

Sub-femtoscopic Rutherford Scattering

Liverpool HEP Seminar December 1st 2015

"It's all down to that space-like quark" (JBD 1994 DESY

John Dainton

University of Liverpool, UK

Lepton-hadron interactions at the Fermi energy scale probe the structure of hadrons, the structure of the electro-weak interaction, and the structure of the hadronic interaction at the sub-femtoscopic distance scale. After setting a context in such terms with well-known, encyclopaedic, measurements of deeply inelastic, posit(elect)ron-proton scattering of centre-of mass energy ~ 100π GeV, the first steps in identifying in data the essential features which characterise sub-femtoscopic Rutherford scattering are reported.

Francis Bench Liverpool 2015

Rotating Spin

• stored *e* radiates $e \rightarrow e_{T}$ Sokolov-Ternov transversely polarised *e* synchrotron radiation

Fermi Scale Couplings

Measurement of sign and size of vector and axial quark couplings from $\gamma - Z$ interference and lepton polarisation.

beat? ! precision space-like SM - where else ?

Liverpool HEP Seminar December 1st 2015 Colour Conundrum he Cockcroft Institute UNIVERSITY OF VFRPO 2015: rise to low X just $O^2 = 120 \text{ GeV}^2$ of proton structure • HERA NC e⁺p 0.5 fb⁻¹ $Q^2 = 12 \text{ GeV}^2$ 1.6 $\sqrt{s} = 318 \text{ GeV}$ function F_2 HERAPDF2.0 NLO 1.4 6.5 GeV² - the gauge field 1.2 theory QCD is 1 proton structure $\mathbf{O}^2 = 1200 \,\, \mathbf{GeV}^2$ colour 0.8 driven valence 0.6 driven Q**+** ₀.4 x_{Bj} and COLON 0.2 0 10 -3 10⁻² 10⁻¹ 10 -4 X_{Bi} \rightarrow discovery: but we don't understand why: $\ln \frac{1}{2}$?

Colour Interaction Dynamics

he Cockcroft Institute

e

- experiment $ep \rightarrow epXY$
 - p isolated in rapidity
 - forward hadrons My² < 2.5 GeV² gap
 isolated in rapidity
 - probe hadronic interaction

Liverpool HEP Seminar December 1st 2015

Photon Structure

• Photon structure function $F_2(x, Q^2)$

Liverpool HEP Seminar December 1st 2015

Photon Structure

• photon structure function $F_2(x, Q^2)$

-5

0

0.5

1.5

2

10

at fixed t

 $\rightarrow \lambda$ (*t*)

FRPO

2.5

 $|\mathsf{t}| [\mathrm{GeV}^2]$

Liverpool												
$\begin{array}{c} \gamma^* p \rightarrow \\ \phi(1.019) p^{[\text{H1,Zeux}} \\ \Delta = \frac{0.2}{\sqrt{1+20^2(\text{GeV}^2)^2}} \end{array}$	0 [†] 2.2		VM	"Pho	to	"produ	IC	tic	on		The Cocke of Accelerator	Croft Institute Science and Technology R S I T Y O F
$t_{\min} = m_p^2 \frac{1 - Q^2 (\text{GeV}^2)}{W^2}$ $b \sim 6 (\text{GeV}^{-2})$ $\Delta_{\gamma^* p} \sim 0.7 \text{ fm}$	6.6 8.2 14.7 15.8	~0.16	0.08 0.06 0.05 0.04 0.04	0.22 0.23 0.24 0.24	0.98 0.92 0.98 0.96	$\begin{array}{c} 0.55 \pm 0.04 \pm 0.02 \\ 0.52 \pm 0.05 \pm 0.02 \\ \sim 0.90 \ (\text{est.})^{\ddagger} \\ \sim 0.90 \ (\text{est.})^{\ddagger} \\ 1.09 \pm 0.08 \pm 0.02 \end{array}$	V	$V^{\delta(}$	$(Q^2)_{C}$	epena	live der	RPOOL ICES
$ \begin{array}{c} \gamma p \rightarrow \\ \phi(1.019)Y^{[H1]} \\ \Delta = \frac{0.2}{\sqrt{1+2Q^2(\text{GeV}^2)}} \\ t_{\text{min}} = \\ m_Y^2 \frac{1-Q^2(\text{GeV}^2)}{W^2} \\ b \sim 2 (\text{GeV}^{-2}) \\ \Delta_{\gamma^* p} \sim 0.4 \text{ fm} \end{array} $	5.0	~0.5	0.06	0.22	0.88	$0.50 \pm 0.24^{+0.16}_{-0.20}$	² √²)	t or $\langle t \rangle$ (GeV ²)	Quark Diffractive Interaction dimension Δ (fm)	Intercept $\lambda = 0.14 - 0.15 \log_{10} \left(\frac{\Delta \text{ fm}}{0.2}\right)$ from $\gamma^* p \rightarrow \gamma^* p$ ($\pm 20\%$ not included)	Asympto Regge $(W^2)^{2\lambda(t)}$ 4λ	tic Fitted W^{δ} dependence $(W^2)^{\frac{\delta}{2}} \cong \left(\frac{q^2}{x_{Bj}}\right)^{\frac{\delta}{2}}$ δ
$\gamma^* p \rightarrow \psi(3.1) p^{[H1,2eus]}$ $\Delta = \frac{0.2}{\sqrt{9.6 + 2Q^2 (\text{GeV}^2)}}$ $t_{\min} = m_p^2 \frac{9.6 - Q^2 (\text{GeV}^2)}{W^2}$ $b \sim 4 (\text{GeV}^{-2})$ $\Delta_{\gamma^* p} \sim 0.56 \text{ fm}$	0 0 0.05 0.1 0.4 3.1 3.2 6.8 7.0 16.0 22.4	~0.25	0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05	0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.23 0.23	0.88 0.88 0.88 0.88 0.88 0.92 0.92 0.92 0.96 0.96 1.04 1.04	$\begin{array}{c} 0.92 \pm 0.14 \pm 0.10 \\ 0.695 \pm 0.021 \pm 0.028 \\ 0.67 \pm 0.03 \pm 0.05 \\ 0.75 \pm 0.03 \pm 0.03 \\ 0.67 \pm 0.03 \\ 0.87 \pm 0.22 \substack{+0.04 \\ -0.01} \\ 0.65 \pm 0.17 \substack{+0.16 \\ -0.05} \\ 0.67 \pm 0.02 \pm 0.14 \\ 0.60 \pm 0.18 \substack{+0.04 \\ -0.1} \\ 0.83 \pm 0.31 \pm 0.15 \\ 1.12 \pm 0.20 \substack{+0.03 \\ -0.16} \\ \end{array}$	+ 0 0 .0 + :7 4 3 5 7 0 6	0 ~0.1 ~0.13	$ \begin{array}{c} 1^{\dagger} \\ 0.20 \\ 0.09 \\ 0.06 \end{array} $ $ \begin{array}{c} 1^{\dagger} \\ \geq 0.20 \\ \geq 0.12 \\ \geq 0.10 \\ \geq 0.10 \\ \geq 0.10 \\ \geq 0.10 \\ \geq 0.08 \\ \geq 0.08 \end{array} $	$\begin{array}{c} 0.09^{\dagger} \\ 0.14 \\ 0.19 \\ 0.22 \\ \end{array}$ $\begin{array}{c} 0.09^{\dagger} \\ \leq 0.14 \\ \leq 0.17 \\ \leq 0.18 \\ \leq 0.18 \\ \leq 0.18 \\ \leq 0.18 \\ \leq 0.19 \\ \leq 0.19 \\ \leq 0.19 \end{array}$	$0.36^{\dagger} \le 0.56 \le 0.68 \le 0.72 \le 0.72 \le 0.72 \le 0.72 \le 0.72 \le 0.76 \le 0.76$	$\begin{array}{c} \text{soft hadronic} \\ 0.12 \pm 0.03 \pm 0.08 \\ 0.321 \pm 0.035 \substack{+0.068 \\ -0.043} \\ 0.40 \pm 0.08 \pm 0.06 \\ 0.40 \pm 0.12 \pm 0.12 \\ 0.412 \pm 0.036 \substack{+0.039 \\ -0.035} \\ 0.400 \pm 0.052 \substack{+0.048 \\ -0.045} \\ 0.57 = 0.11 \pm 0.045 \\ \end{array}$
$\begin{array}{c} \gamma p \rightarrow \\ \psi(3.1)Y_{z>0.95}^{[H1,Ze]} \\ \Delta = \frac{0.2}{\sqrt{9.6+2 t }} \\ t_{\min} = \\ m_Y^2 \frac{9.6-Q^2(\text{GeV}^2)}{W^2} \end{array}$	us] O	2.2 2.7 3.4 4.5 5.7 7.2 9.2 14.2	0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.03	0.23 0.23 0.23 0.23 0.24 0.24 0.24 0.24 0.24 0.26	0.92 0.92 0.92 0.92 0.96 0.96 0.96 1.04	$\begin{array}{c} 0.39 \pm 0.32 \pm 0.114 \\ 0.38 \pm 0.10 \substack{+0.11 \\ -0.06} \\ 0.70 \pm 0.15 \pm 0.10 \\ 0.39 \pm 0.13 \substack{+0.08 \\ -0.07} \\ 0.72 \pm 0.18 \substack{+0.08 \\ -0.07} \\ 0.70 \pm 0.21 \pm 0.12 \\ 1.38 \pm 0.46 \substack{+0.37 \\ -0.34} \\ 0.78 \pm 0.38 \substack{+0.6 \\ -0.12} \\ 0.82 \pm 0.44 \substack{+0.37 \\ -0.08} \end{array}$	0 3 .0 .5 .5 .0 .6 .0	~0.16	$\begin{array}{c} \gtrsim 0.07 \\ \gtrsim 0.07 \\ \gtrsim 0.05 \\ \geqslant 0.05 \\ \geqslant 0.04 \\ \ge 0.04 \\ \ge 0.03 \\ \geqslant 0.03 \end{array}$	$\lesssim 0.20$ $\lesssim 0.20$ $\lesssim 0.23$ $\lesssim 0.23$ $\lesssim 0.24$ $\lesssim 0.24$ $\lesssim 0.24$ $\lesssim 0.26$	$\lesssim 0.80 \\ \lesssim 0.80 \\ \lesssim 0.92 \\ \lesssim 0.92 \\ \lesssim 0.96 \\ \lesssim 0.96 \\ \lesssim 1.04 \\ \lesssim 1.04$	$\begin{array}{c} 0.37 \pm 0.11 \pm 0.07 \\ 0.45 \pm 0.15 \pm 0.07 \\ 0.503 \pm 0.057 \substack{+0.047 \\ -0.041} \\ 0.41 \pm 0.19 \pm 0.10 \\ 0.28 \pm 0.15 \pm 0.05 \\ 0.77 \pm 0.15 \pm 0.05 \\ 0.76 \pm 0.55 \pm 0.60 \\ 1.17 \pm 0.26 \pm 0.04 \\ 0.834 \pm 0.118 \substack{+0.043 \\ -0.112} \end{array}$
$\gamma^* p \rightarrow \gamma(9.46) p^{[H1,Zeus]}$ $\Delta = \frac{0.2}{\sqrt{89.5 + 2Q^2 (\text{GeV}^2)}}$ $t_{\min} = m_Y^2 \frac{9.5 - Q^2 (\text{GeV}^2)}{W^2}$	0	~0.25	0.02	0.29	1.16	1.2 ± 0.8	t 0		1 [†] ≳ 0.07	$0.09^{\dagger} \lesssim 0.20$	0.36 [†] ≲ 0.80	soft hadronic ~0.5
$b \sim 4 (\text{GeV}^{-2})$ $\Delta_{\gamma^* p} \sim 0.56 \text{ fm}$ † signifies the inse proton Compton s interaction cross-s ‡ signifies an estim	rtion in the t cattering dec ection. nate which is	able of the luced from extracted	e expectation fo n the applicatio from publicatio	or the energy depend n of the optical theo ons.	dence of f rem to th	forward, elastic, photon- ne total photon-proton	3 5 .5	~0.5	≥ 0.10 ≥ 0.07 ≥ 0.04	≲ 0.18 ≲ 0.20 ≲ 0.24	≲ 0.72 ≲ 0.80 ≲ 0.88	$\begin{array}{c} 0.32 \pm 0.17 \substack{+0.08 \\ -0.09} \\ 0.17 \pm 0.14 \substack{+0.07 \\ -0.09} \\ 0.58 \pm 0.29 \substack{+0.10 \\ -0.13} \end{array}$

J/ψ "Photo"production

• electro/photoproduction $\gamma^* p \rightarrow J/\psi p$

Liverpool HEP Seminar

December 1st 2015

consistent with Bench ruler if *c*-mass ~ 1.5 GeV
 ≡ current *c*-mass
 size ~ 0.13 fm of *cp* → *cp* elastic interaction set
 by current *c*-mass

м.

Liverpool HEP Seminar December 1st 2015

ρ "Photo" production

• electro/photoproduction $\gamma^* p \rightarrow \rho p$

 consistent with Bench ruler if u/d-q mass ≤ 0.2 GeV » current u/d-q mass
 0.6 fm ≥ size ≥ 0.15 fm of u / d p elastic interaction with requirement of influence of Q²

- asymptotic freedom \leftrightarrow confinement - current \leftrightarrow constituent
 - multiple scales at work

Liverpool HEP Seminar

December 1st 2015

- size of elastic interaction ... definitive ... ?
- overall fit to all possible flavour cross-sections
- phenomenology \leftrightarrow QCD calculation ... ?
- fundamental to quark matter ?
 - lepton+nucleon/nuclei exclusive
 - "hot QCD" \rightarrow exclusive

"Any chance of an MPhil student?" John Dainton Liverpool 2015