*-- Author : S.Burke / J.V. Morris SUBROUTINE FKMLT2(W,C2,C3) ********************************************************************** * * * Multiplies a 5*5 non-symmetric weight matrix by a 5*5 symmetric * * matrix to give a symmetric result (this is not necessarily the * * case). * * * * Output is C3 = W.C2 (lower half only) * * * ********************************************************************** IMPLICIT DOUBLE PRECISION (A-H,O-Z) DIMENSION W(5,5),C2(5,5),C3(5,5) ********************************************************************** C3(1,1) = W(1,1)*C2(1,1) + W(1,2)*C2(2,1) + W(1,3)*C2(3,1) & + W(1,4)*C2(4,1) + W(1,5)*C2(5,1) C3(2,1) = W(2,1)*C2(1,1) + W(2,2)*C2(2,1) + W(2,3)*C2(3,1) & + W(2,4)*C2(4,1) + W(2,5)*C2(5,1) C3(3,1) = W(3,1)*C2(1,1) + W(3,2)*C2(2,1) + W(3,3)*C2(3,1) & + W(3,4)*C2(4,1) + W(3,5)*C2(5,1) C3(4,1) = W(4,1)*C2(1,1) + W(4,2)*C2(2,1) + W(4,3)*C2(3,1) & + W(4,4)*C2(4,1) + W(4,5)*C2(5,1) C3(5,1) = W(5,1)*C2(1,1) + W(5,2)*C2(2,1) + W(5,3)*C2(3,1) & + W(5,4)*C2(4,1) + W(5,5)*C2(5,1) C3(2,2) = W(2,1)*C2(2,1) + W(2,2)*C2(2,2) + W(2,3)*C2(3,2) & + W(2,4)*C2(4,2) + W(2,5)*C2(5,2) C3(3,2) = W(3,1)*C2(2,1) + W(3,2)*C2(2,2) + W(3,3)*C2(3,2) & + W(3,4)*C2(4,2) + W(3,5)*C2(5,2) C3(4,2) = W(4,1)*C2(2,1) + W(4,2)*C2(2,2) + W(4,3)*C2(3,2) & + W(4,4)*C2(4,2) + W(4,5)*C2(5,2) C3(5,2) = W(5,1)*C2(2,1) + W(5,2)*C2(2,2) + W(5,3)*C2(3,2) & + W(5,4)*C2(4,2) + W(5,5)*C2(5,2) C3(3,3) = W(3,1)*C2(3,1) + W(3,2)*C2(3,2) + W(3,3)*C2(3,3) & + W(3,4)*C2(4,3) + W(3,5)*C2(5,3) C3(4,3) = W(4,1)*C2(3,1) + W(4,2)*C2(3,2) + W(4,3)*C2(3,3) & + W(4,4)*C2(4,3) + W(4,5)*C2(5,3) C3(5,3) = W(5,1)*C2(3,1) + W(5,2)*C2(3,2) + W(5,3)*C2(3,3) & + W(5,4)*C2(4,3) + W(5,5)*C2(5,3) C3(4,4) = W(4,1)*C2(4,1) + W(4,2)*C2(4,2) + W(4,3)*C2(4,3) & + W(4,4)*C2(4,4) + W(4,5)*C2(5,4) C3(5,4) = W(5,1)*C2(4,1) + W(5,2)*C2(4,2) + W(5,3)*C2(4,3) & + W(5,4)*C2(4,4) + W(5,5)*C2(5,4) C3(5,5) = W(5,1)*C2(5,1) + W(5,2)*C2(5,2) + W(5,3)*C2(5,3) & + W(5,4)*C2(5,4) + W(5,5)*C2(5,5) RETURN END *