Lecture 4 Potential Energy

0 Potential Energy 0 P.E depends on configuration of

— Gravitational potential energy system. Change in P.E. equal to
negative of work done to change

configuration.
AU = -W

0 Gravitational potential energy.

0 Energy Conservation
— Motion under gravity

0 Using Conservation of Energy
— Back to spring problem

0 Conservative and Non- ty
conservative Forces /
0 Energy Conservation Summary A Work done by gravity

as weight raised:
W=F[=mgl[$
S = m(O,—g) molyf)
= —mQgy;
AU =mgy;




Potential energy cont. Energy Conservation

0 Work done by gravity depends 0 Look at change of sum of kinetic
on end-points, not path taken, it and potential energy:
IS a conservative force.

0 Example, motion under gravity.

ty AI y=0 define U,=0 then:
;< @
Y
O\ !
s W =mg 3, +mg 3, Eo =Ko +U,
=mg s, +s,) y =z mu’
S - =mg ($ X g
X = m(0,~g) {0, y,) The velocity at
’ a time t is given by

= —Mygy;

v = [—qgdt
AU =mgy; as before. I J

= —gt+u




Energy conservation cont.

The height at time tis
y = I—gt +udt

2
=-9%
2

Hence the total energy at
time tis
2

E = jm(-gt+u)* +mg(">

+ ut)
= r;(gzt2 - 2gtu +u?) +
r;(—gzt2 + 2gtu)

mu?

1
m S

0

Using conservation of
energy

0 Back to spring problem

X

Spring compressed distance d,
released at t=0, describe motion.
Define U,=0 at x=0, then:
E, =K, +U, = 1kd®
At x we than have
E=1mv®+1kx® =E,

. \/250 -kx* \/kdz - kx®
- m - m




Using conservation of energy
cont.

v= K=

m

7 Can now determine
instantaneous power

P=Fv= —kx\/E«/d2 - x?

7 Can also obtain time to reach

position X
dx
V=—
dt

=gy

dx
t=
'r k 2 2
—~/d® =X

m

Using conservation of energy
cont.

t_\ﬁ dx
kI /d2 _X2
= \/Tsin‘l%%+ t,
Get t, from condition t=0 when x=d
m .
to =—,/—sin"(1
== Msin ()
__T f
2\ k
_ M. _n
= B
Period, T, of resulting oscillations

o m e _ [
T—4\fk(3|n (1) - sin (0))—271\fk




Energy Conservation and
Friction

Energy conservation and
friction cont.

0 Consider block slipping down
inclined plane.

L=h/sinB

F f\
0

~]

f. =N =p,mgcos6
F =mgsin®

Net force down plane
F —f, =mg(sin@ -, coso)

Initial energy
E, =mgh

Motion down slope described by:
2

a= a1 _ g(sin® — p, cos0)

2

V= dl = g(sin® -y, cosO)t
dt
2

| =9g(sin@ -, cose)t2

2l
t=
\/g(sine - U, cos0)
Time to travel L

T= 2L
g(sin® — u, cosB)




Energy conservation and
friction cont.

Speed as block hits stop
vV, =9g(sin@—-p, cosO)T
=/2Lg(sin® -y, cos0)

Energy as block hits stop
(=3my,*
=mLg(sin® -y, cos0)
mghy, cos©
sinB

=B~ H %:Ei_Em
tan®

=mgh -

Where the “missing energy” is

_ By
tan®

m

Energy conservation and
friction cont.

0 Where did the missing energy go?
Calc. work done by f,

W=fL
-h
= (wmgcosO) 5
- "B
tan®

0 Work done by f, appears as internal
energy, kinetic energy of atoms and
molecules. Results in change of
mechanical (kinetic plus potential)
energy of system.




Conservative and Non-

_ Conservative and non-
Conservative Forces

conservative forces cont.

0 Work done by gravity independent of 0 Work done by frictional forces does
path, gravity is a conservative force. It depend on path taken. Friction not
can be associated with potential conservative, cannot associate with

potential. Consider sliding book from
P to Q on table, via paths A and B

'Vector sum of
elements making
up path gives s,
argue as before.

, : : Work done along paths A and B is
Same applies to elastic force (try it! .

: PP (try it} W, ~(length of path A) and

W; ~(length of path B).

0 W,< Wy, result depends on path.




Energy Conservation-
Summary

0 Mechanical energy of system
conserved if only conservative forces
AE =AK+AU=0

7 As W=-AU we have
W = AK

0 If non-conservative forces involved,
energy dissipated via these must be
taken into account. Provided system
isolated

AE = AK + AU + AE,, =0

0 Using W=-AE; , we have

int

W, = AK + AU
0 If external forces do work W, on the

system then

AE = AK + AU + AE;

int

=W,

ext




