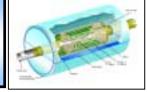


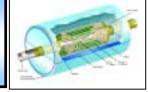
Status report from the LCFI collaboration


Konstantin Stefanov

RAL

- Overview of the LCFI programme
- Conceptual design of the vertex detector for the future LC
- Detector R&D programme at LCFI
 - Development of very fast CCDs and readout electronics
 - Experimental studies on a commercial high speed CCD
 - Thin ladder programme for mechanical support of the sensors
- Summary

LCFI Overview

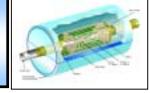

Work in two directions:

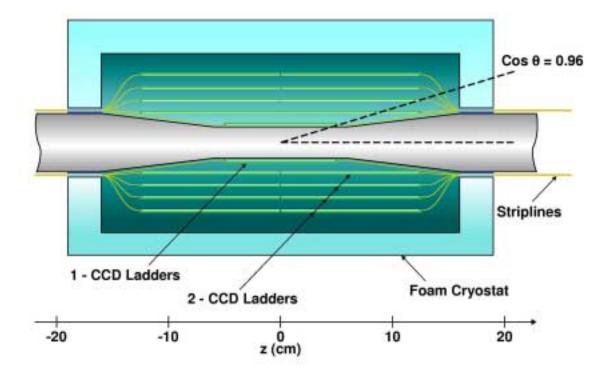
- Simulation of CCD-based vertex detector performance using physics processes at the LC (Chris Damerell's talk)
- Detector R&D: development of fast CCDs for the vertex detector and their support structure

Physics studies are continuing, but we know that:

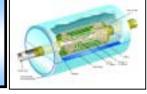
- Many particles in jets with low momentum (\approx 1 GeV/c) even at high collision energy, multiple scattering still dominant;
- Very efficient and pure *b* and *c* tagging needed;
- Vertex charge measurement important.

- Impact parameter resolution: $\sigma = 4.2 \oplus \frac{4.0}{\rho \sin^{3/2} \theta}$, [µm]
- Thin detector (< 0.1% X_0) for low error from multiple scattering
- Close to the interaction point for reduced extrapolation error
- Readout time: ≈ 8 ms for NLC/JLC (read between trains)

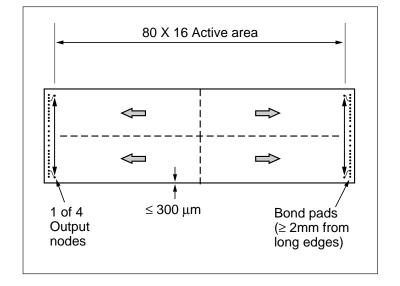

50 μ s for TESLA (read the inner CCD layer \approx 20 times during the train)


- Two track separation \approx 40 μ m, small pixel size \approx 20 μ m \times 20 μ m;
- Large polar angle coverage;
- Stand-alone tracking: 4 or 5 layers of sensors;
- Radiation hard.

Pushing the technology hard...


Conceptual design

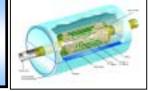
- 5 layers at radii 15, 26, 37, 48 and 60 mm;
- Gas cooled;
- Low mass, high precision mechanics;
- Encased in a low mass foam cryostat;
- Minimum number of external connections (power + few optical fibres).



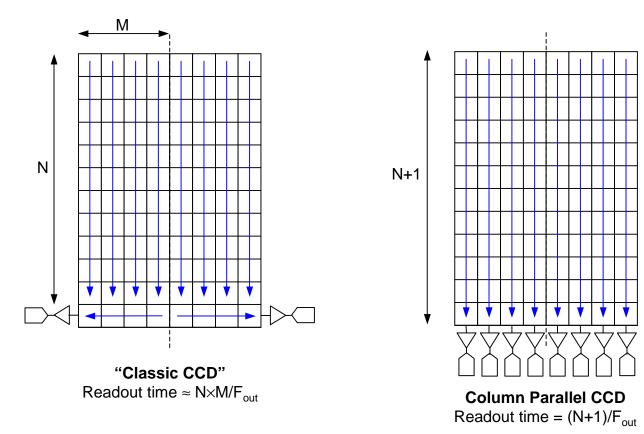
Large area, high speed CCD – follows the ideas of the SLD VXD3 design

- Pixel size: 20 μm square
- Inner layer CCDs: 100×13 mm²
- Outer layers: 2 CCDs with size 125×22 mm²
- 120 CCDs, 799×10⁶ pixels total
- Readout time ≈ 8 ms in principle sufficient for NLC/JLC
- For TESLA: 50 μs readout time for inner layer CCDs:

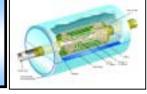
50 Mpix/s from **EACH** CCD column

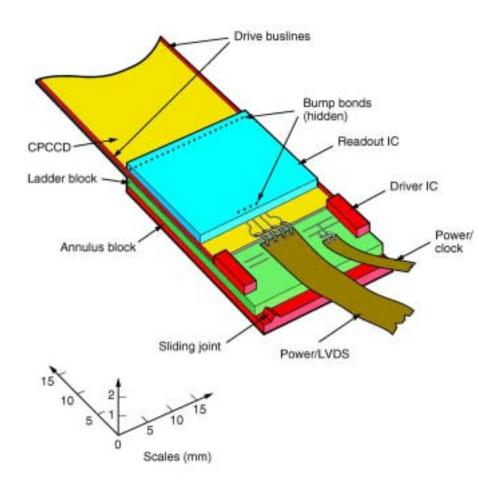

Future LC requires different concept for fast readout – Column Parallel CCD (CPCCD)

Natural and elegant development of CCD technology


Konstantin Stefanov, Rutherford Appleton Laboratory

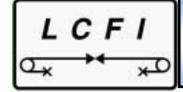
LCWS2002, Jeju, Korea

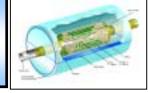


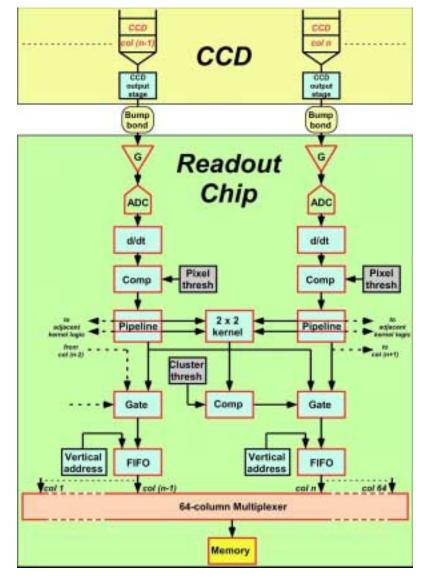


- Serial register is omitted
- Maximum possible speed from a CCD (tens of Gpix/s)
- Image section (high capacitance) is clocked at high frequency
- Each column has its own amplifier and ADC requires readout chip

CCD ladder end

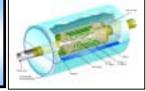



LCFI


List of issues to be solved:

- Bump bonding assembly between thinned CPCCD and readout chip
- Driving the CPCCD with high frequency low voltage clocks;
- Driver design;
- Low inductance connections and layout;
- Clock and digital feedthrough;
- Cooling the ladder end.

Readout chip



CCD bump-bonded to custom CMOS readout chip with:

- Amplifier and ADC per column
- Correlated Double Sampling for low noise
- Gain equalisation between columns
- Pixel threshold
- Variable size cluster finding algorithm
- Data sparsification
- Memory and I/O interface

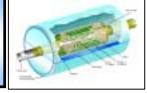
Important aspects of CPCCD:

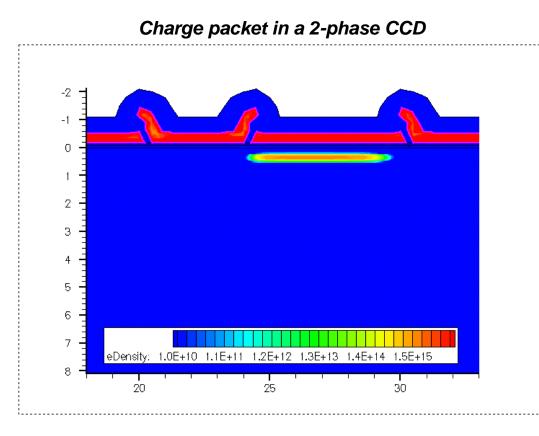
Quality of 50 MHz clocks over the entire device (area = 13 cm^2):

• All clock paths have to be studied and optimised

Power dissipation:

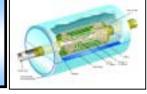
- Pulsed power if necessary
- Low clock amplitudes
- Large capacitive load (normally ≈ 2-3nF/cm²)

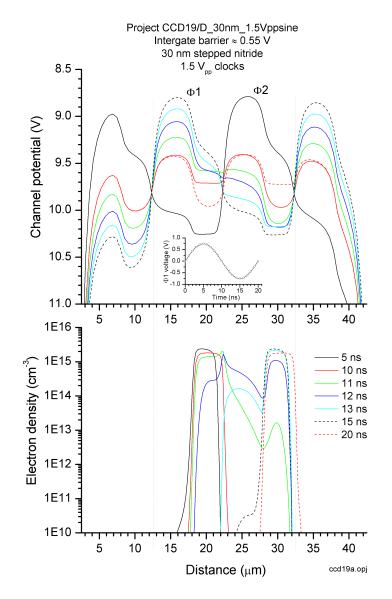

Feedthrough effects:


- 2-phase drive with sine clocks natural choice because of symmetry and low harmonics
- Ground currents and capacitive feedthrough largely cancel

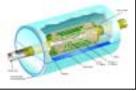
Most of these issues are being studied by simulation

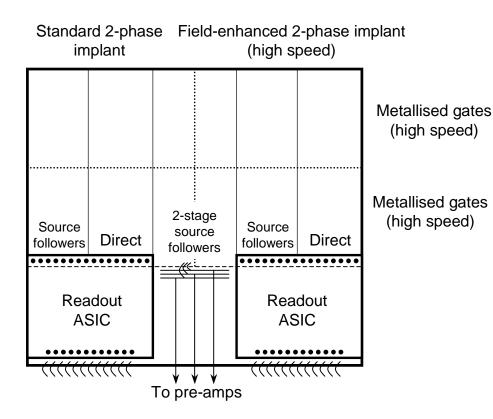
Device simulations



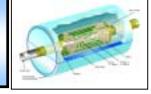

Using ISE-TCAD software and SPICE models

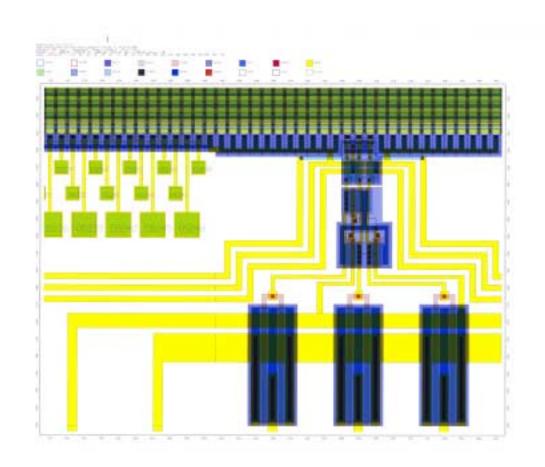
- 2-D models for:
 - potential profiles;
 - low voltage charge transfer
 - feedthrough studies
- 3-D models being used as well
- SPICE simulations of clock propagation


Device simulations

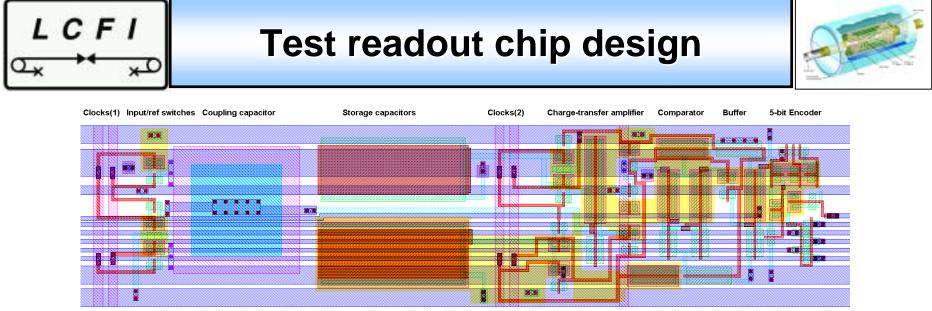


- Extensive simulation work done at RAL;
- 2D model for standard 2 phase CCD developed;
- Electric fields and charge transfer times can be calculated;
- In simulation 50 MHz transfer achieved with 1.5 V_{pp} clocks to be compared with a real device;
- Clock propagation over the CCD area largely understood;
- Will use polysilicon gates (30 Ω /sq) covered with aluminium (0.05 Ω /sq) for high speed.




Features in our first CPCCD:

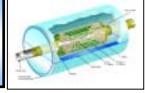
- ♦ 2 different charge transfer regions;
- ♦ 3 types of output circuitry;
- Independent CPCCD and readout chip testing possible:
 - Without bump bonding use wire bonds to readout chip
 - Without readout chip use external wire bonded electronics
- Designed to work in (almost) any case.

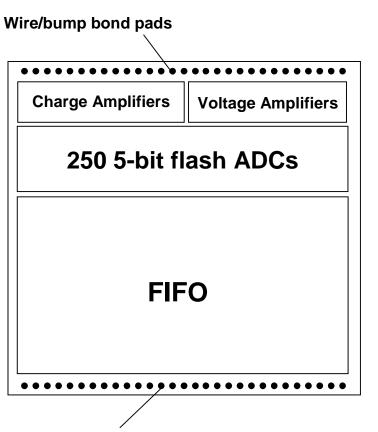


CPCCD design

- Designed by E2V (former Marconi Applied Technologies, EEV);
- Fruitful long-term collaboration: the same people designed the CCDs for VXD2 and VXD3;
- In production, to be delivered November 2002
- Several variants:
 - For standalone testing and for bump bonding;
 - With/without gate and bus line shield metallisation;
 - Variable doping, gate thickness
- First step in a 5 or 6 stage R&D programme.

A comparator using Charge Transfer Amplifier, repeated 31 times per ADC


- Readout chip designed by the Microelectronics Group at RAL;
- 0.25 μm CMOS process;
- Charge Transfer Amplifiers (CTA) in each ADC comparator;
- Scalable and designed to work at 50 MHz.


CPR-0 : Small chip (2 mm \times 6 mm) for tests of the flash ADC and voltage amplifiers, already manufactured and delivered, currently being tested;

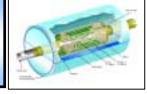
CPR-1 : Contains amplifiers, 250 5-bit ADCs and FIFO memory in 20 μm pitch.

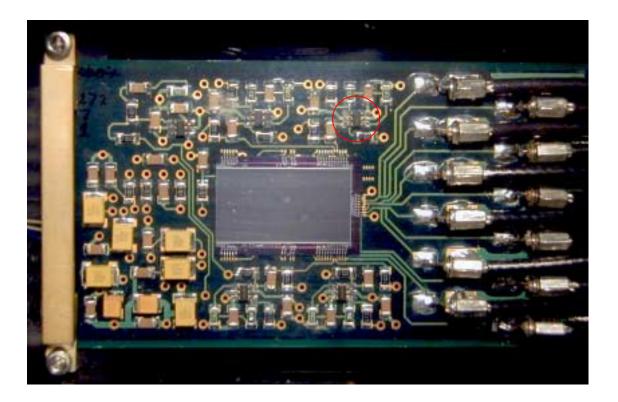
Test readout chip design

Wire/bump bond pads

In CPR-1:

- Voltage amplifiers for source follower outputs from the CPCCD
- Charge amplifiers for the direct connections to the CPCCD output nodes
- Amplifier gain in both cases: 100 mV for 2000 e- signal
- Noise below 100 e- RMS (simulated)

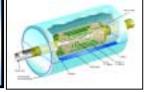

Direct connection and charge amplifier have many advantages:


- Eliminate source followers in the CCD
- Reduce power \approx 5 times to \approx 1 mW/channel
- Programmable decay time constant (baseline restoration)

ADC full range: ≈ 100 mV, AC coupled, Correlated Double Sampling built-in (CTA does it)

Tests of high-speed CCDs

E2V CCD58


- 3-phase, frame transfer CCD
- 2.1 million pixels in 2 sections
- 12 μ m square pixels
- High responsivity: 4 μV/electron
- 2 outputs (3-stage source followers)
- Bandwidth 60 MHz

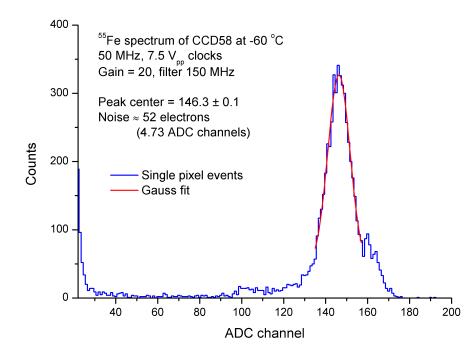
Test bench for high-speed operation with MIP-like signals

Konstantin Stefanov, Rutherford Appleton Laboratory

Tests of high-speed CCDs

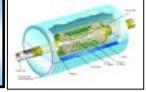
CCD58

⁵⁵Fe X-ray spectrum at 50 Mpix/s

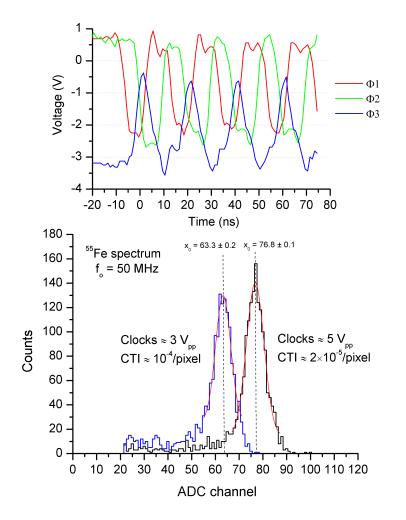

MIP-like signal (5.9 keV X-rays generate ≈ 1620 electrons);

● Low noise ≈ 50 electrons at 50 MHz clocks;

• CCD58 is designed to work with large signals at 10 V_{pp} clocks;

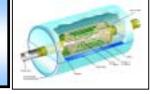

• No performance deterioration down to 5 V_{pp} clocks;

• Still good even at 3 V_{pp} clocks.



Tests of high-speed CCDs

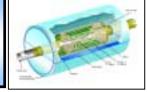
Low drive voltage tests at 50 Mpix/s:


Actual clock traces and ⁵⁵Fe X-ray spectrum

Radiation damage effects:

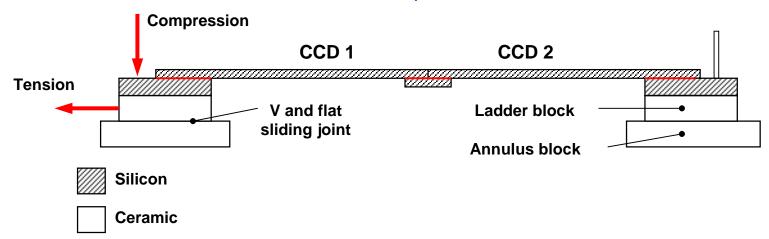
Backgrounds at the LC:

- ≈ 50 krad/year (e⁺e⁻ pairs)
- $\approx 10^9$ neutrons/cm²/y (large uncertainty)
- Radiation damage effects on CCD58 being studied;
- Radiation-induced CTI should improve a lot at speeds > 5-10 Mpix/s to be verified;
- Flexible clocking of CCD58 from 0.625 MHz to 50 MHz should be able to get good results;

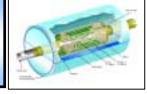


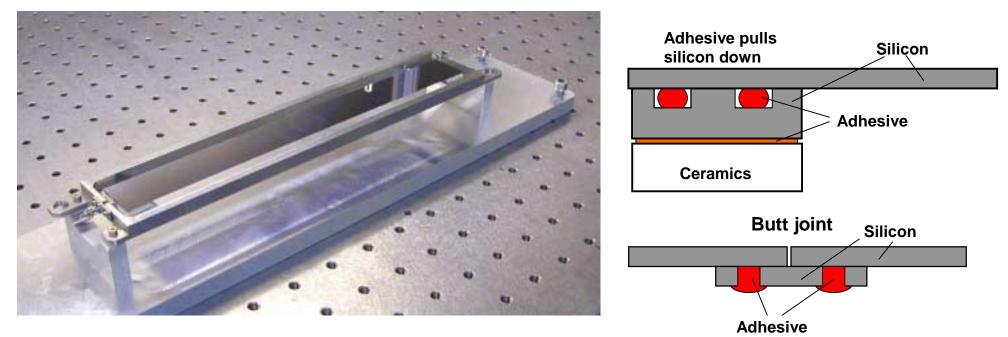
A program to design a CCD support structure with the following properties:

- Very low mass (< $0.4\% X_0 SLD VXD3$)
- Repeatability of the shape to few microns when temperature cycled down to ≈ -100 °C;
- Minimum metastability or hysteresis effects;
- Compatible with bump bonding;
- Overall assembly sufficiently robust for safe handling with appropriate jigs;
- Structure must allow use of gas cooling.



Three options:

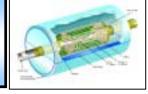

- Unsupported CCDs thinned to \approx 50 μ m and held under tension
- Semi-supported CCDs thinned to \approx 20 μ m and attached to thin (and not rigid) support, held under tension;
- Fully-supported CCDs thinned to \approx 20 μm and bonded to 3D rigid substrate

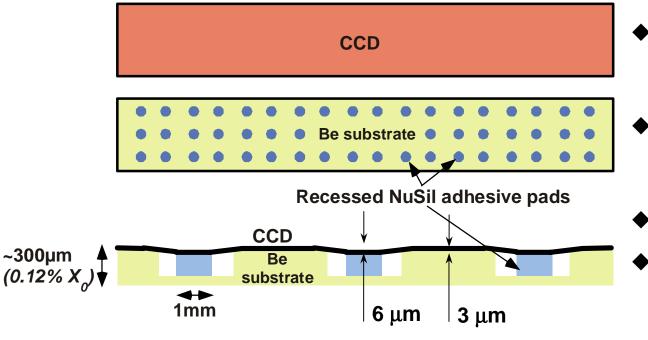

The first version has been studied experimentally: sagitta stability vs. tension: better than 2 μ m at tension > 2N

Unsupported silicon

Several problems:

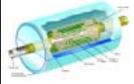
- Large differential thermal contractions at the CCD surface (oxides, passivation, metals) cause lateral curling
- Handling: testing, bump-bonding, etc. very difficult

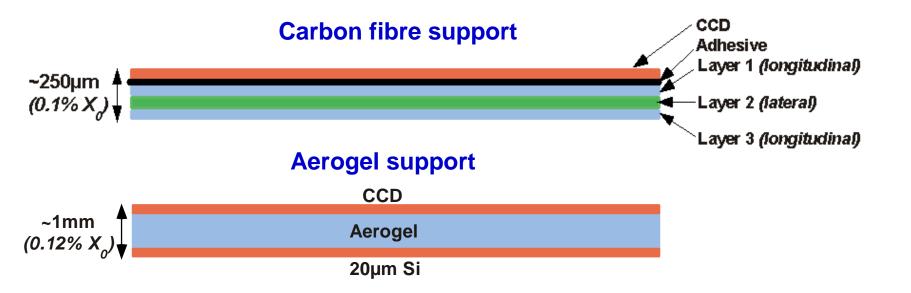

Semi-supported option currently under study


Konstantin Stefanov, Rutherford Appleton Laboratory

LCWS2002, Jeju, Korea

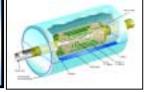
Semi-supported silicon




- CCD (20 µm thin) bonded with adhesive pads to 250 µm Be substrate
- On cooling adhesive contracts more than Be → pulls Si down on to Be surface
- Layer thickness $\approx 0.12\% X_0$
 - 1 mm diameter adhesive columns inside 2 mm diameter wells 200 µm deep in Be substrate

Extensively simulated using ANSYS, a model will be made soon

- CCD surface may become dimpled under study
- ♦ May need very fine pitch of adhesive pad matrix → difficult assembly procedure, weakened substrate, complex non-uniform material profile...



Carbon fibre: CTE is tunable, layers can have optimal orientation and fibre diameter, difficult to simulate

Aerogel support: chemically bonds to Si, aerogel in compression

Many other ideas: CVD diamond, vacuum retention, etc...

- Detector R&D work at the LCFI collaboration is focused on:
 - Development of very fast column parallel CCD and its readout chip;
 - Study the performance of commercial CCDs with MIP-like signals at high speeds and radiation damage effects;
 - Precision mechanical support of thinned CCDs.
- CCD-based vertex detector for the future LC is challenging, but looks possible;
- Major step forward from SLD VXD3, significant customisation required;
- Many technological problems have to be solved;
- Have to work hard, R&D is extensive and complex;
- Different versions of the CPCCD likely to find warm welcome in science and technology.

More information is available from LCFI's web page: http://hep.ph.liv.ac.uk/~green/lcfi/home.html