Accelerator Driven Subcritical Reactors

- Introduction:
 - Fission.
 - Conventional reactor.
 - Fast breeder reactor.
- The Energy Amplifier or ADSR.
- Waste from ADSR.
- Conventional accelerators.
- Fixed Field Alternating Gradient accelerators.
- Acceleration using electromagnetic induction?
- Summary.

- **Equivalent are:**
- 5×10^9 tonnes coal
- $27 \times 10^9 \text{ barrels}$ of oil.
- $2.5 \times 10^{12} \text{ m}^3 \text{ of }$ natural gas.
- = 65×10^3 tonnes of uranium (2.5 g/tonne).
- 5 × 10³ tonnes of thorium
 (10 g/tonne).

Nuclear fission

Conventional fission reactor

Features of conventional fission reactor

- **Each fission:**
 - Caused by absorption of 1 neutron.
 - ♦ Produces ~ 2.5 neutrons.
 - Some neutrons lost, leaving k to produce k new fission reactions.
- Conventional reactor:
 - Require k = 1.
 - If k < 1 stops working.
 - If k > 1 explodes.

- (Perceived) problems:
- Safety:
 - Chernobyl.
 - Three Mile Island.
- Waste:
 - Actinides with half lives of kyears to 100s of kyears.
- Proliferation.
- Uranium reserves uncertain.
 - Extract from oceans?
 - Use fast breeder reactors?

Fast Breeder Reactor

- Generally uses ²³⁹Pu as fissile material.
- Produced by fast neutrons bombarding ²³⁸U jacket surrounding reactor core.
- 239Pu fission sustained by fast neutrons, so cannot use water as coolant (works as moderator).
- Liquid metals (or heavy water) used instead.
- India has plans to use thorium in its Advanced Heavy Water Reactors, in these ²³²Th is converted to fissile ²³³U.

Energy Amplifier or ADSR

- Accelerator Driven Subcritical Reactor is intrinsically safe.
- Principal:

Run with k < 1 and use accelerator plus spallation target to supply extra neutrons.

- Switch off accelerator and reaction stops.
- Need ~ 10% of power for accelerator.
- Can use thorium as fuel.
- 232 Th + n $\rightarrow ^{233}$ U.
- Proliferation "resistant":
 - No ²³⁵U equivalent.
 - Fissile ²³³U contaminated by "too hot to handle" ²³²U.
- There is lots of thorium (enough for several hundred years)...
- ...and it is not all concentrated in one country!

Energy Amplifier or ADSR

Waste from ADSR

- Actinides produced in fission reactions are "burnt up" in the reactor.
- Remaining waste has half life of a few hundred rather than many thousands of years.
- Can use ADSR to burn existing high activity waste so reducing problems associated with storage of waste from conventional fission reactors.
- So why haven't these devices already been built?

Accelerator

- Challenge for ADSRs is accelerator.
- Required proton energy ~ 1 GeV.
- For 1 GW thermal power need current of 5 mA, power of 5 MW.
- Need high reliability as spallation target runs hot.
- If beam stops, target cools, stresses and cracks: max. 3 trips per year.
- Compare with current accelerators:
 - PSI cyclotron: 590 MeV, 2 mA, 1 MW.
 - ISIS synchrotron: 800 MeV, 0.2 mA, 0.1 MW.
 - Many trips per day!

- Cyclotron,
 fixed B field,
 radius
 increases:
 energy
 needed too
 high!
- Synchrotron, constant radius, B field ramped: current too high!
- Linac: perfect, but too costly?

Fixed Field Alternating Gradient Accelerator

FFAG, radius of orbit increases slightly with energy: protons move from low field to high field region.

Extract at high K
Inject at low K

Simplicity of operation hopefully ensures the necessary reliability.

nsFFAG designed at Daresbury (EMMA):

Construction underway.

FFAG and acceleration

RF cavities conventionally used to accelerate charged particles.

A problem with FFAG is synchronisation of RF with particle orbits over large energy range.

Alternative: inductive acceleration?

Use Faraday's Law: $\mathcal{E} = \oint_{2\pi r_A} \vec{E} . d\vec{s} = -\frac{d\Phi}{dt}$

FFAG betatron

Make solenoid into toroid so no problems with stray fields:

Perhaps use one toroid for two FFAGs?

Make toroid part of LCR circuit.

- Choose capacitance so resonance at required frequency.
- E.g. here:
 - $f_B = 1 \text{ kHz}$.
 - $T_B = 1/f_B = 1 \times 10^{-3} \text{ s.}$

FFAG Betatron

- Choose also:
 - Field in toroid B = 1 T.
 - (Small) toroid radius $r_T = 5$ m.
- Inject protons with $K_i = 5$ MeV.
- Integrate over $0.26T_B < t < 0.74T_B$.

- Look at acceleration of particle with central energy and of particles with energy $K_i \pm 0.001 \times K_i$.
- Differences for latter amplified by factor 100 in plot:

Accel. to 500 MeV in $< 5 \times 10^{-4}$ s.

Summary

- New approaches to power generation through nuclear fission worth considering.
- Energy Amplifier or Accelerator Driven Subcritical Reactor interesting:
 - Safe.
 - Produces waste with short halflife.
 - Can use thorium.
- Major challenge is requirement for 5 MW, 5 mA, 1 GeV, extremely reliable proton accelerator.

- Fixed Field Alternating Gradient accelerators operate with constant magnetic fields, allowing extremely rapid acceleration.
- Can problems of synchronising RF with orbiting particles be circumvented by using electromagnetic induction to drive acceleration?
- Preliminary studies suggest concept is interesting enough to justify further work.
- Tests using EMMA at Daresbury possible?