

sin 2\beta at BaBar

Introduction

- PEP-II/BaBar performance
- Basics of measuring CP violation at an asymmetric B Factory
- Details of the data sample and analysis
- Extracting sin 2β
- Cross-checks and error analysis
- The future
- Conclusions

Year 2000/01 Operations

2000/10/27 11.25

Operations ...

 By end of 2000 run, peak & <u>average</u> luminosity were above design and climbing:

DESIGN: ACHIEVED:

 $\sim 3.3 \text{ fb}^{-1}/\text{m}$

3.8

- BaBar performed fine at $3.2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$
- This year expect to reach $5 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$

BABAR Detector

CP Violation

- First observed in K⁰ decay in 1964
- Difficult to relate observed asymetries to parameters of Standard (or other) model
- B sector promises "large" CP violation that can be used as test of models
- In SM, interactions of quarks described by CKM matrix

	d	S	b
u	V_{ud}	\mathbf{V}_{us}	V_{ub}
C	V_{cd}	V	${ m V}_{cb}$
t	\mathbf{V}_{td}	\mathbf{V}_{ts}	\mathbf{V}_{tb}

The Unitary Triangle

CP-violating Asymmetries in *B* decays directly measure phases α , β , and γ

in interference between mixing and decay

- CP violation could manifest in decay, mixing or interference between decays with and without mixing
 - e.g. Neutral B decays into final CP eigenstates
 - $\cdot \mathbf{B}^0 \longrightarrow \mathbf{f}_{cp}$ $\cdot \mathbf{B}^0 \longrightarrow \mathbf{B}^0 \longrightarrow \mathbf{f}_{cp}$
- We use "golden" and "silver" CP eigenstates
 - $B^0 -> J/psi K^0 s$, $B^0 -> Psi(2S) K^0 s$,
 - $B^0 \rightarrow J/psi K^0 l$

CP physics at the $\Upsilon(4S)$

- PEP II operates at the $\Upsilon(4S)$. $\Upsilon(4S)$ decays into P-wave $B^0 \, \overline{B^0}$ state that evolves coherently till one of the B's decays
- Remaining B⁰ continues to oscilate until it too decays.

Decay-time Distributions

$$f_{CP,\pm}(\Delta t) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4 \tau_{B^0}} \times \left[1 \pm \mathcal{I}m \lambda \sin \Delta m_{B^0} \Delta t\right]$$

When a given B^0 (B^0) is known to have decayed at time t_{TAG} , the time distribution of the <u>other</u> meson into a CP eigenstate at time $\Delta t = t_{CP} - t_{TAG}$

is given by

$$f_+$$
 (f_-)

Time-dependent Asymmetries

t-dependent asymmetry:

$$\int A_{CP} dt = 0$$

We reconstruct the "gold/silver" CP eigenstates

•
$$J/\psi K_S$$
, $\psi (2s)K_S$ $(\eta_f = -1)$

·
$$J/\psi K_L$$
 $(\eta_t = +1)$

How to measure $\sin 2\beta$

- Select B_{CP} candidates (B⁰ \rightarrow J/ ψ K_S, etc.)
- Tag flavour of other B using (primarily) leptons and K's.
- Measure the mistag fractions w_i and determine the dilutions $(D_i = 1 - 2w_i)$
- Measure ΔZ between $B_{\rm CP}$ and $B_{\rm tag}$ to determine the signed time difference Δt between the decays
- Determine the resolution function for Δt

Event Selection

- Three different CP eigenstates used for measurement:
 - $\cdot B^0(B^0) -> J/\psi Ks$
 - \cdot (Ks-> π^+ π^- and Ks-> π^0 π^0)
 - $\cdot B^{0}(B^{0}) -> Psi'(2S) Ks$
 - $B^{0}(B^{0}) -> J/psi K1$

$B^0 \rightarrow J/\psi \ (K_S \rightarrow \pi^+\pi^-)$

292 Events before tagging.

$B^0 \rightarrow J/\psi (K_S \rightarrow \pi^0 \pi^0)$

Cut	ee	mumu	
${\bf Mass}_{{\bf J/psi}}$	2.95-3.14	4 3.06–3.14	
Mass _{Ks}	0.489-0.507		
Cos theta	<0.8	< 0.9	
PID	1 Tight	1mip+1loose	
Ks ⁰ _s flt.	>1mm		

65 Events before tagging

$$\psi(2S) \quad (K_S \to \pi^+\pi^-)$$

BR(
$$B^0 \rightarrow \psi(2S)$$
 ($K_S \rightarrow \pi^+\pi^-, \psi(2S) \rightarrow J/\psi \pi^+\pi^-(J/psi->II)$ or $\psi(2S) \rightarrow II)$)

~ $\times 10^{-5}$

Cut	ee	mumu	
Mass _{J/psi}	2.95-3.1	4 3.06–3.14	
Mass _{Ks}	0.489-0.507		
$\cos \theta_{\text{hel}}$	< 0.8	<0.8	
$\cos \theta_{ ext{thrust}}$	< 0.9	< 0.9	
PID	Vl+T	V1+T	
Ks ⁰ _s flight	>1mm		
Mass diff	0.574-0.604		
Mass _{psi(2S)}	3.44-3	.74 3.64–3.74	

63 Events before tagging

Final *CP* sample of κ^0_S modes

$B^0 \rightarrow J/\psi K^0_L$

- K^0L signaled by isolated clusters in IFR and/or EMC
- K^0L direction is combined with J/Ψ momentum to reconstruct K^0L energy
- ~ 205 total events above large background (before tagging). Background shape, amount, and *CP* structure studied with Monte Carlo. (182 after tagging)

B Flavour–Tagging Categories

- Leptons ($l \longrightarrow \overline{B}^0 \operatorname{tag}$)
 - Electron $P_{cm} > 1.0$ GeV/c
 - Muon $P_{\mathbf{cm}} > 1.1 \text{ GeV/c}$
- Kaons
 - Σ Kaon Charge $\neq 0$
- NT1,NT2 (neural net)
 - slow pions (from D^*)
 - Isolated unIDed leptons

An Event from the CP Sample

$$A B^0 \rightarrow J/\psi$$
 $(K_S \rightarrow \pi^+\pi^-, J/psi->II)$ event

- •A negative kaon is found in the decay products of the other \mathbf{B} meson, which is therefore tagged as a $\bar{\mathbf{B}}^0$
- Δz is measured precisely, thanks to the Silicon Vertex Detector

Measuring Δt at PEPII

$$E_{e-} = 9.0 \text{ GeV}, E_{e+} = 3.1 \text{ GeV}$$

Lorentz boost BetaGamma = 0.56

Vertex Resolution: the SVT

Even at PEP–II, B's don't go very far! ($\approx 250 \mu m$)

⇒ 5 Layer Silicon Vertex Tracker

 $\sigma_{\mathbf{Z}} \approx 70 \ \mu \mathbf{m}$: reco'd **B** 180 $\mu \mathbf{m}$: tagging **B** (rms for 99% of events)

Reconstructed Hadronic B events (mixing and fitting)

Likelihood analysis – global fit

- Simultaneous fit to B_{CP} and B_{flav} samples for $\sin 2\beta$ (plus 34 parameters to characterize the detector and the data)
 - Signal Δt resolution function (9 parameters)
 - Signal dilutions and $B^0 \, \overline{B}^0$ dilution differences (8 parameters)
 - Background Δt structure, resolution function, dilutions and CP content (17 parameters)

Likelihood analysis – global fit

- Correlations between B_{CP} and B_{flav} are small
- Extract background parameters from:
 - mES sidebands for golden CP modes and Bflav modes
 - ' J/ψ sidebands and inclusive $B^0 \to J/\psi$ monte carlo for K^0_L modes

Mistag fractions w_i and effective efficiencies Q_i

- Determined from data via likelihood fit
- $Q_i = \varepsilon_i (1 2w_i)^2$ is the effective tagging efficiency

Tag Category	arepsilon(%)	w(%)	Q(%)
Lepton	10.9 ± 0.4	11.6 ± 2.0	6.4 ± 0.7
Kaon	36.5 ± 0.7	17.1 ± 1.3	15.8 ± 1.3
NT1	7.7 ± 0.4	21.2 ± 2.9	2.6 ± 0.5
NT2	13.7 ± 0.5	31.7 ± 2.6	1.8 ± 0.5
Total	68.9 ± 1.0		26.7 ± 1.6

∆t distributions and oscillations for tagged <u>hadronic</u> B decays

Signal + bkgnd

Background

 $\Delta m_{B\theta} = 0.519 \pm 0.020 \pm 0.016 \text{ fb ps}^{-1}$

CP Sample: Δt distributions for tagged K^0s and K^0L events

$\mathbf{A}(\Delta t)$ $\mathbf{VS} \Delta t$ (Binomial Errors)

$$\sin 2\beta = 0.25 \pm 0.22 \text{ (stat)}$$

$$\sin 2\beta = 0.87 \pm 0.51 \text{ (stat)}$$

Log Likelihood vs $\sin 2\beta$

Systematic Effects

Systematic	$J\!/\!\psiK^0_S,\!\psi(2S)K^0_S$	$J\!/\!\psiK_L^0$	Full sample
Δt determination	0.04	0.04	0.04
$J/\psi K_S^0$, $\psi(2S)K_S^0$ back.	0.02		0.02
$J\!/\!\psiK_L^0$ back.		0.09	0.01
$J/\psi K_L^0$ Sig. fraction		0.10	0.01
$ au_{B^0}$	0.01	0.01	< 0.01
Δm_{B^0}	0.01	< 0.01	0.01
Other	0.01	0.01	0.01
Total	0.05	0.14	0.05

sin2 for various parts of *CP* sample; crosschecks from *Bflav* and charged *B* s

Comparison to other experiments

(P) issues for BABAR

Eff B.R $\sim 10^{-7}$ (difficult)

Very clean, Eff B.R. ~ 10⁻⁴

Constraints on Unitarity Triangle

Allowed region (blue) is determined using theoretical inputs and fitting many experimental measurements

The Future

Luminosity profile – next few years:

2000	2001	2002	2003	2004	2005
25	43	80	110	130	180 fb ⁻¹

```
\int Ldt > 500 \text{ fb}^{-1} \text{ by end of } 2005 (~4.5 10° BB pairs)
```

Conclusions

- PEP–II and BaBar ≥ design luminosity
- $\sim 25 \text{ fb}^{-1} \text{ in } 2000$
- Most precise measurement of $sin 2\beta$
- Many other analyses underway
- By 2005, will accumulate $\sim 500 \text{ fb}^{-1}$
 - Measure sin 2α
 - Compare $\sin 2\beta$ in individual modes
 - Make serious measurements of direct CP violation and rare decays

$B^{0}-\overline{B}^{0}$ Mixing and CP

• Neutral ${\it B}$ and ${\it B}$ mix into mass eigenstates, oscillating at a frequency determined by Δm

• We define $\lambda = \frac{q}{p} \frac{\overline{A}}{A}$, where :

$$\frac{q}{p} = \frac{V_{tb}^* V_{td}}{V_{tb} V_{td}^*} = e^{2i\phi_M} \qquad \overline{A} = \langle f \mid H \mid \overline{B}^0 \rangle \qquad A = \langle f \mid H \mid B^0 \rangle$$

For a single decay amplitude with weak phase

$$Im \lambda = \sin 2(\phi_{M} - \phi_{D})$$

 Leads to CP-violating asymmetries interpretable by the Standard model

CP physics at the 1 (45)

- PEP II operates at the $\Upsilon(4S)$. $\Upsilon(4S)$ decays into P-wave B^0 state that evolves coherently till one of the B's decays
- Mixing governed by single phase $q/p = e^{2ifm}$
 - (q,p coefficients of B in Mh, Ml)
- Amplitudes for decays to CP eigenstate f are:
 - $A = \langle f | H | B^0 \rangle$, $\overline{A} = \langle f | H | \overline{B^0} \rangle$
- Define $\lambda = q/p \cdot A/A$
 - $(|\lambda| = 1 \text{ for interference mixixng/decay})$
- When single weak phase dominates decay:
 - $\overline{A}/A = e^{-2ifD}$
- Therefore there is a CP asymetry proportional to Sin2(fm-fD)

Particle ID: Electrons

- Track matching in the EMC
- 0.89 < E/P < 1.2
- DCH dE/dx
- Efficiency and π misID from Control Samples
- Tight Electron selection:

~92% efficiency

0.1% π misID

(>500 MeV)

Particle ID: Muons

- •Cut on # interaction lengths and difference from that expected for a μ track
- IFR hit pattern rejects hadron showers

- consistent with a MIP in the EMC
- Typical Tight Muon selection: ~75% efficiency above 1.5 GeV, with ~3% pion mis ID

Particle ID: Kaons

 dE/dx from DCH and SVT

• θ_{C} from DIRC

Better than 3 σ K/π separation for $p_{\rm K} > 250$ MeV/c

Extremely fast PEP-II Turnon

Cross checks on mistag fractions

 $B^0 \rightarrow D^{*-} l \vee$ 16,000 events

B_{flav} sample

~5000 events

Parameter	one bin	One bin hadronic	Global likelihood fit			
w [Lepton]	0.108 ± 0.013	0.116 ± 0.021	0.116 ± 0.020			
w [Kaon]	0.180 ± 0.009	0.176 ± 0.014	0.171 ± 0.013			
w [NT1]	0.216 ± 0.019	0.197 ± 0.030	0.212 ± 0.029			
w [NT2]	0.364 ± 0.016	0.323± 0.027	0.317 ± 0.026			
Q	0.255 ± 0.017	0.264 ± 0.018	0.267 ± 0.017			

Fitted parameters in $\Delta \emph{t}$ resolution

function

Fitted for B_{CP} and B_{flav} samples together

Parameter	Value
$S_{ m Core}$	1.1 ± 0.1
$S_{ m Tail}$	3.8 ± 0.9
f_{Tail} (%)	11 ± 5
f_{Outlier} (%)	0.8 ± 0.5
$\delta_{\text{Core}, \text{Lepton}} \text{ (ps)}$	0.08 ± 0.10
$\delta_{\mathrm{Core},\mathtt{Kaon}} \; (\mathrm{ps})$	-0.21 ± 0.05
$\delta_{\mathrm{Core},\mathtt{NT1}} \; \mathrm{(ps)}$	0.01 ± 0.10
$\delta_{\mathrm{Core},\mathtt{NT2}}\ (\mathrm{ps})$	-0.18 ± 0.09
$\delta_{\mathrm{Tail}} \; (\mathrm{ps})$	-0.46 ± 0.38

Time (Δt) resolution function

- Sum of three Gaussians: Core (88%), Tail (11%), and Outliers (1%)
- Parameters determined from likelihood fit and other consistency checks

$$\begin{split} \mathcal{R}_{\text{reso}}(\Delta t, \Delta t_{\text{true}}, \sigma_{\Delta t} | f_{\text{tail}}, f_{\text{outlier}}, S_{\text{core}}, \delta_{\text{core}}, S_{\text{tail}}, \delta_{\text{tail}}, \sigma_{\text{outlier}}) = \\ & (1 - f_{\text{tail}} - f_{\text{outlier}}) \frac{\exp{-\frac{1}{2} \left(\frac{\Delta t - \delta_{\text{core}} - \Delta t_{\text{true}}}{S_{\text{core}} \sigma_{\Delta t}}\right)^2}}{\sqrt{2\pi} S_{\text{core}} \sigma_{\Delta t}} \\ & + f_{\text{tail}} \frac{\exp{-\frac{1}{2} \left(\frac{\Delta t - \delta_{\text{tail}} - \Delta t_{\text{true}}}{S_{\text{tail}} \sigma_{\Delta t}}\right)^2}}{\sqrt{2\pi} S_{\text{tail}} \sigma_{\Delta t}} \\ & + f_{\text{outlier}} \frac{\exp{-\frac{1}{2} \left(\frac{\Delta t - \delta_{\text{outlier}} - \Delta t_{\text{true}}}{S_{\text{outlier}}}\right)^2}}{\sqrt{2\pi} \sigma_{\text{outlier}}} \end{split}$$

Breakdown of tagged CP events

DECAY MODE

Tag	$J/\psi K_{S}^{0} (\pi^{+}\pi^{-})$			$J/\psi K_{\scriptscriptstyle S}^0 \; (\pi^0\pi^0)$			$\psi(2S)K_S^0$			Total		
	B^0	$ar{B}^0$	Tot	B^0	$ar{B}^0$	Tot	B^0	$\overline{B}{}^0$	Tot	B^0	$ar{B}^0$	Tot
e + K	2	0	2	0	0	0	1	0	1	3	0	3
$\mu + K$	1	0	1	0	1	1	2	0	2	3	1	4
e	5	5	10	1	1	2	1	2	3	7	8	15
μ	3	6	9	0	0	0	2	1	3	5	7	12
Lepton	11	11	22	1	2	3	6	3	9	18	16	34
Kaon	54	54	108	14	11	25	12	11	23	80	76	156
NT1	10	12	22	1	1	2	2	2	4	13	15	28
NT2	18	18	36	8	3	11	4	4	8	30	25	55
Total tag	93	95	188	24	17	41	24	20	44	141	132	273
No tag	76		20		13			109				
Tag ε (%)	71±3			67±6			77±6			71±2		

IAGGING CATEGORY

Breakdown (cont'd)

DECAY MODE

Tag	CP =1 modes			,	$J/\psi K_1^0$	0 L	Total			
	B^0	$\overline{B}{}^0$	Tot	B^0	$ar{B}^0$	Tot	B^0	$\overline{B}{}^0$	Tot	
e+K	3	0	3	1	6	7	4	6	10	
$\mu + K$	3	1	4	3	5	8	6	6	12	
e	7	8	15	11	8	19	18	16	34	
μ	5	7	12	5	6	11	10	13	23	
Lepton	18	16	34	20	25	45	38	41	79	
Kaon	80	76	156	70	60	130	150	136	286	
NT1	13	15	28	16	6	22	29	21	50	
NT2	30	25	55	32	27	59	62	52	114	
Total tag	141	132	273	138	118	256	279	250	529	
No tag	109			130			239			
Tag ε (%)		71 ± 2			66 ± 2		69±2			