*-- Author : S.Burke / J.V. Morris
SUBROUTINE FKMLT2(W,C2,C3)
**********************************************************************
* *
* Multiplies a 5*5 non-symmetric weight matrix by a 5*5 symmetric *
* matrix to give a symmetric result (this is not necessarily the *
* case). *
* *
* Output is C3 = W.C2 (lower half only) *
* *
**********************************************************************
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION W(5,5),C2(5,5),C3(5,5)
**********************************************************************
C3(1,1) = W(1,1)*C2(1,1) + W(1,2)*C2(2,1) + W(1,3)*C2(3,1)
& + W(1,4)*C2(4,1) + W(1,5)*C2(5,1)
C3(2,1) = W(2,1)*C2(1,1) + W(2,2)*C2(2,1) + W(2,3)*C2(3,1)
& + W(2,4)*C2(4,1) + W(2,5)*C2(5,1)
C3(3,1) = W(3,1)*C2(1,1) + W(3,2)*C2(2,1) + W(3,3)*C2(3,1)
& + W(3,4)*C2(4,1) + W(3,5)*C2(5,1)
C3(4,1) = W(4,1)*C2(1,1) + W(4,2)*C2(2,1) + W(4,3)*C2(3,1)
& + W(4,4)*C2(4,1) + W(4,5)*C2(5,1)
C3(5,1) = W(5,1)*C2(1,1) + W(5,2)*C2(2,1) + W(5,3)*C2(3,1)
& + W(5,4)*C2(4,1) + W(5,5)*C2(5,1)
C3(2,2) = W(2,1)*C2(2,1) + W(2,2)*C2(2,2) + W(2,3)*C2(3,2)
& + W(2,4)*C2(4,2) + W(2,5)*C2(5,2)
C3(3,2) = W(3,1)*C2(2,1) + W(3,2)*C2(2,2) + W(3,3)*C2(3,2)
& + W(3,4)*C2(4,2) + W(3,5)*C2(5,2)
C3(4,2) = W(4,1)*C2(2,1) + W(4,2)*C2(2,2) + W(4,3)*C2(3,2)
& + W(4,4)*C2(4,2) + W(4,5)*C2(5,2)
C3(5,2) = W(5,1)*C2(2,1) + W(5,2)*C2(2,2) + W(5,3)*C2(3,2)
& + W(5,4)*C2(4,2) + W(5,5)*C2(5,2)
C3(3,3) = W(3,1)*C2(3,1) + W(3,2)*C2(3,2) + W(3,3)*C2(3,3)
& + W(3,4)*C2(4,3) + W(3,5)*C2(5,3)
C3(4,3) = W(4,1)*C2(3,1) + W(4,2)*C2(3,2) + W(4,3)*C2(3,3)
& + W(4,4)*C2(4,3) + W(4,5)*C2(5,3)
C3(5,3) = W(5,1)*C2(3,1) + W(5,2)*C2(3,2) + W(5,3)*C2(3,3)
& + W(5,4)*C2(4,3) + W(5,5)*C2(5,3)
C3(4,4) = W(4,1)*C2(4,1) + W(4,2)*C2(4,2) + W(4,3)*C2(4,3)
& + W(4,4)*C2(4,4) + W(4,5)*C2(5,4)
C3(5,4) = W(5,1)*C2(4,1) + W(5,2)*C2(4,2) + W(5,3)*C2(4,3)
& + W(5,4)*C2(4,4) + W(5,5)*C2(5,4)
C3(5,5) = W(5,1)*C2(5,1) + W(5,2)*C2(5,2) + W(5,3)*C2(5,3)
& + W(5,4)*C2(5,4) + W(5,5)*C2(5,5)
RETURN
END
*