
Lecture 8

◆ Parallel Axis Theorem

◆ Torque

◆ Newton’s Second Law for 
Rotation

◆ Work, Power and Rotational 
Kinetic Energy

◆ More on Rotational Variables as 
Vectors

◆ More Torque

Parallel Axis Theorem

◆ Moment of inertia of body about axis 
through c. of m. is Icm. Calc. moment 
of inertia about parallel axis.
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Parallel axis theorem cont.

◆ View from above, place origin at c. 
of m., z axis along initial axis of 
rotation.
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Parallel axis theorem cont.
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Now 2nd and 3rd integrals zero from 
definition of c. of m. and choice of 
position of origin. First integral just 
definition of Icm. We also see:
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Hence parallel axis theorem:
I I MhP cm= + 2

Consequence, minimum moment 
of inertia for axes through c. of m.



Parallel Axis Theorem, an 
Example

◆ Consider again rectangular prism 
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Parallel Axis Theorem, an 
Example cont.

◆ Moment of inertia about c. of m.

◆ Using parallel axis theorem 

◆ Exercise, repeat check for axis along 
corner of prism and for other shapes.  
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Torque

◆ A force applied to a body may tend to 
rotate the body about an axis. 
Quantify using concept of torque 
(from latin “to twist”)

◆ Force in plane normal to axis
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Newton’s Second Law

◆ Consider rotation of a (simple) 
rigid body

◆ Relate tangential acceleration to 
torque
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Newton’s second law cont.

◆ Consider rotational acceleration

◆ Substitute for at

◆ Recall definition of moment of inertia

◆ Hence Newton’s Second Law for 
rotation

◆ If many forces applied
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Work and  Rotation

◆ Consider same rigid body rotating 
through dθ under influence of force F

◆ Calculate work done 

◆ For finite angular displacement
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Power and Work K.E. 
Relation

◆ Consider power

◆ Now relate work to K.E. of rotation
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More on Rotational 
Variables as Vectors

◆ Derive vector angular velocity
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As v tangential to circle it is normal 
to plane containing r and ωω, hence
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(using right hand rule)



More Torque

◆ For force in plane normal to axis can 
write torque as

◆ Generalise for all forces. 

◆ What is torque about given axis? 
Example, torque about z axis.

◆ Write F=(fx,fy,fz) and r=(rx,ry,rz) then 
Ft=(fx,fy,0) and rT=(rx,ry,0).
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More torque cont.

◆ From previous discussion we know 
torque about z is

◆ In terms of vector components this is
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More torque cont.

◆ Consider torque as vector and take 
component of vector along z axis to 
get torque about z

◆ The correct result.
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