
$W^- \rightarrow \mu\nu, 1.4 < \eta < 2.0$	80379.4	35.6	33.9	0.0	10.5	8.1	9.7	3.4	23.1	56.9
$W^- \to \mu\nu, 2.0 < \eta < 2.4$	80334.2	52.4	123.7	0.0	11.6	10.2	9.9	3.4	34.1	139.9
$W^+ \rightarrow e\nu, \eta < 0.6$	80352.9	29.4	0.0	19.5	13.1	15.3	9.9	3.4	28.5	50.8
$W^+ \to e\nu, 0.6 < \eta < 1.2$	80381.5	30.4	0.0	21.4	15.1	13.2	9.6	3.4	23.5	49.4
$W^+ \to e\nu, 1, 8 < \eta < 2.4$	80352.4	32.4	0.0	26.6	16.4	32.8	8.4	3.4	27.3	62.6
$W^- \rightarrow e\nu, \eta < 0.6$	80415.8	31.3	0.0	16.4	11.8	15.5	9.5	3.4	31.3	52.1
$W^- \to e\nu, 0.6 < \eta < 1.2$	80297.5	33.0	0.0	18.7	11.2	12.8	9.7	3.4	23.9	49.0
$W^- \to e\nu, 1.8 < \eta < 2.4$	80423.8	42.8	0.0	33.2	12.8	35.1	9.9	3.4	28.1	72.3
p _T -Fit										
$W^+ \rightarrow \mu\nu, \eta < 0.8$	80327.7	22.1	12.2	0.0	2.6	5.1	9.0	6.0	24.7	37.3
$W^+ \to \mu \nu, 0.8 < \eta < 1.4$	80357.3	25.1	19.1	0.0	2.5	4.7	8.9	6.0	20.6	39.5
$W^+ \to \mu\nu, 1.4 < \eta < 2.0$	80446.9	23.9	33.1	0.0	2.5	4.9	8.2	6.0	25.2	49.3
$W^+ \to \mu\nu, 2.0 < \eta < 2.4$	80334.1	34.5	110.1	0.0	2.5	6.4	6.7	6.0	31.8	120.2
$W^- \rightarrow \mu\nu, \eta < 0.8$	80427.8	23.3	11.6	0.0	2.6	5.8	8.1	6.0	26.4	39.0
$W^- \to \mu\nu, 0.8 < \eta < 1.4$	80395.6	27.9	18.3	0.0	2.5	5.6	8.0	6.0	19.8	40.5
$W^- \to \mu\nu, 1.4 < \eta < 2.0$	80380.6	28.1	35.2	0.0	2.6	5.6	8.0	6.0	20.6	50.9
$W^- \to \mu \nu, 2.0 < \eta < 2.4$	80315.2	45.5	116.1	0.0	2.6	7.6	8.3	6.0	32.7	129.6
$W^+ \rightarrow e\nu, \eta < 0.6$	80336.5	22.2	0.0	20.1	2.5	6.4	9.0	5.3	24.5	40.7
$W^+ \to e\nu, 0.6 < \eta < 1.2$	80345.8	22.8	0.0	21.4	2.6	6.7	8.9	5.3	20.5	39.4
$W^+ \to e\nu, 1, 8 < \eta < 2.4$	80344.7	24.0	0.0	30.8	2.6	11.9	6.7	5.3	24.1	48.2
$W^- \rightarrow e\nu, \eta < 0.6$	80351.0	23.1	0.0	19.8	2.6	7.2	8.1	5.3	26.6	42.2
$W^- \rightarrow e\nu, 0.6 < \eta < 1.2$	80309.8	24.9	0.0	19.7	2.7	7.3	8.0	5.3	20.9	39.9
$W^- \to e\nu, 1.8 < \eta < 2.4$	80413.4	30.1	0.0	30.7	2.7	11.5	8.3	5.3	22.7	51.0

 $\begin{array}{l} |\eta| \mbox{ comb } e \ \rightarrow \ {\sim} 15 \ \mbox{MeV} \\ \mu \ \rightarrow \ {\sim} 11 \ \mbox{MeV} \end{array}$

Strongly correlated

Strongly correlated

 $|\eta|$ comb. $\rightarrow \sim 14$ MeV W+/W- comb $\rightarrow \sim 9$ MeV

W-boson mass result

- Good compatibility between partial combinations
- ▶ p_T^{ℓ} fit dominates as expected, m_T important validation
- Electrons contribute significantly!
- $W^+ W^-$ mass difference

$$m_{W^+} - m_{W^-} = -29 \pm 13 \,\mathrm{MeV(stat.)} \pm 7 \,\mathrm{MeV(exp. syst.)} \pm 24 \,\mathrm{MeV(mod. syst.)}$$

= -29 \pm 28 \, MeV

 $m_W = 80370 \pm 7 \,\text{MeV(stat.)} \pm 11 \,\text{MeV(exp. syst.)} \pm 14 \,\text{MeV(mod. syst.)}$ = 80370 ± 19 MeV

Stat.	Muon	Elec.	Recoil	Bckg.	QCD	EWK	PDF	Total	
Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	
6.8	6.6	6.4	2.9	4.5	8.3	5.5	9.2	18.5	[MeV]

Good agreement with the Standard Model

Summary & Outlook

Two milestones from the LHC precision frontier:

- \blacktriangleright Precision cross-sections at <1% level: strong constraints on PDFs flavour-symmetry of light-quark sea
- First measurement of the W-boson mass at LHC: many thought it would be impossible at this precision; good agreement with SM prediction

Final uncertainties on the interpretation dominated by theory:

- Possibly not completely unexpected for pp collisions
- Some theory limitations can be reduced by performing and incorporating additional measurements (8 TeV and 13 TeV)
- Help from the theorists to improve modelling

W-boson charge	W	7+	W^-		Combined	
Kinematic distribution	p_{T}^{ℓ}	$m_{\rm T}$	p_{T}^{ℓ}	m_{T}	p_{T}^{ℓ}	$m_{\rm T}$
$\delta m_W [{ m MeV}]$						
Fixed-order PDF uncertainty	13.1	14.9	12.0	14.2	8.0	8.7
AZ tune	3.0	3.4	3.0	3.4	3.0	3.4
Charm-quark mass	1.2	1.5	1.2	1.5	1.2	1.5
Parton shower $\mu_{\rm F}$ with heavy-flavour decorrelation	5.0	6.9	5.0	6.9	5.0	6.9
Parton shower PDF uncertainty	3.6	4.0	2.6	2.4	1.0	1.6
Angular coefficients	5.8	5.3	5.8	5.3	5.8	5.3
Total	15.9	18.1	14.8	17.2	11.6	12.9

	ċ	Ĺ

$ \eta_{\ell} $ range	[0.0, 0.6]		[0.6, 1.2]		[1.82, 2.4]		Combined	
Kinematic distribution	p_{T}^{ℓ}	m_{T}	p_{T}^{ℓ}	m_{T}	p_{T}^{ℓ}	m_{T}	p_{T}^{ℓ}	m_{T}
$\delta m_W [{ m MeV}]$								
Energy scale	10.4	10.3	10.8	10.1	16.1	17.1	8.1	8.0
Energy resolution	5.0	6.0	7.3	6.7	10.4	15.5	3.5	5.5
Energy linearity	2.2	4.2	5.8	8.9	8.6	10.6	3.4	5.5
Energy tails	2.3	3.3	2.3	3.3	2.3	3.3	2.3	3.3
Reconstruction efficiency	10.5	8.8	9.9	7.8	14.5	11.0	7.2	6.0
Identification efficiency	10.4	7.7	11.7	8.8	16.7	12.1	7.3	5.6
Trigger and isolation efficiencies	0.2	0.5	0.3	0.5	2.0	2.2	0.8	0.9
Charge mismeasurement	0.2	0.2	0.2	0.2	1.5	1.5	0.1	0.1
Total	19.0	17.5	21.1	19.4	30.7	30.5	14.2	14.3

$ \eta_{\ell} $ range	[0.	[0.0, 0.8]		[0.8, 1.4]		[1.4, 2.0]		[2.0, 2.4]		Combined	
Kinematic distribution	p_{T}^{ℓ}	$m_{\rm T}$	p_{T}^{ℓ}	m_{T}	p_{T}^{ℓ}	m_{T}	p_{T}^{ℓ}	m_{T}	p_{T}^{ℓ}	m_{T}	
$\delta m_W [\text{MeV}]$											
Momentum scale	8.9	9.3	14.2	15.6	27.4	29.2	111.0	115.4	8.4	8.8	
Momentum resolution	1.8	2.0	1.9	1.7	1.5	2.2	3.4	3.8	1.0	1.2	
Sagitta bias	0.7	0.8	1.7	1.7	3.1	3.1	4.5	4.3	0.6	0.6	
Reconstruction and											
isolation efficiencies	4.0	3.6	5.1	3.7	4.7	3.5	6.4	5.5	2.7	2.2	
Trigger efficiency	5.6	5.0	7.1	5.0	11.8	9.1	12.1	9.9	4.1	3.2	
Total	11.4	11.4	16.9	17.0	30.4	31.0	112.0	116.1	9.8	9.7	

W-boson charge	V	V^+	И	V-	Combined	
Kinematic distribution	p_{T}^{ℓ}	$m_{\rm T}$	p_{T}^{ℓ}	$m_{\rm T}$	p_{T}^{ℓ}	$m_{\rm T}$
$\delta m_W \; [{ m MeV}]$						
$\langle \mu \rangle$ scale factor	0.2	1.0	0.2	1.0	0.2	1.0
$\Sigma \bar{E_{\mathrm{T}}}$ correction	0.9	12.2	1.1	10.2	1.0	11.2
Residual corrections (statistics)	2.0	2.7	2.0	2.7	2.0	2.7
Residual corrections (interpolation)	1.4	3.1	1.4	3.1	1.4	3.1
Residual corrections $(Z \to W \text{ extrapolation})$	0.2	5.8	0.2	4.3	0.2	5.1
Total	2.6	14.2	2.7	11.8	2.6	13.0

W-boson charge	V	V^+	И	V-	Combined	
Kinematic distribution	p_{T}^{ℓ}	$m_{\rm T}$	p_{T}^{ℓ}	$m_{\rm T}$	p_{T}^{ℓ}	m_{T}
$\delta m_W \; [{ m MeV}]$						
$\langle \mu \rangle$ scale factor	0.2	1.0	0.2	1.0	0.2	1.0
$\Sigma \bar{E_{\mathrm{T}}}$ correction	0.9	12.2	1.1	10.2	1.0	11.2
Residual corrections (statistics)	2.0	2.7	2.0	2.7	2.0	2.7
Residual corrections (interpolation)	1.4	3.1	1.4	3.1	1.4	3.1
Residual corrections $(Z \to W \text{ extrapolation})$	0.2	5.8	0.2	4.3	0.2	5.1
Total	2.6	14.2	2.7	11.8	2.6	13.0

Combined	Value	Stat.	Muon	Elec.	Recoil	Bckg.	QCD	EW	PDF	Total	χ^2/dof
categories	[MeV]	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	of Comb.
m_{T}, W^+, e - μ	80370.0	12.3	8.3	6.7	14.5	9.7	9.4	3.4	16.9	30.9	2/6
$m_{\rm T}, W^-, e$ - μ	80381.1	13.9	8.8	6.6	11.8	10.2	9.7	3.4	16.2	30.5	7/6
$m_{\rm T}, W^{\pm}, e$ - μ	80375.7	9.6	7.8	5.5	13.0	8.3	9.6	3.4	10.2	25.1	11/13
$p_{\mathrm{T}}^{\ell}, W^+, e$ - μ	80352.0	9.6	6.5	8.4	2.5	5.2	8.3	5.7	14.5	23.5	5/6
$p_{\mathrm{T}}^{\ell}, W^{-}, e$ - μ	80383.4	10.8	7.0	8.1	2.5	6.1	8.1	5.7	13.5	23.6	10/6
$p_{\rm T}^\ell,W^\pm,e\text{-}\mu$	80369.4	7.2	6.3	6.7	2.5	4.6	8.3	5.7	9.0	18.7	19/13
$p_{\mathrm{T}}^{\ell}, W^{\pm}, e$	80347.2	9.9	0.0	14.8	2.6	5.7	8.2	5.3	8.9	23.1	4/5
$m_{\rm T}, W^{\pm}, e$	80364.6	13.5	0.0	14.4	13.2	12.8	9.5	3.4	10.2	30.8	8/5
$m_{\rm T}$ - $p_{\rm T}^{\ell}$, W^+ , e	80345.4	11.7	0.0	16.0	3.8	7.4	8.3	5.0	13.7	27.4	1/5
$m_{\rm T}$ - $p_{\rm T}^{\ell}, W^{-}, e$	80359.4	12.9	0.0	15.1	3.9	8.5	8.4	4.9	13.4	27.6	8/5
$m_{\rm T}$ - $p_{\rm T}^{\tilde{\ell}}, W^{\pm}, e$	80349.8	9.0	0.0	14.7	3.3	6.1	8.3	5.1	9.0	22.9	12/11
$p_{\mathrm{T}}^{\ell}, W^{\pm}, \mu$	80382.3	10.1	10.7	0.0	2.5	3.9	8.4	6.0	10.7	21.4	7/7
$m_{\rm T}, W^{\pm}, \mu$	80381.5	13.0	11.6	0.0	13.0	6.0	9.6	3.4	11.2	27.2	3/7
m_{T} - p_{T}^{ℓ} , W^+ , μ	80364.1	11.4	12.4	0.0	4.0	4.7	8.8	5.4	17.6	27.2	5/7
$m_{\rm T}$ - $p_{\rm T}^{\ell}, W^{-}, \mu$	80398.6	12.0	13.0	0.0	4.1	5.7	8.4	5.3	16.8	27.4	3/7
m_{T} - $p_{\mathrm{T}}^{\ell}, W^{\pm}, \mu$	80382.0	8.6	10.7	0.0	3.7	4.3	8.6	5.4	10.9	21.0	10/15
$m_{\rm T}$ - $p_{\rm T}^{\ell}, W^+, e$ - μ	80352.7	8.9	6.6	8.2	3.1	5.5	8.4	5.4	14.6	23.4	7/13
$m_{\rm T}$ - $p_{\rm T}^{\ell}, W^{-}, e$ - μ	80383.6	9.7	7.2	7.8	3.3	6.6	8.3	5.3	13.6	23.4	15/13
m_{T} - p_{T}^{ℓ} , W^{\pm} , e - μ	80369.5	6.8	6.6	6.4	2.9	4.5	8.3	5.5	9.2	18.5	29/27

Decay channel	V	$V \rightarrow e\nu$	V	$V \rightarrow \mu \nu$	Combined		
Kinematic distribution	p_{T}^{ℓ}	m_{T}	p_{T}^{ℓ}	m_{T}	p_{T}^{ℓ}	m_{T}	
$\Delta m_W [\text{MeV}]$							
$\langle \mu \rangle$ in [2.5, 6.5]	8 ± 14	14 ± 18	-21 ± 12	0 ± 16	$-9\pm~9$	6 ± 12	
$\langle \mu \rangle$ in [6.5, 9.5]	-6 ± 16	6 ± 23	12 ± 15	-8 ± 22	4 ± 11	-1 ± 16	
$\langle \mu \rangle$ in [9.5, 16]	-1 ± 16	3 ± 27	25 ± 16	35 ± 26	12 ± 11	20 ± 19	
$u_{\rm T}$ in $[0, 15]GeV$	0 ± 11	-8 ± 13	5 ± 10	8 ± 12	$3\pm~7$	-1 ± 9	
$u_{\rm T}$ in $[15, 30]GeV$	10 ± 15	0 ± 24	-4 ± 14	-18 ± 22	2 ± 10	-10 ± 16	
$u_{\parallel}^{\ell} < 0 GeV$	8 ± 15	20 ± 17	3 ± 13	-1 ± 16	5 ± 10	9 ± 12	
$u_{\parallel}^{\ell} > 0 GeV$	-9 ± 10	1 ± 14	-12 ± 10	10 ± 13	$-11\pm~7$	6 ± 10	
No $p_{\rm T}^{\rm miss}$ -cut	14 ± 9	-1 ± 13	$10\pm~8$	-6 ± 12	$12\pm~6$	$-4\pm$ 9	

Z/γ^* transverse momentum

- Vector bosons are produced with non-zero transverse momentum: interesting interplay of effects from resummation and hard (jet) emissions
- \blacktriangleright High precision 2011 and 2012 results with \lesssim 0.5% precision after ee + $\mu\mu$ combination over a wide range!
- ▶ 2012 analysis extent to off-peak measurements: data/theory agreement not good at $\mathcal{O}(\alpha_s^2)$, improved with very recent $\mathcal{O}(\alpha_s^3)$ calculation remainder PDFs?
- Important for W mass measurement, Higgs predictions, BSM searches...

Z/γ^* transverse momentum

- Vector bosons are produced with non-zero transverse momentum: interesting interplay of effects from resummation and hard (jet) emissions
- ▶ High precision 2011 and 2012 results with \lesssim 0.5% precision after *ee* + $\mu\mu$ combination over a wide range!
- ▶ 2012 analysis extent to off-peak measurements: data/theory agreement not good at $\mathcal{O}(\alpha_s^2)$, improved with very recent $\mathcal{O}(\alpha_s^3)$ calculation remainder PDFs?
- ▶ Important for *W* mass measurement, Higgs predictions, BSM searches...

Z/γ^* transverse momentum

- Vector bosons are produced with non-zero transverse momentum: interesting interplay of effects from resummation and hard (jet) emissions
- ▶ High precision 2011 and 2012 results with \lesssim 0.5% precision after *ee* + $\mu\mu$ combination over a wide range!
- ▶ 2012 analysis extent to off-peak measurements: data/theory agreement not good at $\mathcal{O}(\alpha_s^2)$, improved with very recent $\mathcal{O}(\alpha_s^3)$ calculation remainder PDFs?
- ▶ Important for *W* mass measurement, Higgs predictions, BSM searches...

Proton structure

⁴, NC

1.2

0.8 0.6 0.4 0.2 - 0.0002

10

 $(t = \ln Q^2/Q_0^2)$

- \blacktriangleright Proton is not a point-like particle: complex structure with valence quarks, light and heavy sea quarks, and gluons \rightarrow PDFs
- QCD the evolution of quark given by equations as described e.g. in the paper by Altarelli and Parisi (1977) (DGLAP equations)

$$\frac{dq^{i}(x,t)}{dt} = \frac{\sim(t)}{2\pi} \int_{x}^{1} \frac{dy}{y} \left[\sum_{j}^{2t} q^{j}(x,t) P_{q} q^{j}(\frac{x}{y}) + G(y,t) P_{q} \frac{d}{G}(\frac{x}{y}) \right]$$
(22)

$$\frac{dG(x,t)}{dt} = \frac{\alpha(t)}{2\pi} \int_{x} \frac{dy}{y} \left[\sum_{j}^{2y} q^{j}(y,t) P_{Gqi}(\frac{x}{y}) + G(y,t) P_{Gq}(\frac{x}{y}) \right]$$
(23)

x, Q^2 plane

- Parametrise all PDFs at fixed starting scale f(x, Q₀²):
 DGLAP evolution gives result for all f(x, Q²)
- ▶ Full LHC W, Z production x range only covered by HERA NC data

CMS Peak Luminosity Per Day, pp

A $W \rightarrow \mu \nu$ candidate

A $Z \rightarrow ee$ candidate

The ATLAS Detector

Run 1 Lepton Performance: Muons

- ▶ Main experimental issue for W and Z is quantitative understanding of lepton performance: selection efficiencies, energy/momentum scales
- Thanks to the large $Z \rightarrow \ell \ell$ samples this is mostly an exercise in time and dedication
- Muon efficiencies and calibration both known at the < 0.1% level (non-uniformities in muon spectrometer and ID+MS alignment at μ m level)

- ▶ $W^+ \rightarrow \ell^+ \nu$ and $W^- \rightarrow \ell^- \nu$ measured integrated and as function of charged lepton rapidity $|\eta_\ell|$: typical precision 0.6 1.0%
- ► $Z/\gamma^* \rightarrow \ell\ell$ measured integrated and as function of di-lepton rapidity $|y_{\ell\ell}|$ and di-lepton mass $m_{\ell\ell}$: typical precision 0.4%, forward Z 2.3%

Electron channels

	$\delta \sigma_{W+}$	$\delta \sigma_{W-}$	$\delta \sigma_Z$	$\delta \sigma_{\text{forward }Z}$
	[%]	[%]	[%]	[%]
Trigger efficiency	0.03	0.03	0.05	0.05
Reconstruction efficiency	0.12	0.12	0.20	0.13
Identification efficiency	0.09	0.09	0.16	0.12
Forward identification efficiency	-	-	-	1.51
Isolation efficiency	0.03	0.03	-	0.04
Charge misidentification	0.04	0.06	-	-
Electron p_T resolution	0.02	0.03	0.01	0.01
Electron p_T scale	0.22	0.18	0.08	0.12
Forward electron p_T scale + resolution	-	-	-	0.18
E_T^{miss} soft term scale	0.14	0.13	-	-
E_T^{miss} soft term resolution	0.06	0.04	-	-
Jet energy scale	0.04	0.02	-	-
Jet energy resolution	0.11	0.15	-	-
Signal modelling (matrix-element generator)	0.57	0.64	0.03	1.12
Signal modelling (parton shower and hadronization)	0.24	0.25	0.18	1.25
PDF	0.10	0.12	0.09	0.06
Boson p_T	0.22	0.19	0.01	0.04
Multijet background	0.55	0.72	0.03	0.05
Electroweak+top background	0.17	0.19	0.02	0.14
Background statistical uncertainty	0.02	0.03	< 0.01	0.04
Unfolding statistical uncertainty	0.03	0.04	0.04	0.13
Data statistical uncertainty	0.04	0.05	0.10	0.18
Total experimental uncertainty	0.94	1.08	0.35	2.29
Luminosity			1.8	

Muon channels

	$\delta \sigma_{W+}$	$\delta \sigma_{W-}$	$\delta \sigma_Z$
	[%]	[%]	[%]
Trigger efficiency	0.08	0.07	0.05
Reconstruction efficiency	0.19	0.17	0.30
Isolation efficiency	0.10	0.09	0.15
Muon p_T resolution	0.01	0.01	< 0.01
Muon p_T scale	0.18	0.17	0.03
E_T^{miss} soft term scale	0.19	0.19	-
E_T^{miss} soft term resolution	0.10	0.09	-
Jet energy scale	0.09	0.12	-
Jet energy resolution	0.11	0.16	-
Signal modelling (matrix-element generator)	0.12	0.06	0.04
Signal modelling (parton shower and hadronization)	0.14	0.17	0.22
PDF	0.09	0.12	0.07
Boson p_T	0.18	0.14	0.04
Multijet background	0.33	0.27	0.07
Electroweak+top background	0.19	0.24	0.02
Background statistical uncertainty	0.03	0.04	0.01
Unfolding statistical uncertainty	0.03	0.03	0.02
Data statistical uncertainty	0.04	0.04	0.08
Total experimental uncertainty	0.61	0.59	0.43
Luminosity		1.8	

W, Z Combination

W, Z Combination

W, Z Combination

ATLAS Z

PDF profiling

ATLAS-epWZ16

CKM matrix element $|V_{cs}|$

- Data is also sensitive to the magnitude of the CKM matrix element |V_{cs}|, which is not well measured experimentally (although well determined when imposing CKM unitarity)
- ▶ Related to strange density, as dependence is through $cs \rightarrow W$ contribution (20 30% of W cross section)
- Determination competitive with existing values, much improved compared to earlier NNPDF1.2 fit

	Vcs
Central value	0.969
Experimental data	± 0.013
Model $(m_b, Q_{\min}^2, Q_0^2 \& m_c)$	$^{+0.006}_{-0.003}$
Parameterization	$^{+0.003}_{-0.027}$
$\alpha_{\rm S}$	± 0.000
Beam energy E_p	± 0.001
EW corrections	± 0.004
QCD scales	$^{+0.000}_{-0.003}$
FEWZ 3.1b2	+0.011
Total uncertainty	$+0.018 \\ -0.031$

Strange

Strange

PDF parameterised at starting scale Q_0^2 with 15 free parameters

$$\begin{aligned} xu_{\nu}(x) &= A_{u_{\nu}} x^{B_{u_{\nu}}} (1-x)^{C_{u_{\nu}}} (1+E_{u_{\nu}} x^{2}), \\ xd_{\nu}(x) &= A_{d_{\nu}} x^{B_{d_{\nu}}} (1-x)^{C_{d_{\nu}}}, \\ x\bar{u}(x) &= A_{\bar{u}} x^{B_{\bar{u}}} (1-x)^{C_{\bar{u}}}, \\ x\bar{d}(x) &= A_{\bar{d}} x^{B_{\bar{d}}} (1-x)^{C_{\bar{d}}}, \\ xg(x) &= A_{g} x^{B_{g}} (1-x)^{C_{g}} - A'_{g} x^{B'_{g}} (1-x)^{C'_{g}}, \\ x\bar{s}(x) &= A_{\bar{s}} x^{B_{\bar{s}}} (1-x)^{C_{\bar{s}}}, \end{aligned}$$

- Description of production and decay of single $W^{\pm} \rightarrow \ell \nu$ and $Z/\gamma^* \rightarrow \ell \ell$ depends on five kinematic variables:
 - ▶ Boson 4-vector: di-lepton mass $m_{\ell\ell}$, transverse momentum $p_{T,\ell\ell}$ and rapidity $y_{\ell\ell}$
 - Spin-1 of W/Z/γ* bosons and EWK coupling effects the two decay leptons have non-trivial angular correlations (θ_{CS} and φ_{CS})
- Can be factorised as

$$\frac{\mathrm{d}\sigma}{\mathrm{d}m_{\ell\ell}\mathrm{d}p_{T,\ell\ell}\mathrm{d}y_{\ell\ell}}\left[1+\cos^2\theta_{CS}+\sum_{i=0}^7A_i(m,p_T,y)f_i(\theta_{CS},\phi_{CS})\right]$$

Jan Kretzschmar, 25.01.2017

W mass

W mass

W mass

W mass: weights

Observable	Channel	η range	Weight
m_{T}	$W^+ \rightarrow \mu \nu$	$ \eta < 0.8$	0.018
		$0.8 < \eta < 1.4$	0.022
		$1.4 < \eta < 2.0$	0.003
		$2.0 < \eta < 2.4$	0.006
	$W^- \rightarrow \mu \nu$	$ \eta < 0.8$	0.020
		$0.8 < \eta < 1.4$	0.018
		$1.4 < \eta < 2.0$	0.022
		$2.0 < \eta < 2.4$	0.001
	$W^+ \rightarrow e\nu$	$ \eta < 0.6$	0.013
		$0.6 < \eta < 1.2$	0.001
		$1, 8 < \eta < 2.4$	0.010
	$W^- \rightarrow e \nu$	$ \eta < 0.6$	0.008
		$0.6 < \eta < 1.2$	0.000
		$1.8 < \eta < 2.4$	0.002
p_{T}^{ℓ}	$W^+ \rightarrow \mu \nu$	$ \eta < 0.8$	0.101
		$0.8 < \eta < 1.4$	0.076
		$1.4 < \eta < 2.0$	0.050
		$2.0 < \eta < 2.4$	0.011
	$W^- \rightarrow \mu \nu$	$ \eta < 0.8$	0.097
		$0.8 < \eta < 1.4$	0.071
		$1.4 < \eta < 2.0$	0.047
		$2.0 < \eta < 2.4$	0.010
	$W^+ \rightarrow e \nu$	$ \eta < 0.6$	0.056
		$0.6 < \eta < 1.2$	0.071
		$1,8 < \eta < 2.4$	0.081
	$W^- \rightarrow e \nu$	$ \eta < 0.6$	0.062
		$0.6 < \eta < 1.2$	0.056
		$1.8 < \eta < 2.4$	0.067

