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Abstract

Despite enormous advances in research in recent decades, the burden of

cancer still exists. Additional treatment options for oral squamous cell carci-

noma patients exist, but survival outcomes have stagnated in recent years. The

development of neo-adjuvant therapies is hindered by the difficulty of identifying

cases eligible for window trials. Current prognostic biomarkers are insufficient;

thus, a more comprehensive range of prognostic tools is required to facilitate

improvements to direly-needed therapies. This thesis aims to develop statistical

analysis techniques to analyse Fourier transform infrared (FTIR) spectroscopy

data to obtain effective new prognostic tools.

A direct comparison between FTIR data and an existing prognostic biomarker,

α-smooth muscle actin (ASMA) was made. Two statistical models were created

using each set of variables in addition to a third, hybrid model comprising both

sets of variables in combination. A rigorous analysis procedure proved that a

logistic regression model utilising FTIR data was capable of predicting prognos-

tic outcomes much more effectively than the ASMA model. The hybrid model

also demonstrated good prognostic utility, suggesting that combining a variety

of prognostic biomarkers may be an effective strategy for the future.
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An optimisation framework was developed to address the lack of consensus

on the choice of preprocessing methods currently used. This framework could

benefit the wider research community by asserting a standardised sequence of

steps for use with FTIR data. The use of the optimisation framework resulted in

substantial improvements in classification scores and reaffirmed some conven-

tional wisdom surrounding preprocessing. The adoption of FTIR spectroscopy

in a clinical setting could be expedited considerably by this framework by stan-

dardising the process of FTIR-based biomarker discovery.

The usage of deep learning based models has grown considerably in med-

ical diagnostics in recent years. A one-dimensional convolutional neural net-

work (CNN) and multilayer perceptron (MLP) model were investigated as prog-

nostic tools. Both models showed promise as effective models; the CNN model

showed exceptionally high scores suggesting further research into convolution-

based methods could be a fruitful future avenue of research.
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1 Introduction

Cancer is a leading cause of death, and an obstacle to increasing life ex-

pectancy worldwide [1]. Cancer is the cause of nearly 10 million deaths a year

globally — up from 8.8 million in 2015 [2]. The incidence of cancer is set to

increase globally, reflecting the growth and aging of the human population.

In order to improve the prognoses of patients, the diagnosis must take place

at an earlier stage so that effective treatment may be sought, and the progres-

sion of the disease limited. The need for an inexpensive, rapid, and accurate

diagnosis method is one of the ’holy grails’ of cancer detection. In addition to

timely diagnosis an important factor in patient outcomes is the choice of treat-

ment. Targeted therapeutic interventions can be utilised to target aggressive

cancers where appropriate, however current methods of determining relevant

cases have their shortcomings. A false-negative carries the risk of missing a

case of metastasis, whereas a false-positive leads to an unnecessary lymph

node dissection which can result in disfigurement, pain and other long-term

consequences [3]. It has been hypothesised that a molecular fingerprint may

exist which characterises patients with more aggressive cases of the disease

[3].

The objective of this research project is to develop state-of-the-art classi-

fication models for use in the analysis of Fourier Transform Infra-Red (FTIR)

spectra. These models will be designed with the purpose of aiding clinical de-

cision makers in predicting the prognoses of head and neck cancers in order to
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direct patients to more appropriate treatment. While the quality of the predic-

tions attained by many of the models presented in this thesis are comparable

to current biomarkers: these models would not be aimed to replace any current

diagnostic methods entirely. This is due to the fact that many biomarkers can

be used in unison to attain superior performance overall – this work seeks to

augment these processes.

In cases where cancer has been identified in a patient, models to predict

accurate prognoses can be used to direct the patient towards more appropri-

ate treatment – potentially improving patient outcomes in the long term. The

potential to develop such models using IR spectra as a prognostic biomarker

is a relatively unexplored avenue of research and could be of significant value

clinically. This is due to the ineffectiveness of current treatment plans [4, 5].

Neo-adjuvant therapy has the potential to improve prognoses, and aid clinical

decision making if applicable cases can be determined at the time of diagnosis.

In addition to the development of predictive models, the preprocessing steps

which are necessary to facilitate reliable predictions will also be heavily covered

due to the importance of these steps in the overall performance of the model.

The evaluation of the performance of predictive models will also explained in-

depth due to its complexity and importance with regards to medical diagnoses.

An appropriate statistical methodology will also be given to ensure that any

developed predictive tools are able to generalise well to a wider population and

become an effective tool in a pathologist’s arsenal.

The insights gained from the process of developing a discriminatory tool for

cancer prognostics can lead valuable insight into the mechanisms of cancer.

Due to the ability of vibrational spectroscopy to tap into the underlying chemical

moeities of a sample any statistical model developed using this information can

be interrogated, and pertinent information about the differences in chemical

signature within pathological groups can be extracted and potentially used for
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other purposes.

1.1 Significance of the project

The light microscope is the standard instrument used in the examination of

histological specimens. When supplemented by various staining agents like

hematoxylin and eosin (H&E), areas of tissue rich in various chemical groups

are highlighted. Hematoxylin is able to stain cell nuclei a blue/purple colour, and

eosin will stain all other tissue structures in varying shades of pink – allowing

histopathologists to discriminate between differing tissue types. In the majority

of well-progressed cancer cases, this staining is sufficient for an experienced

histopathologist to make an accurate diagnosis [6]. The information yielded

by these techniques for use in diagnosis is strictly morphological, and whilst

improving tissue contrast further – these methods barely scratch the surface of

the information contained within the tissue samples.

The diagnosis of cancerous tissue through optical microscopy and staining

is dogged by varying degrees of inter and intra-observer errors [7, 8] due to

the subjective nature of some biomarkers. Even very skilled pathologists may

disagree on particular samples which show a cancer in the early stages of dys-

plasia. However catching a cancer in these early stages is crucial for effective

treatment and will result in better prognoses for the patient. The need for an ob-

jective analysis procedure has been known for some time, and attempts have

been made to implement automated analysis procedures using both optical mi-

croscopy of H&E stained specimens [9, 10], and chemical imaging [11].

A key issue facing clinical decision makers is the determination of the op-

timal course of treatment for a patient dependent upon the progression of the

disease. In cases where lower biological aggression is demonstrated, a de-

escalation of therapy may be possible [12]. Identification of these cases is



4 Chapter 1. Introduction

paramount to minimising the adverse effects of treatment, and improving pa-

tient outcomes. Previous work [13, 14, 15, 16] has hypothesised that tumours

which may be responsive to adjunctive therapeutic treatment may carry a dis-

tinct molecular fingerprint; the identification of which would facilitate screening

of patients towards appropriate treatment. For approximately 50% of HPV neg-

ative head and neck squamous cell carcinoma patients, current treatment plans

are ineffective. Neo-adjuvant therapy has the potential to improve prognoses,

and aid clinical decision making if applicable cases can be determined in a

timely manner.

1.2 Primary research questions

The primary goals of this project are to build upon existing techniques, and

push the boundaries of knowledge and capabilities of existing methods. How-

ever there are a number of key points to be considered when developing a tool

for clinical diagnosis perspective. Clinical diagnostic methods are subject to

rigorous testing, and must achieve a number of milestones before transitioning

to a clinical setting [17]. The scanning methods and data analysis developed

throughout this project must surpass or supplement existing methods in terms

of performance, but also pass the requirements expected of a clinical diagnos-

tic test. The following non-exhaustive list must therefore be addressed for any

diagnostic test to become clinically validated:

– Can the test surpass existing diagnostic methods in terms of the relevant

performance metrics? (e.g. accuracy, specificity, sensitivity.)

– Can relevant sources of error be identified and addressed?

– Is the test sensitive to the required range for its intended purpose?

– Is the test relatively cheap, and easy to use?
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The new insights gained from these scanning techniques are not just suit-

able for clinical applications, the information contained within the samples will

be of interest to those studying cancer itself or other biological systems. This

”exploratory” perspective is directed more towards areas such as biomarker

identification, imaging, and pattern finding [18].

1.3 The Structure of this thesis

This thesis contains a background section covering the necessary information

to appreciate the current state-of-the-art research and relevant context to the

following sections. The research conducted over the course of the past four

years is spread over three self contained chapters, covering three separate

but connected bodies of work. There are many areas of research still requiring

investigation when applying vibrational spectroscopy to clinical predictive tasks,

the work covered in this thesis seeks to address some of these issues and

present a novel approach to solving them.

Chapter 3 covers research into the development of a prognostic tool to risk

stratify patients into one of two groups to direct treatment. Prognostic biomark-

ers are a relatively unexplored area of research in the context of vibrational

spectroscopy aided clinical diagnostics. The objective of this chapter is to de-

termine the efficacy of FTIR and α-smooth muscle actin (ASMA) as prognostic

variables and evaluate their suitability for a clinical setting.

Chapter 4 covers work undertaken to create an objective method of deter-

mining the best combination of preprocessing steps classifier algorithms ac-

cording to key metrics. This is a widespread issue amongst vibrational spec-

troscopy and other multivariate classification techniques, as the number of po-

tential configurations is large with the number of parameters associated with

each step making the problem even more difficult. The optimisation framework
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was implemented on a cluster of computers situated within the university in

order to increase the efficiency of the process which has the potential to be

implemented on any such system for wider use.

Chapter 5 seeks to demonstrate the possibilities associated with using deep

learning. Deep learning is a subset of machine learning involving the use of

neural networks with complex architectures for a multitude of purposes. With a

surge in usage for applications in medical diagnostics, deep learning is unique

in the flexibility of network designs and wide applicability to different sources

of data. deep learning proved to be a viable statistical technique for use as

a prognostic tool, as evidenced by a thorough analysis routine. The chapter

covers the development, optimisation, and evaluation of two differing types of

neural network architecture for use as prognostic tools.
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2 The physics approach to cancer

diagnostics

The following section is intended to serve as a basic introduction to several

key areas covered in this thesis. Additional detail will be given in later chapters

where appropriate. Section 2.1 will cover some fundamental aspects of oncol-

ogy and provide an overview of the field of histology and biomarker discovery.

An overview of the sample preparation process and implications for measure-

ments will be discussed. Section 2.2 will cover topics relating to the experimen-

tal aspects of the thesis. The physical phenomena underpinning spectroscopy

shall be explained with sections covering electronic hardware and data collec-

tion considerations. Data analysis techniques will be covered briefly in Sec-

tion 2.3, with a focus on the underlying mechanics and evaluation of classifica-

tion algorithms.

2.1 Cancer and Histopathology

2.1.1 Cancer

Cancer is the broad term given to a class of diseases that share the charac-

teristics of abnormal cellular growth and a tendency to spread into surrounding

tissue [1]. The first description of breast cancer was recorded by an ancient

Egyptian doctor in approximately 3000 BC [2] as a ”bulging tumour of the breast,
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a grave disease — with no treatment”. The Greek physician Galen noted the

crab-like appearance of a solid cross-sectioned tumour and referred to tumours

as Karkinos. The term Karkinos was later translated into Latin as Cancer —

from where its modern name originates [2].

Cancer is the second leading cause of death after heart disease globally

[3], with around 8.8 million deaths a year — accounting for 15.7% of deaths

[4]. As cancer is an entire class of diseases, the specific symptoms, causes,

and treatments for each type of cancer vary widely. It has become necessary

to develop specific treatments and diagnostic tests to account for the varying

conditions and circumstances in which cancers are found.

In terms of their cause, different types of cancer are typically divided into one

of two types according to their origin: those originating from genetic mutations

triggered by environmental factors — amounting to approximately 90-95% [5]

and those due to genetic origin accounting for the remaining 5-10% [5].

A cancer typically manifests itself in the form of a tumour or neoplasm —

a collection of cells which exhibit signs of malignancy. The multi-step process

which a cell undergoes when becoming cancerous is known as Malignant pro-

gression, this process is shown in Figure 2.1:

Figure 2.1: Malignant Progession. [6]

Malignant progression occurs in tissue when tumour cells are present —

which have undergone a series of genetic mutations; these tumour cells are

characterised predominantly by the eight hallmarks of cancer and two enabling

characteristics [6, 7]:
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2.1.2 The Hallmarks of cancer

Capabilities

As normal cells progress towards malignancy, a sequence of hallmarks is typi-

cally acquired. A tumour comprises a complex mass of numerous distinct cell

types, interacting with each other in varying ways. Alongside these malignant

cells are normal cells that contain a tumour-associated stroma. This tumour-

associated stroma is not merely present but plays an active role in facilitating

the acquisition of capabilities typical of cancers.

Cell growth and division without proper signalling A fundamental trait of

cancer is the uncontrolled proliferation of cells. Normal cells carefully control

growth-promoting signals, which dictate progression through the cell growth-

and-division cycle. It has been observed that cancer cells can acquire the abil-

ity to produce growth-factor ligands themselves or influence associated stromal

cells to provide these growth-factor signals [8]. Sources of proliferative signals

situated within normal tissues are still not well-understood [7]. This issue is fur-

ther complicated because growth factor signals dictating cell growth are thought

to be modulated temporally and spatially between a cell and its neighbours.

Unabated cell division in the presence of inhibitor signals To proliferate,

cancerous cells must also avoid tumour suppressing signals. Two proteins

moderate these tumour suppressant signals: the RB1 retinoblastoma protein

[9] — which controls whether or not a cell shall proceed through its growth-and-

division cycle, and TP53 — which works similarly to RB but is dependent upon

environmental factors within the cell such as levels of oxygenation and glucose

[10]. TP53 is sensitive to indicators of stress and damage within tumour cells

and can inhibit further cell-cycle progression until conditions return to normal.
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If conditions reach a point where damage is irreparable, TP53 can trigger cell

apoptosis — cleansing the defective cells. These two proteins form indepen-

dent and redundant tumour suppressant systems. Therefore, a cell must suffer

from a defect in the functioning of both systems to be prone to unabated cell

division.

Avoidance of apoptosis Apoptosis is the highly-regulated process that a cell

undergoes when significant cell stress is detected from within the cell due to

DNA damage or signalled from other cells. In the case where apoptosis is

triggered in a defective cell, those which have acquired the ability can avoid

programmed death [11]. Due to acquired mutations, tumour cells can resist

apoptosis by becoming de-sensitised to internal and external signalling. The

level of attenuation of apoptosis in tumours has been shown to be severe in

tumours that are well-progressed [11].

Biological immortality Malignant cells differ from normal cells in their ability

to circumvent the states of senescence (cell ageing) and crisis (cell death) [12].

These processes prevent uncontrolled proliferation of cells in the body, avoiding

a ”hoarding” of nutrients by these cells and the potential to adversely affect

surrounding tissue. A characteristic of biologically immune cells is the presence

of telomerase which prohibits telomere shortening of chromosomes within the

cell [7] and senescence and crisis from stopping uncontrolled proliferation. A

large body of evidence suggests that the presence of telomerase allows for the

unlimited proliferation of cells — facilitating the growth of macroscopic tumours.

Construction of blood vessel networks (angiogenesis) As is the case for

normal tissue, an adequate blood supply is required to provide necessary nu-

trients and oxygen and remove waste products. Angiogenesis is the process

of creating this blood supply by activating an ”angiogenic switch” [13]. This is
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typically temporary for healthy adults; however, this switch is permanently ac-

tivated and continuously promotes the growth of vasculature to help support

neoplastic tissue [7].

Invasion of surrounding tissue and metastases Typically occurring in later

stages in the progression of cancer: metastases of malignant cells to neigh-

bouring tissue sites and other organs of the body. These invasive and metastatic

malignant cells are characterised typically by a change in shape, and a reduc-

tion in E-cadherin — a key molecule in cell-to-cell adhesion [7].

Deregulation of metabolism A change in the metabolic processes favoured

by malignant cells has been observed in many types of cancer [14]. These

changes allow neoplastic cells to obtain more significant amounts of energy

to fuel cellular growth and division. Typically normal cells respire, converting

glucose to ATP. However, cancer cells have been observed to reprogram their

glucose metabolism, resulting in a conversion to a state termed ”aerobic gly-

colysis” [7].

Evasion of the immune system For a tumour to grow, it must have the ca-

pacity to avoid detection by the immune system and resist interference. It is

important to note that several cancers are induced by viruses, which a com-

promised immune system may struggle to eradicate. However, only ∼20% of

tumours are virus-induced; the remaining ∼80% are thus able to overcome in-

terference from the immune system.

Enabling Characteristics

Genomic instability and mutation For a tumour to become established,

the characteristics listed above must be acquired through a series of genetic
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changes. This happens gradually as individual cells developing these changes

possess an advantage over neighbouring cells, making reproduction more likely

and establishing a cancer lineage. Alongside genetic changes, epigenetic changes

such as DNA methylation and histone modifications have been linked to cancer

cells [15]. In normal tissue, mutation rates are usually low. However, tumour

cells can increase the level of mutation by increasing the sensitivity to muta-

genic agents and adversely affecting systems that monitor genomic integrity.

Inflammation of surrounding tissue Other than innate characteristics of

neoplastic tissue, inflammation of tissue caused by varying degrees of an im-

mune response can often have a counterproductive effect of promoting tumour

growth. Inflammation can exacerbate and aid certain acquired characteristics

by supplying molecules useful to the tumour to its local vicinity. An immune

response can provide enzymes that modify the extracellular matrix allowing in-

vasion, angiogenesis, and metastasis [7].

2.1.3 The tumour microenvironment

The environments in which neoplastic cells develop vary widely and will change

over time. An exact prediction of how a tumour will develop is not possible; it

depends at least in part on the structural environment in which it resides and

the interaction with other bodily systems. Figure 2.2 depicts typical tumour

microenvironments in which neoplastic cells and their associated normal cells

can be found.



2.1. Cancer and Histopathology 17

Figure 2.2: (Upper) The microenvironment of the tumour showing
a complex array of interacting cell types. (Lower) Distinct microen-
vironments in which neoplastic cells are typically found. These
environments develop progressively through the duration of the

lineage of a collection of neoplastic cells [7].

The objective of the work in this thesis is effectively to observe variables

associated with the tumour microenvironment. The variables in question vary

according to the technique being utilised and are known informally as ’-omics,’

e.g. genomics, proteomics, metabolomics etc. The hallmarks discussed above

will lead to changes in the tumour microenvironment which will lead to chemical

changes which can be quantified using FTIR spectroscopy.

2.1.4 Oral Cancer

Whilst the work covered in this thesis seeks to develop methods that apply to a

range of diagnostic applications, the primary focus has been the development
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of diagnostic and prognostic tools for the treatment of oral cancer.

Oral cancer is characterised by tissue growth in various regions of the oral

cavity, pharyngeal regions, and salivary glands. Oral cancer usually presents

as an ulcer with fissuring or raised exophytic margins. It may also present as a

lump, as a red lesion (erythro- plakia), as a white or mixed white and red lesion,

as a non-healing extraction socket or as a cervical lymph node enlargement

characterised by hardness or fixation [16, 17].

Risk factors associated with oral cancer in the western world include to-

bacco and alcohol consumption, with 75% of all cases of oral cancer being

associated with tobacco. In addition to tobacco smoking and alcohol, other

risks factors such as betel quid chewing and various narcotics are associated

with the development of oral cancer. The human papilloma virus (HPV) is widely

reported as a virus that carries oncogenetic potential. However, results are con-

flicting as to the true extent of this potential [16]. It has been noted previously

that some HPV genomes have been incorporated into oral cancer cells [17], but

this has not yet proven to be a useful diagnostic variable when employed as a

screening test [17]. Epstein-Barr virus [18] and Hepatitis C Virus (HCV) [19] are

also considered to be viruses whose oncogenetic potential is felt through the

influence of oncoproteins; these are, however, not known to follow oral cancer

with a high incidence. The work covered in this thesis seeks to identify prog-

nostic biomarkers in non-virus-induced cancers, as this is where the most sig-

nificant clinical need lies. This is due to the ineffectiveness of current treatment

plans [20, 21]. Neo-adjuvant therapy has the potential to improve prognoses

and aid clinical decision making if applicable cases can be determined at the

time of diagnosis.

The influence of individual genetics is also widely recognised as an influ-

encing factor in developing oral squamous cell carcinoma (OSCC). Mice with

a genetic predisposition to developing OSCC have been bred — suggesting
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a genetic causation. However, the genetics of oral cancer is complex, and a

causative genetic link has not been firmly established in humans [17]. Some

cancer predisposition syndromes such as Li Fraumeni syndrome and Fanconi

anaemia have an increased prevalence of oral cancer, suggesting that p53 and

DNA repair processes are important. This is thought to be due to significant

risk factors containing chemicals known to alter DNA — leading to many of the

aforementioned hallmarks.

Of particular relevance to the work contained in this thesis is the occurrence

of different pathological sites in which OSCC typically develops. The most com-

mon site of occurrence of OSCC overall is the lower lip, with the most common

site within the mouth being the tongue [17]. Within the oral cavity, OSCC is par-

ticularly prevalent in the lower mouth, along the borders of the tongue, the floor

of the mouth, and adjoining areas. Whilst only comprising 20% of the area of

the oral cavity, approximately 70% of oral cancers are known to occur in these

regions [17].

2.1.5 Molecular Oncology

Molecular oncology is the interdisciplinary approach to cancer treatment that fo-

cuses on the effects of tumours at the molecular scale. As an interdisciplinary

field, molecular oncology frequently overlaps with chemistry and cytology and

may be able to offer some level of insight into FTIR spectra. The ultimate goal

of molecular oncology is to develop targeted therapies to improve patient out-

comes. However, the impact of molecular oncology is not solely limited to the

development of treatments, as a large amount of effort is directed towards the

prevention of cancer and the development of molecular imaging methods which

may allow for the detection and study of malignant cells in situ [22].



20 Chapter 2. The physics approach to cancer diagnostics

The methods presented in this thesis may allow for such molecular imag-

ing through the examination and FTIR microscopy images. Due to the ability

of IR spectroscopy to access the chemical information contained in a sample,

and in combination with imaging microscopes, FTIR microscopy could form

the basis for such a technology. A key limiting factor in the development of

molecular imaging and cancer treatment is not the lack of target molecules but

the limited resources available to dedicate to the pursuit. This issue is exac-

erbated even further due to heterogeneity present in many tumours, meaning

that singular biomarkers are often ineffective on their own. FTIR microscopy is

a high-throughput, objective, and relatively inexpensive technology; combined

with vast data sets and an ever-growing range of statistical techniques, it may

be possible to expedite this process significantly.

2.1.6 Biomarker Discovery

The primary objective of a diagnostic or prognostic tool is to infer the pres-

ence or state of a disease; to accomplish this, an indicator variable known as

a biomarker is employed. A biomarker may come in many forms and can be

considered any chemical, physical, or biological variable; the measurement of

a biomarker can be molecular, cellular, biochemical or physiological [23, 24].

Biomarkers may be present in any part of the body, including bodily fluids such

as blood serum, urine, cerebrospinal fluid; biomarkers may also be found in

any tissue situated in the body. Many currently used biomarkers are found in

bodily fluids and are a standard diagnostic tool employed by clinicians for many

purposes.

Tissue biomarkers are those typically examined post-biopsy after undergo-

ing a series of steps to enable them to be viewed under an optical microscope.

These methods are often supplemented using immunohistochemical stains to

enhance contrast in desired regions of the image. To validate biomarkers for
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the clinic, a large volume of data is typically required to ensure that a biomarker

generalises well to a larger patient cohort and is not solely a feature of a subset

of patient data [24]. A tissue micro array (TMA) is a collection of samples often

taken from hundreds of biopsies using a needle punch biopsy arranged in a

grid-like fashion; this is demonstrated in Figure 2.3.

Several requirements must be met for a biomarker to translate to a clinical

setting. An ideal biomarker achieves the following:

– It is specifically associated with the presence or state of a disease and

can differentiate between similar physiological conditions.

– Standard biological sources can be used to observe the biomarker, e.g.

bodily fluids, tissue.

– The measurement of the biomarker must ideally be quick, simple, accu-

rate, and inexpensive.

– The biomarker is comparable to a measurable and standardised baseline

reference.

Biomarkers must be discerned using statistically robust methods and offer a

benefit to clinicians which justifies the cost of implementing the test. Any failings

in a biomarker’s ability to do so could lead physicians to make decisions on a

patient’s treatment, which may be useless or detrimental to their well-being.
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Figure 2.3: An example of a TMA showing cores taken from re-
sected tumour tissue arranged in a grid like fashion. Cores have
been stained with H&E to show contrast in protein and nucleic

acid concentrations.

2.1.7 Histology

Pathology is the branch of medicine that is concerned with the study of disease

by studying patient samples (urine, blood, tissue, etc.) to aid or provide diag-

nosis or prognosis [25]. The main focuses of pathology are evaluating struc-

tural and functional changes in patient samples. In the UK NHS, 80-90% of

diagnoses performed are based on information gained from laboratory-based

medical specialists [25].

Histopathology is the microscopic study of patient tissue samples and is

primarily concerned with diseases like cancer, infection, and inflammation. In

contrast to pathology, histopathology is based on the visual inspection of sam-

ples — a subjective process relying on the interpretation of morphological infor-

mation present in stained microscope slides by a highly-skilled histopathologist.

A standard method of diagnosis is by examining H&E stained tissue samples

using an optical microscope. An example of a H&E stained image is shown in

Figure 2.4.
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A
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B

100 m
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100 m

Figure 2.4: Examples of H&E stained samples from varied loca-
tions within the oral cavity.

Histopathologists typically aim to diagnose potentially malignant tissue ac-

cording to a standardised classification system [26]. The classification system

used to assess oral cancers is based upon the visual interpretation of both ar-

chitectural features and cytology [26]. Whilst agreement between histologists

on the extent of morphological features present within samples is mainly con-

sistent, intra and inter-observer variability continue to hinder this process due to

its inherent subjectivity [26, 27, 24]. Any discrepancies in judgement between

clinicians could result in misclassification, resulting in over or under treatment

for the patient.

The sequence of steps that a tissue sample follows when being prepared

for a TMA is outlined below:

Slide preparation The process under which a tissue goes through from biopsy

to the microscope follows a few key steps:

Biopsy/resection In the process of removing a tissue specimen from a pa-

tient’s body, various methods are used in practice depending on the area to be

examined.
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Fixation A crucial step in the process where the tissue sample is preserved

in a fixative to prevent decomposition. The standard practice is to use neutral

buffered formalin [25].

Paraffin embedding For tissue to be viewed under an optical microscope it

must be cut thin enough for light to pass through. Paraffin wax at approximately

58◦ C is used to permeate the sample [25].

Microtomy The fixed sample is then sliced precisely to a few micrometres

using a microtome. A ribbon of paraffin-embedded tissue is then extracted and

floated in a water bath to prevent creases in the sample [28]; this ribbon is then

fixed to either a glass slide or a Calcium Fluoride disk for use in IR spectroscopy

or other methods – due to its opacity in the IR.

Staining and mounting At this point, the procedure can be halted, and the

sample can be used unstained in IR spectroscopy and other techniques which

do not require histological staining. Further progression in the process rids

the tissue sample of paraffin and any lipids present; this will alter the chemical

makeup of the sample, which may have implications for subsequent analysis.

If the sample is to be de-waxed, it is subjected to a sequence of xylene and

alcohol washes[29]. The sample is then stained using the required chemical to

produce the desired type of contrast.

The entire slide preparation process can take up to 48 hours [25] and is un-

suitable for intraoperative diagnosis, which requires a report within the time that

the patient is under general anaesthetic. This may be overcome by freezing the

tissue after biopsy rather than formalin-fixation. However, this is a highly skilled

process that often results in inferior quality samples and results in a greater
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challenge of interpretation. For a diagnostic process relying on samples pre-

pared in this way to be used within this time frame, they must be able to perform

the diagnosis under cryogenic conditions. This has significant implications for

techniques reliant upon IR spectroscopy as water has strong absorbance in the

spectral regions typically used for diagnosis [30].
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2.2 Experimental techniques

With the advent of advances in equipment and data analysis, IR chemical imag-

ing has emerged as a solid contender to improve clinical diagnostic capabilities

[31, 32, 33, 34].

IR spectroscopy methods come in many forms and modalities with their own

respective strengths and weaknesses, but all seek to interrogate the underlying

chemical composition of the sample being analysed through the absorption of

specific wavelengths of IR light. A brief overview of the physics involved in

vibrational spectroscopy shall be given, focusing on the physical mechanisms

of absorption and optics. A general overview of the technology underpinning

FTIR microscopes shall also be explained.

The operating characteristics, advantages, and disadvantages of FTIR will

be discussed in the following chapter.
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2.2.1 Electromagnetic Radiation

The Classical Perspective

In classical electromagnetism, electromagnetic waves comprise a magnetic

field ~B, and an electric field ~E oscillating in a synchronised manner whilst prop-

agating through space at velocity c in a direction perpendicular to the oscillating

fields — as shown in Figure 2.5.

x

y

z
c

λ
~E

~B

Figure 2.5: An electromagnetic wave of wavelength λ comprised
of a magnetic ~B and an electric field ~E oscillating synchronously

whilst propagating in space at velocity c

In accordance with Maxwell’s equations governing electromagnetic fields

Equations (2.2) and (2.4), a change in the electric field of a wave invokes a

change in the magnetic field of a wave and vice versa. This phenomenon im-

plies that neither type of wave can exist in isolation.

~∇ · ~E = 0 (2.1) ~∇× ~E = −∂
~B

∂t
(2.2)

~∇ · ~B = 0 (2.3) ~∇× ~B = µ0ε0
∂ ~E

∂t
(2.4)

~E = Electric field vector (NC−1)

ε0 = Permittivity of free space (Fm−1)

~B = Magnetic field vector (T )

µ0 = Permeability of free space (NA−2)
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The amplitudes of both fields vary temporally according to the frequency

of the wave; the greater the frequency of this oscillation, the greater the en-

ergy of the wave. The frequency and wavelength of the wave are related by

Equation (2.5)

f = c/λ (2.5)

f = Frequency of oscillation of the electromagnetic wave in Hz (s−1)

c = The velocity of light (3× 108 ms−1)

λ = Wavelength of the electromagnetic wave (m)

A common convention in spectroscopy is to describe the energy of an elec-

tromagnetic wave in terms of its wavenumber. The wavenumber is simply the

inverse of the wavelength ν = 1/λ and is measured inm−1 but commonly stated

as cm−1 in IR spectroscopy [35].

The physical process underpinning spectroscopy, in general, is absorption.

Absorption occurs as a result of the dispersive effects of dielectric media, in

which the dynamics of the situation become considerably more complicated.

Due to the interaction of the electric field with charges within the dielectric me-

dia, it is crucial to consider the implications this has on the electric and magnetic

fields situated within the media.

The charges within a dielectric media become spatially separated when in-

teracting with an electric field — an effect known as polarisation. The extent of

this polarisation for an atomic system of two equal charges is given by Equa-

tion (2.6).

p = e∆x (2.6)

p = Electric dipole moment (Cm)
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q = Electrical charge (C)

x = Displacement (m).

When considering larger systems of charges: p is multiplied by the number

of charges per unit volume N to give the electric polarisation of the dielectric P .

The displacement x is proportional to the polarisation P and is proportional to

the strength and direction of the electric field ~E, thus the relation can be stated

as:

~P = ε0χe ~E (2.7)

~P = Polarisation per unit volume (Cm−2)

χe = Electrical susceptibility

In order to quantify the total electrical field strength in any given position

and moment, a new quantity ~D is introduced:

~D = ε0 ~E + ~P (2.8)

~D = Displacement per unit volume (Cm−2),

Combining Equation (2.7) and Equation (2.8) gives:

~D = ε0 ~E + ε0χe ~E = (1 + χe)ε0 ~E (2.9)

From which the following relations can be derived:

~D = εrε0 ~E (2.10) εr = 1 + χe (2.11)
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These equations relate the electric field strength ~E to the overall electric dis-

placement ~D by taking into consideration the effect of the polarisation induced

by ~E.

In the case of an electromagnetic wave interacting with matter, the situation

becomes even more complex due to the time-varying electric field associated

with the wave. To account for the oscillating nature of the wave, it is necessary

to consider the inertia of the charges present in the media. Given an oscillating

electric field:

~E = ~E0e
jωt (2.12)

It is necessary to allow the electric susceptibility χe to take on a complex

form to account for the phase difference implied by the lag in ~P compared to ~E.

Thus Equation (2.7) becomes:

~P = ε0(χe1 − jχe2) ~E (2.13)

Given Equation (2.12) and Equation (2.13), the polarisation ~P of the matter

is now shown to be dependent upon the frequency of the oscillating electric

field in which it is situated. The interaction of the electromagnetic wave with

matter leads to an oscillating force driving the displacement of charges in the

material. This is governed by the Lorentz force given by:

~F = e( ~E + ~v × ~B) (2.14)

In the far-field regime, where the distance from a source to a point is greater

than 2λ, the wave can be approximated as a plane wave. Therefore, the ampli-

tude of the electric field strength in comparison to its associated magnetic field
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is E ≈ B
c

. Within molecules, charged particle velocities are v � c therefore

Equation (2.14) can be approximated to:

~F = e ~E = e ~E0e
jωt (2.15)

Assuming a simple harmonic oscillator (SHO) model for charges in the me-

dia; the following equation of motion can be derived:

x = 1
(ω2

0 − ω2) + jωΓ
q

m
~E0e

jωt (2.16)

Γ = Velocity dependent damping factor

ω0 = Fundamental oscillation frequency

Generalising Equation (2.16) to a case with multiple oscillators with their

own respective fundamental frequencies and damping factors and combining

with Equation (2.7) and Equation (2.13).

~P =
∑
i

Niq
2/m

(ω2
i − ω2) + jωΓi

~E0e
jωt = χeε0 ~E0e

jωt (2.17)

Extracting χe and combining with Equation (2.11) we find that the complex

form of the electric susceptibility can be separated into its constituent compo-

nents:

χe1 = q2

mε0

∑
i

Ni(ω2
i − ω2)

(ω2
i − ω2)2 + ω2Γ2

i

(2.18)

χe2 = q2

mε0

∑
i

NiωiΓi
(ω2

i − ω2)2 + ω2Γ2
i

(2.19)

From where the refractive index of the material can be deduced as shown

by Equation (2.20).
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n =
√

1 + χe1 − jχe2 (2.20)

As the frequency of the incident electromagnetic radiation ω approaches

resonant frequencies of the charges within the media ωi, the susceptibility be-

comes complex, and anomalous dispersion occurs in a region close to ωi bounded

by Γ0.

Ab
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an

ce

0

0

Figure 2.6: Complex electric susceptibility of a dielectric as a
function of ω. The range of ω values where anomalous dispersion
occurs is enclosed in grey dashed lines. This feature repeats at

every ωi.

The parameters ωi and Γi are material-specific and have multiple values for

each region of resonance; this gives rise to a characteristic spectrum associ-

ated with a material where absorbance occurs at each resonance peak. These

values of ωi and Γi might be energy transitions that are either electronic, vibra-

tional, or rotational in nature, but all involve a change in the dipole moment of

the system in question. The origin of these ωi and Γi values have so far been

overlooked; however, to explain these terms in reasonable detail, it is necessary

to look to quantum mechanics.
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The Quantum Perspective

Classical electromagnetism is able to explain a wide range of phenomena as-

sociated with waves and particles, and often serves as a useful approximation.

However, phenomena such as the photoelectric effect and black body radiation

could not be truly explained using classical physics — thus, quantum theories of

waves and particles were developed to understand these phenomena. Quan-

tum mechanics forms the basis of all current understanding of the Universe at

all scales and is necessary to fully appreciate the complexity of many phenom-

ena.

All equations in the previous section are classical equations and thus take

no account of quantum effects. It is now understood that when particles interact,

they do so through the exchange of discrete quanta of energy, the inclusion of

quantum effects into classical field theories gives rise to quantum field theories.

The quantisation of a field theory leads to the appearance of many new features

compared to classical field theories and is therefore much more complex.

Energy quantisation is a requirement to explain many phenomena. Max

Planck assumed that the energy carried by an electromagnetic wave of fre-

quency ω can only exist in quantised amounts corresponding to:

E = ~ω (2.21)

~ = Reduced Planck’s constant (1.05× 10−34Js)

This prompts the realisation that interactions between matter and radia-

tion are not a continuous process but are instead mediated by an exchange of

discrete amounts of energy. However, some phenomena such as reflection,

refraction, and wave interference can only be understood by considering elec-

tromagnetic radiation to consist of waves. To bring concordance between these
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two ideas, a framework that can describe all physical phenomena is needed;

this is what quantum mechanics seeks to achieve. To explain both types of ob-

servation, a quantum entity is assigned a wave-function Ψ(r, t). A wave function

may be a real or complex-valued function, but a key stipulation is that it has the

property:

∫
|Ψ(r, t)|2 d3r =

∫
Ψ(r, t)Ψ(r, t)∗ d3r = 1 (2.22)

This implies that the particle’s total probability density is contained within a

defined volume. The previous section used the variables ωi and Γi to represent

the fundamental frequency and damping coefficient of an oscillating system of

charges. To give some insight into the origins of these terms, it is necessary to

describe this system of charges using quantised energy levels. Given the clas-

sical representation of a simple harmonic oscillator as the sum of its constituent

energy contributions:

V (x) = 1
2kx

2 + 1
2mω

2x2 (2.23)

Its equivalent Schrödinger equation is:

(
−~
2m

d2x

dx2 + 1
2mω

2x2
)

Ψ(x) = EΨ(x) (2.24)

Due to the nature of a harmonic oscillator being in a quantum-mechanically

bound state, eigenfunctions of Equation (2.24) take the general form of Equa-

tion (2.25). Proof see [36].

Ψ(x) = e
−x2
2α2 (a0 + a1x+ a2x

2...) (2.25)

And satisfy Hermite’s equation:



2.2. Experimental techniques 35

∂Ψ(x)
∂x2 + βΨ−

(
x2

α4

)
Ψ = 0 (2.26)

Where:

β = 2mE
~2 (2.27) α =

√
~
mω

(2.28)

Due to the nature of a bound oscillator state, wave-functions cannot diverge

as x→∞ and must be quantised. Solutions meeting this requirement satisfy:

α2β = 2n+ 1 (2.29)

Therefore, the first three allowed wave-functions meeting this requirement

are:

Ψ0(x) = c0e
−x2
2α2 (2.30)

Ψ1(x) = c1

(
x

α

)
e
−x2
2α2 (2.31)

Ψ2(x) = c2

(
2x2

α2 − 1

)
e
−x2
2α2 (2.32)

Figure 2.7 depicts the first three oscillator eigenfunctions of a quantised

harmonic oscillator.
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x

V (x)

Ψ0(x) E0 = 1
2~ω

Ψ1(x) E1 = 3
2~ω

Ψ2(x) E2 = 5
2~ω

Figure 2.7: Potential energy of the quantised harmonic oscilla-
tor with first three allowed eigenfunctions and their corresponding

energy eigenvalues.

When a photon is incident upon a chemical sample, an electron is pro-

moted to an excited state if the photon energy E = ~ω is equal to ∆Eij. These

principles apply to the vibrational energy transitions within molecules that spec-

troscopy techniques seek to observe. In reality, the harmonic oscillator model

is inaccurate except for regions at the bottom of the potential energy curve. In-

stead, the potential energy function of an atom follows that of an anharmonic

oscillator. The potential energy between two atoms V (r) as a function of the

separation r reaches a minimum at r0. Due to the Pauli exclusion principle,

repulsive forces are experienced in regions where r < r0, and attractive forces

where r > r0.
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x

V (x)

Figure 2.8: Potential energy function of the quantised anhar-
monic oscillator.

In contrast to a harmonic oscillator, the restoring force felt by an object

undergoing an anharmonic oscillation is non-linear and dependent upon the

displacement from the equilibrium position. An IR spectrum contains multiple

peaks corresponding to many different energy transitions; many more transi-

tions are allowed due to the anharmonicity of the potential function; energy

changes where ∆n > 1 are allowed — these transitions are known as over-

tone bands [37]. These additional transitions have less energy compared to

fundamental changes and give rise to hot bands. The intensity of an absorp-

tion band is proportional to the change in molecular dipole moment. Therefore

larger changes in the molecular dipole moment give rise to larger absorption

peaks. In gas-phase spectroscopy, IR spectra show distinct peaks due to rota-

tional energy transitions being more readily resolved.

Molecular vibrations vary from the simple coupling of diatomic molecules to

a much more complicated situation involving many atoms. Vibrational energy

changes are much smaller than electronic energy level changes, as shown in

Figure 2.9.
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Figure 2.9: Energy changes present in molecular spectra. [37]

A molecule with N atoms has 3N degrees of freedom corresponding to

translational motion in x,y,z, and rotational motion centred about the x,y,z axes.

The remaining 3N-6 degrees of freedom correspond to vibrational modes in-

volving harmonic displacement of atoms from their equilibrium positions. An

illustration of vibrational modes in a CH2 group is given in Figure 2.10.

Figure 2.10: Energy changes present in molecular spectra. [38]
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2.2.2 IR spectroscopy

IR spectroscopy is a well-known technique that has grown in complexity and

variety over the past few decades. IR spectroscopy is almost universal in its

applicability due to many molecules having strong absorption regions in the

mid-IR region. Samples in any physical state can be examined (with some

preparation), and many different types of samples such as polymers, powders,

and organic and inorganic compounds can have their IR spectra measured

[39]. Spectra are very information-rich; peak positions give information about

molecular structures present in the sample, peak intensities yield information

about the concentration of such molecules, and peak widths provide information

about the sample’s chemical state. It is inexpensive, quick, and operators can

be trained quickly using modern hardware and software. Some consideration

needs to be taken when examining certain samples: water and CO2 contribu-

tions can be a limiting factor when seeking to analyse spectra accurately, but

solutions exist to mitigate these effects.

IR Spectroscopy uses the interaction of IR light with matter across several

wavelengths to produce an absorption (or transmittance) spectrum; this ab-

sorption spectrum arises from the vibrational interactions of the IR light with

the molecular bonds present in the sample. The absorption is dependent upon

several factors: the wavelength of the IR light, the atoms involved in the molec-

ular bond, and the strength of intermolecular interactions [40]. This interaction

typically occurs in the mid and far-IR spectral region, where molecular vibration

frequency and incident light frequency are approximately equal, and when a

change in molecular dipole moment occurs [41].
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Figure 2.11: A typical biological FTIR spectrum example show-
ing three distinct regions of the spectrum: the ”functional region”
(3800-2500 cm−1), ”silent region” (2500-1800 cm−1), and ”finger-

print” region (1800-900 cm−1)

The interactions between the constituent atoms of a molecule and the in-

cident light results in a unique IR spectrum for the molecule — an example

spectrum is shown in Figure 2.11. A tissue sample or cell is just a collection of

molecules in a unique environment that will also display a unique IR spectrum.

This can be used to characterise entire sections of tissue or cell phenotypes

based on the collective contributions of the constituent molecules.

A common mode of operation for IR spectroscopy is transmission mode.

A beam of IR light is incident upon the sample where a portion of the light is

absorbed according to the vibrational modes of the molecules present in the

sample; the amount of absorbance is in proportion to the concentration of the

molecules present, according to the Beer-Lambert law.

I = I0e
−µx (2.33)

I = The attenuated intensity,

I0 = Intensity of the incident IR beam,
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µ = Absorption coefficient of the attenuating material,

x = The thickness of the attenuating material.

An IR spectrum measures the sample’s absorption as a function of the inci-

dent photon energy. The measured absorbance is calculated using the follow-

ing:

A = log10
I0

I
(2.34)

A = Absorbance,

This technique is generally used for thin samples in the region of 1-20 µm

[37] where the Beer-Lambert law is valid. If samples thicker than 20µm are

used, the relationship begins to break down. The Beer-Lambert law allows for

the determination of molecular concentrations for many applications; however,

it is not without its flaws. Particularly dense samples will not absorb linearly,

and assumptions about the origins of a measured µ value must be met with

scepticism as a chemical compound will not have a single value associated

with it. Scattering effects are indistinguishable from absorption in IR spectra,

so the assumption that any ”missing” light intensity is purely due to absorbance

effects may be false [42].

IR Detectors When measurements are performed in transmission mode

using an IR spectrometer, samples are fixed to a substrate that is transparent in

the IR, such as CaF2. To accurately capture the spectrum of a sample with min-

imal absorbance elsewhere, mirrors are utilised instead of conventional glass

optics. A Schwarzchild-Cassegrain objective is used to focus the incoming light

onto the sample from above, at which point the light passes through the sam-

ple. The light is then re-collimated by a condenser lens before passing through
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subsequent mirrors to the detector. A schematic of this process is shown in

Figure 2.12.

Figure 2.12: A Schwarzchild-Cassegrain showing the incident
IR beam passing through a series of mirror optics, sample, and
a second series of optics before passing through to the detector

[37].

To quantify the intensity of IR light for further analysis, the signal must first

be converted into electron pulses, digitised, and measured by a computer. The

conversion of IR light to electron pulses is typically performed by a mercury

cadmium telluride (MCT) detector. An MCT is a semiconductor compound with

a bandgap tuned to the desired wavelength range through the addition of cad-

mium. When an IR photon strikes the MCT, an electron within the valence band

of the detector is promoted to the conduction band, where it is then sent as an

analogue signal to an accompanying analogue to digital converter. In practice,

this happens for large numbers of photons, and thus electron pulses are ob-

served, which are proportional to the intensity of the photon flux [43]. An MCT
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must be cooled to temperatures similar to liquid nitrogen (77K) to minimise the

effects of noise, induced by thermally excited current carriers. MCT detectors

are far more sensitive than other comparable detectors [43] and convert IR

photons to electron pulses much more quickly; this has led to MCT detectors

becoming the detector type of choice for many scientific applications.

Light sources To observe a wide range of samples, a suitable IR light

source is required; three such light sources are the quantum cascade laser

(QCL), free-electron laser (FEL), and a globar. Each light source has its respec-

tive advantages and disadvantages in terms of spectral output, source stability,

intensity, and cost. An IR-FEL requires a large supporting facility and can be ex-

tremely expensive to operate; FELs also suffer from source stability issues and

are highly unsuitable for a clinical environment [44]. A typical globar comprises

a silicon carbide rod heated to around 1000 - 1650 ◦C, and a variable interfer-

ence filter. As the globar emits a continuous IR spectrum across a wide range

of specific wavelengths, it can be filtered into specific bands of wavelengths or

used in conjunction with an interferometer.

A QCL is a semiconductor laser that utilises epitaxially grown quantum

wells containing electrons in lasing states within a sequence of quantum wells.

QCLs allow for a spectrally narrow-band beam when used in conjunction with

narrow-band mid-IR reflectance filters [37]. Shown in Figure 2.13 is a simplified

schematic of a QCL.

Sources can output either a continuous IR spectra in the case of a FEL

and globar; or a discrete spectrum as in the case of a QCL. A QCL offers a

distinct advantage when used with a compatible imaging system; as discrete

wavebands are scanned sequentially, the signal to noise ratio can be signifi-

cantly increased by averaging over a small spectral range instead of scanning

over the entire spectrum as in an FTIR [37].



44 Chapter 2. The physics approach to cancer diagnostics

Figure 2.13: A simplified schematic of the gain region of a QCL,
showing electron energy against the position. The electron is in-
jected at the left-most grey arrow and undergoes a radiative tran-
sition (blue arrow); the electron then undergoes a further non-
radiative transition (red arrow) before tunnelling to the next quan-

tum well and repeating this process [45].

2.2.3 Fourier-transform infrared spectroscopy (FTIR)

The application of FTIR to biological samples is relatively novel, with a range

of potential applications across biomedical sciences. FTIR has been used to

investigate the development of cancer in several tissue types such as: brain

[46, 47, 48], colon [49], skin [50], liver [51] and many others and is considered

to be one of the most popular IR techniques available today [52]. It provides a

way to assay the chemical structure of a sample in a non-destructive manner.

FTIR has proven to be a rapid and cost-effective technique that requires mini-

mal preparation and could potentially be used to help alleviate the subjectivity

present in histopathological diagnosis.

Operating Principle A typical set-up for an FTIR spectrometer is a Michel-

son interferometer and a detector. A Michelson interferometer is an instrument

that produces an interference pattern by superimposing two beams of light. The
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light is incident from the IR source onto a beamsplitter that transmits a portion

of the IR light and reflects the other portion onto a fixed mirror. The part of

the beam transmitted is incident onto a movable mirror that reflects back to the

beam splitter, re-combines with the other portion of light, and proceeds to the

IR detector. The two beams undergo superposition and create an interference

pattern. A schematic of a Michelson interferometer is shown in Figure 2.14.

Figure 2.14: A Michelson interferometer used in a FTIR spec-
trometer. [37].

The recombined light interferes constructively if the distance between the

beamsplitter and movable mirror is equal. This condition repeats for every inte-

ger multiple of a wavelength; destructive interference occurs every half wave-

length for a given wavelength of light. The intensity I ′ of the beam at the detector

is given by Equation (2.35).

I
′(δ) = 0.5I(v0)

(
1 + cos(2π) δ

λ

)
(2.35)

Where the retardation is given by:

δ = nλ (2.36)
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The beamsplitter and detector each have wavelength-dependent efficien-

cies that can be accounted for by including a correction factor H(v0). Including

the wavenumber dependent responsivity of the detector G(v0) (V ·W−1) there-

fore gives the measured intensity in volts [42]:

S(δ) = 0.5I(v0)H(v0)G(v0)
(

1 + cos(2π) δ
λ

)
(2.37)

The resulting interferogram combines the intensities of each wavelength of

light as the mirror is moved. This interferogram is then transformed to a fre-

quency domain spectrum using a Fourier transform as shown in Figure 2.15.

To obtain a spectrum characteristic of the sample, a background measurement

is taken in the absence of the sample; the background spectrum is then sub-

tracted to obtain the sample spectrum.

Fourier 
Transform

Inverse
Fourier 

Transform

Figure 2.15: The conversion of an interferogram to a wavelength
dependent transmittance spectrum

Measurement of spatial variation To obtain spatially varying spectra

across the sample of interest, either imaging or mapping can be performed.

Mapping is done by collecting the absorbance spectra at each position in the
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desired area of the sample; this area can be changed through the use of piezo-

electric motors to give micrometre resolution [30]. Imaging is achieved by di-

recting the light emitted from the sample region onto a focal plane array (FPA)

using focusing optics to define the pixel size [37]. Mapping the spectra of a sam-

ple area in this way creates a data cube with each spatial pixel corresponding

to a measured spectrum at that point.

x

λ

y

Figure 2.16: An FTIR datacube example showing spatial varia-
tion in x and y with spectral absorbance varying in λ.

Several factors govern the achievable spatial resolution of an optical tech-

nique such as FTIR. The first is the magnifying lens used to focus the light onto

the sample; if a powerful lens is used, the FPA will image a smaller area due to

its decreased field of view, and so each pixel represents a smaller area. Sec-

ond is the numerical aperture (NA) of the lens, which is representative of the

ability of a lens to collect light over a range of angles; therefore, a lens with a

high NA will be able to resolve objects at smaller scales. However, the reso-

lution of an optical instrument is always subject to the diffraction limit. Due to
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dispersive effects associated with glass lenses, mirrors are the typical choice

for the optical path of a FTIR microscope.

Diffraction and Resolution To image objects at smaller scales using

optical techniques, the resolution of the imaging technique must surpass the

diffraction limit, which is limited to roughly half the wavelength of the light source

used in acquisition [53]. The diffraction limit is the minimum size of the spot to

which a beam of light can be focused using standard lensing elements. The

focused spot forms a symmetric pattern of concentric rings called an Airy disk

pattern, as shown in Figure 2.17.

Figure 2.17: An Airy disk diffraction pattern showing periodic
bright and dark fringes [54].

For two objects which are close by to be individually resolvable, they must

obey the Rayleigh criterion which states that the two objects must be at least

a distance away given by Equation (2.38), the distance between the two first

bright fringes of the Airy disk produced by each object.

d = 0.61λ0

sin(θ) (2.38)

d = Distance between the centre of the Airy disk and the first minimum

intensity
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λ0 = Wavelength of the light in vacuum

θ = Light convergence angle

With the improvement in NA of many microscopy systems available today,

it is possible to achieve values over 1. Consequently, this means that with

good quality optics, microscopy systems can achieve resolutions of up to λ/2

[53]. This can, in practice be overcome with good estimates of the point spread

function (PSF) of the detector in conjunction with a high signal-to-noise ratio.

However, this theoretical limit is generally never achieved due to limitations of

experimental conditions and aberration effects in optical instruments [53].

FTIR has become a commonplace instrument for the analytical chemist

over the past few decades owing to its robust, reproducible spectra, low cost,

and versatility of use [37, 42]. Combined with modern FPA detectors, it is pos-

sible to rapidly and cost-effectively extract large datasets for later analyses.

2.3 Data Analysis

To utilise and gain insight from experimental data collected from FTIR micro-

scopes, the data must be summarised and interpreted. A considerable variety

of methods exist which approach the problem from different angles, some are

well-established techniques that originate from multivariate statistics, whereas

other techniques are categorised as machine learning (ML). Effective data anal-

ysis is an essential step when developing a clinical diagnostic tool. A high false-

positive rate will result in unnecessary procedures, and a high false-negative

rate can result in unnecessary deaths.

With the aim of the project being to gain an understanding of the biological

systems present in cancer and to develop prognostic tools, it is necessary to

convert the raw data containing chemical information about each sample into
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meaningful insights by quantifying relationships or categorising clusters of data

points. The following section starts with a description of a few procedures that

are common preprocessing techniques. Then an overview of several statistical

methods and machine learning algorithms will be given with a discussion of the

process of validating classifier results.

2.3.1 Machine Learning & Statistics

ML is an approach to data analysis that involves learning from example data

rather than relying on heuristics. This approach has led to advances in fields

such as finance [55], healthcare [56], bioinformatics [57]. ML objectives are

generally either classification or regression problems. The goal of classification

is to obtain the function f which maps an input vector X to a discrete output

t. The input vector X is the list of variables that are used to describe a data

point, e.g. colour, weight, length, and t being the label applied to the data

point, e.g. orange, apple, banana. A regression problem seeks to turn X into

a numerical output, for example, the number of bathrooms or floor space of a

house into the market value of the house. Some overlap exists between these

types of problems, but they are generally evaluated differently. These problems

can be further separated into supervised and unsupervised learning problems;

supervised learning is when each data point has an associated label so that the

algorithm can learn more directly; unsupervised learning is therefore learning

in the absence of labels. These differences have implications for the types of

algorithms that can be used and what insights can be gained.

2.3.2 Preprocessing

Analysing spectroscopic data is typically a multi-step procedure, starting with

a sequence of preprocessing steps before classification or regression. This
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process naturally follows a ”pipeline” like procedure where data is passed se-

quentially through several stages; this process is illustrated in Figure 4.1. Pre-

processing is a vital step in the analysis workflow, as it has been shown to

increase the performance of classification models [58], as well as to improve

the validity and interpretability of results.

Spectral
Smoothing Normalisation Baseline

Correction
Feature
Scaling

Dimensionality
Reduction

Figure 2.18: A typical preprocessing pipeline diagram

An outline of each step in the preprocessing sequence is set out below.

Normalisation

Spectral normalisation takes place to account for the variable thickness of sam-

ples. Due to the dependence of Equation (2.34) on the thickness of the sample,

the absolute absorbance value will vary strongly. This is considered a con-

founding factor and is typically dealt with by several methods, such as vector

normalisation, min-max scaling, or spectral differentiation.

Spectral Smoothing

Spectral smoothing methods seek to account for high-frequency noise in the

data. This unwanted noise may have instrumental, environmental, or sample

origins. There are several associated methods, including the commonly used

Savitzy-Golay [59], whereby a polynomial is fit to a local moving window of

a specified length. Other methods such as PCA de-noising and fast Fourier

transform (FFT) filtering are also commonly applied.
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Baseline Correction

In transmission IR spectroscopy, the incident light beam will experience a de-

gree of Mie scattering, modifying the observed IR spectrum. The original chemi-

cal spectrum sits atop an induced non-linear baseline caused by the wavelength-

dependent scattering of the incident light. Mie scattering occurs if spherical

morphological structures present in the sample are of comparable size to the

incident radiation. This effect is particularly strong in cells, but tissues are also

adversely affected to some extent. The impact in embedded tissue samples is

mitigated somewhat by the presence of paraffin wax which results in a more

homogenous refractive index throughout the sample [60, 61, 62]. The data

present in this thesis has been subject to an Extended Multiplicative Scattering

Correction (EMSC) algorithm outlined in [63].

Feature Scaling

Feature scaling takes place to remove absolute variable values effectively. This

does not detrimentally affect the data as it is only relative values between sub-

groups of data relevant to discriminatory tasks. This step often helps subse-

quent classifier steps and is imperative for PCA.

2.3.3 Dimensionality Reduction

When a dataset is highly-dimensional, it can become computationally expen-

sive to process. The goal of dimensionality reduction (DR) is to decrease the

number of components of the feature vector x to reduce computation time
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and/or expense; DR can also allow higher dimensional data sets to be visu-

alised in lower dimensions. DR can also be advantageous for classifier per-

formance as it can play a role in regularising the classifier due to reducing the

amount of information given to the classifier.

Principal Component Analysis (PCA)

PCA is a DR technique that seeks to re-orient the axes representing a dataset

so that the axes are those which maximise the variance. This reduces the

complexity arising from any linear dependence between feature vector compo-

nents and disregards redundant information. The data is mapped to a subspace

which maximises the variance of the orthogonal projections of the data points

as shown in Figure 2.19.

Figure 2.19: The principal component shown here by u1 with the
orthogonal projections (shown in green) of the original space data

points (in red) projected onto it [64]

This process is performed by obtaining the eigenvectors of the covariance

matrix of the data; these eigenvectors then become the principal components

[65].
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Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis (LDA) differs from PCA in that it uses informa-

tion about the identity of each data point to linearly transform the basis of the

dataset. The main goal of LDA is to map to a space that gives good inter-class

separability and avoids overfitting to the data.

Figure 2.20: A comparison of PCA and LDA [66]

Another goal of LDA is to minimise intra-class variance to avoid scattering

the data across the subspace. LDA can facilitate the visualisation of the un-

derlying data structure and aid in visualising the relationships between groups

present in the data.

2.3.4 Machine learning algorithms

This section will briefly overview some machine algorithms used in this thesis.

Neural networks will be covered in more detail in later chapters, where they are

utilised as the primary focus.
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Logistic Regression

Logistic regression (LR) is a relatively simple classification method with a basis

in classical statistics. It is closely related to linear regression but with an addi-

tional logistic function step used to convert input vectors into a usable probability

estimate. LR is based on the following equation:

Pr(Y = 1) = 1
1 + e−z

(2.39)

Where

z = β0 + βT1 X1 + βT2 X2... =
n∑
i=0

βTi Xi (2.40)

This is illustrated in a univariate case for a two-class problem in Figure 2.21.

2 0 2 4 6
Variable Value

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty

Figure 2.21: A univariate logistic regression example showing
two generated distributions in orange (Y=0) and blue (Y=1); the
fitted logistic function is shown in black with maximum probability

predicted in the region spanning the blue histogram (Y=1).

Optimal values for coefficient vector βi are determined through maximum

likelihood estimation. In practice, this is done by iteratively maximising the log-

likelihood with respect to β using Newton’s method or otherwise. See [67] for

a thorough derivation.
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Support Vector Machines

Support vector machines (SVM) have become a commonly used method for

classification and regression capable of performing well on complex datasets

[68, 64, 69]. SVMs can be separated into two distinct types: linear and non-

linear. As its name suggests, a linear SVM forms a linear decision boundary

across the input parameter space separating classes.

ŷ =


0 if wTx+ b < 0

1 if wTx+ b ≥ 0
(2.41)

w = Gradient associated with the linear decision boundary

b = Constant offset of the decision boundary

Values for w and b are determined through an optimisation procedure that

seeks to obtain the optimal separation boundary between classes. This is ac-

complished by minimising an objective function which also allows for some mis-

classification through a slack variable ζ. The objective function is given by

minimise
w,b,ζ

1
2w

Tw + C
n∑
i=0

ζi (2.42)

C = A tunable hyperparameter allowing for a level of misclassification

When a dataset is not linearly separable, it is still possible to utilise an SVM

as a classification method through the use of a kernel. A kernel takes the origi-

nal n-dimensional parameter space of the dataset and transforms it into a new

m-dimensional space called a feature space, where m > n [69]. A kernel can

take many forms, such as a linear, polynomial, or radial basis function (RBF)

kernel; these kernels perform calculations based on the original data to derive

more features that allow classes to become linearly separable. A comparison

of a linear and nonlinear SVM is shown in Section 2.3.4.
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Figure 2.22: SVM classification boundaries showing a linear
SVM (A), and nonlinear SVM using a RBF kernel function (B).
(A) shows the support vector boundary in a solid grey line with

support vector points highlighted with a black circle.

Artificial Neural Networks

An artificial neural network (ANN) is a technique loosely based on the function-

ing of a biological neuron. First introduced in 1943 [70], ANNs are a simplified

computational model of how a biological neuron might work in an animal brain.

ANNs vary widely in complexity and structure; with the addition of specially de-

signed layers and functions, ANNs can accomplish increasingly complex tasks

such as natural language processing, computer vision, and time series predic-

tion. Like its biological analogue, a neuron can receive an input signal, perform

some processing, and output the resultant value. This process is summarised

in Figure 2.23.
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Figure 2.23: The perceptron showing input variables xi multiplied
by their respective weights wi, before being summed over all in-
puts and added to a bias term b, and then subjected to a nonlinear

activation function f

The perceptron equation for several input variables n is given by Equa-

tion (2.43)

y = f

(
n∑
i=0

xi · wi + b

)
(2.43)

For a perceptron to succeed in its desired application, it must be ’trained’.

Training in this sense refers to optimising the weights of a perceptron with re-

spect to the desired metric. Often, metrics such as accuracy, sensitivity, or

specificity are used for classification tasks. If the perceptron is used for re-

gression, this metric would indicate the loss/fitness of a proposed function, for

example, the means squared error.

The Multilayer Perceptron

A single perceptron is very similar to a single unit of logistic regression and

can achieve simple binary classification tasks [68]. However, most classifica-

tion tasks are substantially more complicated. When the output of a perceptron

is used as the input of another perceptron, ANNs can model complex non-

linear relationships; such structures are known as ’deep neural networks’. The

term deep learning is associated with the research and development of these
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complex models. A typical multi-layer perceptron network is illustrated in Fig-

ure 2.24.
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Input
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Output
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Figure 2.24: A multilayer perceptron neural network with an in-
put layer consisting of four input variables x0 . . . x4, three hidden

layers of five nodes each, and a single output layer.

The use of successive layers of nodes allows an ANN to model significantly

more complex relationships. Optimal choices for network weights must be de-

termined through an optimisation procedure. Backpropagation [71] is the stan-

dard method of determining effective weights for each node; it is made possible

because all weights and bias terms can be related to the error of the network

through a series of gradients – a chain of partial differential equations. A for-

ward pass is used to calculate the output of a network given an input, this out-

put is compared to the actual output value, and an error is computed. With

each weight and bias in the network being related to this error, the network ad-

justs each parameter accordingly in a backward pass. This process continues

with batches of samples from a dataset until the network error converges. The

’trained’ network can now be used to perform predictions on unlabelled data

samples.

There are many choices of activation functions and the number of layers and

nodes in a neural network. Additionally, there are many parameters associated

with the backpropagation algorithm itself which can be altered. A thorough
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description will not be given here but is covered in depth in other sources [68,

64, 67]. An additional process known as hyperparameter optimisation can be

performed and will be covered in depth in Chapter 4. Neural networks form

the focus of Chapter 5 where an explanation of convolutional neural networks

(CNN) shall be given.

Classification and Regression Trees (CART)

A decision tree is an ML algorithm that constructs a tree-like structure consisting

of branch nodes and leaf nodes. They can be used to perform classification or

regression tasks by splitting the data set at each branch node utilising a set of

criteria. Usually, the split is calculated as that which will maximise the entropy

gained according to the Gini index [72]. The splitting generally continues until

either: each leaf node leaves a single class, a maximum tree depth is reached,

or a given performance metric has been achieved.

gini = 0.0
samples = 1
value = [0, 1]

gini = 0.0
samples = 1
value = [1, 0]

gini = 0.0
samples = 3
value = [0, 3]

X[1] <= -2.09
gini = 0.5

samples = 2
value = [1, 1]

X[0] <= 0.074
gini = 0.32

samples = 5
value = [1, 4]

gini = 0.0
samples = 2
value = [2, 0]

gini = 0.0
samples = 1
value = [0, 1]

gini = 0.0
samples = 2
value = [2, 0]

X[1] <= 0.118
gini = 0.49

samples = 7
value = [3, 4]

gini = 0.0
samples = 4
value = [0, 4]

gini = 0.0
samples = 44
value = [44, 0]

X[0] <= -0.38
gini = 0.444
samples = 3
value = [2, 1]

X[1] <= 2.148
gini = 0.397

samples = 11
value = [3, 8]

gini = 0.0
samples = 1
value = [1, 0]

gini = 0.0
samples = 1
value = [0, 1]

X[0] <= -0.423
gini = 0.042

samples = 47
value = [46, 1]

X[0] <= 0.259
gini = 0.444

samples = 12
value = [4, 8]

gini = 0.0
samples = 40
value = [0, 40]

X[1] <= -2.172
gini = 0.08

samples = 48
value = [46, 2]

X[0] <= 0.336
gini = 0.142

samples = 52
value = [4, 48]

X[0] <= -0.164
gini = 0.5

samples = 100
value = [50, 50]

Figure 2.25: A typical CART comprising branch nodes shown
here by a logical decision operator, and leaf nodes consisting of

an output value.
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CARTs can be effective classifiers in simple data sets. Still, they suffer

from overfitting due to their high variance – a tendency to be sensitive to small

changes in the data set and not generalise well. When the performance of a

standard decision tree is cross-validated with other data, they tend to fall short.

Regularisation and pruning

To mitigate the high variance of CARTs, a technique known as pruning can

be employed to reduce the complexity of the tree, and the likelihood of overfit-

ting [73]. Leaf nodes are pruned based on the misclassification error given by

Eq.2.44:

E(t) = 1− [max(p(i|t))] (2.44)

Where:

E = Classification error

t = A given tree structure

i = A given decision or class

Essentially if the split does not result in any improvement or is deemed

redundant: it is pruned. Regularisation is the act of limiting the complexity of a

predicting model in any sense, limiting the depth of the tree is another standard

method of restricting complexity in CARTs which directs the model towards a

more general solution to the problem. This is typically achieved through the

optimisation of an objective function:

obj(θ) = L(θ) + Ω(θ) (2.45)

Where:

obj = The objective function to be minimised or maximised
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θ = The set of parameters used in the model

L = The error term associated with the model in the training stage

Ω = The regularisation term that regulates the model’s complexity.

Bagging and Random Forest

Bagging is a general ML technique that combines many weaker classifiers into

an overall more capable ’ensemble’ classifier. This is achieved by training each

sub classifier on a subset of the samples in the data set. The decision of each

sub classifier is factored into the overall decision by either voting or taking an

average of the output. This reduces the variance of the classifier and can im-

prove the performance significantly [72]. A random forest classifier seeks to

expand upon this further by decreasing the correlation between the decisions

of each sub-classifier. This is achieved by limiting the number of features given

to each tree so that each tree effectively decides on different features.

Boosting

Boosting, in contrast to bagging, is a technique designed to reduce the bias of a

classifier [74]. Bias is a measure of how well a classifier captures the necessary

information needed to do its job [64], if bias is high, it can cause the classifier

to miss important information and lead to underfitting. To avoid underfitting,

a classifier is optimised using Equation (2.45). In the case of a CART this

would be the structure of the tree itself; however due to the heuristic nature of

a decision tree, optimisation can become difficult. To optimise a decision tree,

boosting is performed. Boosting is achieved by first classifying the set of test

points; the misclassified points are then weighted higher so that more focus is

placed on classifying them in the next iteration. This process is repeated until

the classifier can correctly identify the data set to the required standard. Each
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iteration is then weighted according to a learning rate λ and then used to give

an overall decision.

Extreme Gradient Boosting (XGBoost)

XGBoost is a highly optimised supervised learning method that builds upon gra-

dient boosted decision trees [75]. It is a highly successful algorithm, and one

of the most commonly used ensemble methods used by many data science

competition-winning teams [76]. It is an ensemble classifier, a method which

is characterised by a meta-classifier, which uses the input of many sub clas-

sifiers known as weak learners. The weak learners, in this case, are decision

tree classifiers that have been enhanced through the use of two ensemble tech-

niques: bagging and boosting. Another built-in feature known as a regularised

learning objective penalises an overly complex model allowing the classifier to

generalise more effectively.

2.3.5 Evaluation of Classifier Performance

Evaluating a predictive classifier is a crucial step in the process of development.

The standard format for training a classifier is to have a training and testing set

– one to fit a classifier to and one to evaluate the performance of the fitted clas-

sifier. However, the performance achieved from this method is not descriptive

of the entire data set and wastes some of the data. To overcome this, a tech-

nique known as cross-validation can be used. Cross-validation works simply by

selecting a different training and testing set multiple times and then aggregating

the results in the desired way.

To gain a true indication of the performance of a classifier it is not sufficient

to look at the accuracy; in the case of a binary classifier a confusion matrix is
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often employed to see exactly what predictions have been made. Shown in

Table 2.1 are terms used to refer to types of classification result:

Table 2.1: Statistical classification terms derived from a confusion
matrix.

Statistic Symbol Description

Positives P The number of positive cases
Negatives N The number of negative cases
True Positives TP Cases correctly predicted as positive
True Negatives TN Cases correctly predicted as negative
False Positives FP Cases incorrectly predicted as positive
False Negatives FN Cases incorrectly predicted as negative

A confusion matrix is a way of visualising predicted and actual values ob-

tained from a classifier. It allows for a greater level of insight when diagnosing

the cause of classification errors.
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Figure 2.26: Binary (A) and multiclass (B) confusion matrices
showing classification results.

When evaluating the performance of a classifier, several metrics can be de-

rived from those shown in Table 2.1. The use of these statistics is common in

clinical sciences and bioinformatics and is the common language in which the

performance of diagnostics tests are communicated [57, 77]. In a diagnostic
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test, sensitivity is a measure of the ability of a test to identify true positives;

equivalently, the specificity of a diagnostic test is a measure of how well a test

can identify true negatives. Sensitivity and specificity are inextricably linked.

Thus, there is a trade-off between the performance of either score – an in-

crease in one score typically involves a decrease in the other. Similar metrics

are the positive predictive value (PPV) and negative predictive value (NPV).

These metrics measure the ratio of true positives/negatives to the total number

of positives/negatives. Finally, the Matthews correlation coefficient (MCC) is a

more holistic measure of the performance of a diagnostic test and considers all

prediction outcomes. A summary of these metrics is given below.

Table 2.2: Classification statistics used in the evaluation of pre-
dictive models.

Statistic

Accuracy (TP+TN)
P+N

Matthews correlation coefficient TP×TN−FP×FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

Specificity TN
TN+FP

Sensitivity TP
TP+FN

Positive predictive value TP
TP+FP

Negative predictive value TN
TN+FN

The majority of classifier algorithms output an estimate as a continuous

value. In the case of logistic regression, this estimate can be directly interpreted

as a probability; in other cases, this estimate is derived in a non-probabilistic

way and must be used with caution. These continuous values must be di-

chotomised by taking a threshold over the value.
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Receiver Operating Characteristic (ROC) analysis

It is possible to estimate the classification power of a diagnostic test irrespec-

tive of the threshold by calculating a receiver operating characteristic (ROC)

curve. A ROC curve can be employed to calculate the area under the receiver

operating characteristic curve (AUROC) statistic, a widely accepted measure

of classifier performance. A ROC curve is a plot of the true positive rate (TPR)

(sensitivity) against the false positive rate (FPR) (1 - specificity) for several de-

cision thresholds for a binary classifier; this can be extended to a multi-class

problem by utilising a ”one against all” approach.
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Figure 2.27: ROC curves showing a comparison between a num-
ber of classifiers with calculated AUROC scores.

A value across the diagonal signifies a classifier that is equivalent to pure

chance and effectively useless. A steep curve that approaches the top-left

corner is a realistic, well-performing classifier that will have a high AUROC. An

AUROC value of 1 signifies a flawless classifier that correctly identifies every

instance; more importantly, it does not need to trade-off between specificity and

sensitivity; a value of 0.5 is equivalent to a random guess signifying a completely

useless classifier. A ROC curve is a collection of TPR and FPR values for
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several cut-off points. The curve represents the trade-off between obtaining

more true positives and fewer false positives. It allows for a visual evaluation

of the classifier’s performance over the entire range of thresholds.

Precision Recall analysis

The precision-recall (PR) curve is similar to the ROC curve; The precision is

equivalent to the PPV, and recall is equivalent to the sensitivity score. The PR

curve is formed in the same way as a ROC curve by calculating the precision

and recall at several thresholds. When examining a highly imbalanced dataset,

a PR curve can avoid overly optimistic estimates of classifier performance [78].

The PR curve is particularly useful as it considers the precision/PPV which is

itself dependent upon the prevalence of positive cases in the data set. The

area under the precision-recall curve (AUPRC) can be utilised as a summary

statistic similar to the AUROC score.
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Figure 2.28: Classifiers of varying utility evaluated on simulated
imbalanced [A,B] and balanced [C,D] datasets.

Figure 2.28[A-B] shows an evaluation of several classifiers of varying utility

on a simulated imbalanced dataset, where the ratio of the positive to negative

class is 1:10. The baseline score in Figure 2.28[B] is set at 0.09 to reflect the

imbalance and is calculated by:
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baseline = P

(P +N) (2.46)

Figure 2.28[C-D] shows a simulated dataset of equal class distribution where

the baseline is set at 0.5.

This baseline is then subtracted from the calculated AUPRC to give the final

scores, where negative scores indicate a poor classifier. Figure 2.28[A,C] show

ROC curves for these predictions but give no real insight into the consequences

of class imbalance. Incorrect conclusions could be drawn from Figure 2.28[B]

if the baseline was not adjusted for class prevalence and set at 0.5. A conse-

quence of this baseline adjustment is that when comparing biomarkers evalu-

ated on cohorts with differing class distributions, the prevalence of the dataset

must be taken into account.
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3 Prognosis

3.1 Introduction

Head and neck squamous cell carcinomas (HNSCCs) are the sixth most com-

mon form of cancer worldwide, amounting to over 500,000 new cases annually.

The majority of head and neck cancers are squamous cell carcinomas that orig-

inate in the upper aerodigestive epithelium. The development of oropharyngeal

squamous cell carcinoma (OPSCC) is known to be linked to carcinogenic HPV,

accounting for approximately 51.8% - 71% of cases [1].

OSCC is the 8th most common form of cancer in the UK [2] with a recent

increase in incidence reported [3, 4]. In contrast, OSCCs are rarely mediated

by HPV [5], and the majority of cases are typically associated with exposure to

carcinogens present in tobacco and alcohol [1, 3, 6].

The regions in which head and neck tumours typically develop are anatom-

ically complex and play a vital physiological role in the patient; early diagnosis

and selection of appropriate treatment should increase patient survival while

maximising the retention of vital organ function.

A key issue facing clinical decision-makers is determining the optimal course

of treatment for a patient. In cases where lower biological aggression can be

demonstrated, a de-escalation of therapy may be possible [7, 8]. Conversely,

early identification of patients with poor prognosis could allow targetting for

neo-adjuvant therapy. However, identification of these cases prior to surgery is



82 Chapter 3. Prognosis

not insignificant, even given the acknowledged prognostic importance of extra-

nodal extension (ENE) [9]. Physical methods such as magnetic resonance

imaging (MRI) and computed tomography (CT) have proven to be of limited

benefit [10] despite improvements in analysis techniques utilising DL models

[11].

Previous studies [12, 13, 14, 15] have hypothesised that tumours with ENE,

which may be responsive to novel therapeutic treatment may carry a distinct

molecular fingerprint; the identification of which may allow for screening of pa-

tients towards appropriate treatment. Despite small studies identifying putative

biomarkers of ENE that might be of use in the analysis of diagnostic biopsy

material [16], none of the proposed biomarkers or molecular fingerprints of ag-

gression has progressed into practice. For approximately 50% of HPV negative

HNSCC patients, current treatment plans are ineffective [17, 18]. Neo-adjuvant

therapy can improve prognoses and aid clinical decision making if applicable

cases can be determined at the time of diagnosis.

FTIR microscopy is a well-established technique that has been utilised in

a range of biomedical applications in recent years. Due to its ability to ac-

cess chemical information present within the sample; FTIR microscopy data

and accompanied multivariate analysis have been used to diagnose cancer in

biofluids [19, 20, 21], surgically resected tissue [22, 23], and cells [24, 25, 26].

FTIR microscopy allows for imaging of sample specimens at thousands of infra-

red wavelengths simultaneously using a typical spectrometer. This is achieved

by using a broadband light source and Michelson interferometer set-up. Indi-

vidual chemical spectra are then obtained by performing a Fourier transform

on the resulting interferogram. Marginal spectral differences in biochemical

compounds of interest are typically located in a region known as the finger-

print region (1000cm−1-1800cm−1). It is differences in these absorption bands

which contain information that can be utilised to discriminate between samples
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of interest.

The use of FTIR in clinical diagnostics is growing quickly, however rela-

tively little work has been aimed towards prognostic biomarkers. The combi-

nation of both FTIR microscopy with techniques more familiar to oncologists

such as immunohistochemical staining has the potential to improve prognos-

tic predictive capabilities significantly as shown in this work. Previous studies

[27, 28, 29, 30, 31, 32, 33] have investigated the viability of a range of prog-

nostic biomarkers for head and neck cancer, with varying degrees of success.

Many previously analysed biomarkers are measured on surgically resected tis-

sue — limiting the potential for timely treatment. What is needed are prog-

nostic biomarkers which can be measured in biopsy tissue prior to surgery.

The discovery of effective prognostic biomarkers has been difficult and thus far

has largely focused on immunohistochemistry techniques. MRI has also been

utilised [34, 35, 36] to measure physical attributes such as: tumour thickness,

depth of invasion, and the presence of sub-volumes in a non-invasive manner.

However, MRI based techniques often quantify biomarkers inaccurately when

validated against direct measurements of pathological staging sections [37, 38].

Zawlik et.al [39] investigated FTIR coupled with PCA to investigate the effi-

cacy of chemotherapy in triple-negative breast cancer. They determined that it

was possible to monitor changes in the biochemical composition of the tissue in

order to monitor the effectiveness of received treatment. Butler et.al [40] have

undertaken development of a high-throughput ATR-FTIR based instrument for

use in biofluid assays. Their work concluded that it was possible to triage brain

cancer utilising FTIR spectroscopy of biofluid samples. Their analysis com-

prised a large retrospective cohort of 724 patients with a range of brain cancer

subtypes and stages. They utilised a binary SVM classifier, and were able to

achieve a sensitivity and specificity of 93.2% and 92.8% respectively.

Many other prognostic biomarkers exist [41, 42, 43] but a large proportion
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are still in the ”discovery phase” — requiring further study to ascertain prog-

nostic benefit [44]. The use of FTIR within clinical diagnostics likely fits into this

category, as many potential barriers facing other potential biomarkers are still

present.

This work explores the potential efficacy of FTIR microscopy in combination

with a known prognostic biomarker: α-smooth muscle actin (ASMA) expres-

sion, as a method of identifying patients with poor prognoses prior to surgery.

Previous work [32, 31, 30] has explored the efficacy of ASMA and SERPINE1

[32] as predictive variables for extracapsular spread (ECS) and as prognostic

biomarkers for OSCC. ASMA expression is closely associated with the pres-

ence of activated fibroblasts, also known as myofibroblasts, in tumour associ-

ated stroma. The degree of ASMA expression can be interrogated using ap-

propriate chemical stains and evaluated using an optical microscope.

3.2 Materials and Methods

Tissue preparation

The dataset comprised FTIR spectra taken from diagnostic primary tissue of 29

patients diagnosed with OSCC. The specimens are a subset of those arranged

in a previously described tissue microarray (TMA; [32]). Inclusion criteria for

this study were: a diagnosis of OSCC; the presence of OSCC in the TMA core;

the ability to co-register adjacent H&E stained and FTIR imaged sections; a

follow-up period after surgery of at least 24 months; HPV negative. Patients

gave written, informed consent and the study was undertaken under ethical

approval (Northwest - Liverpool Central REC number EC47.01). All samples

were 1mm diameter cores of FFPE tissue arranged into a TMA.
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Four adjacent sections of 4µm thickness were taken from the TMA; the

first and last sections were stained with H&E and used to assess the presence

and location of tumour material in the second and third sections. Specimens

were removed from the sample set if no clear area containing predominantly

tumour cells was discernable in the H&E stained sections. Samples were also

removed from the sample set if the outline of the regions containing tumour

cells were markedly different between the first and fourth sections. Images of

stained sections were scanned using an Aperio CS2 scanner (Leica Biosys-

tems) and used for IR image annotation. The second and third TMA sections

were mounted onto CaF2 disks for FTIR microspectroscopy.
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Figure 3.1: Annotation of OSCC-containing areas in FTIR im-
ages. [A,D,G]: H&E image of a tissue core; [B,E,H]: FTIR image
at 1650cm−1; [C,F,I]: Areas from which FTIR data was extracted

for analysis

(Figure 3.1) shows three examples of tumour areas selected from H&E sec-

tions and used for further analysis. Selections were annotated using GIMP [45]

image manipulation software onto IR images at 1650cm−1 to ensure spectra

were extracted accurately. The obtained mask was then used to compile spec-

tra of tumour regions indexed by patient identity and corresponding metadata.
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FTIR Microspectroscopy

FTIR measurements of TMA cores were taken at room temperature using a

Varian Cary 670-FTIR spectrometer with an attached Varian Cary 620-FTIR

microscope produced by Varian (now Agilent Technologies, Santa Clara CA,

USA); with a liquid nitrogen-cooled 128×128 pixel MCT focal plane array with

an effective field of view for each pixel of 5.5µm. The sample stage was en-

closed in a perspex box and pumped with dry air until a humidity of 1% was

achieved to mitigate the effects of water contributions on measured IR spec-

tra. Images were acquired at a resolution of 6cm−1 over a spectral range of

990cm−1 to 3800cm−1 using a co-addition of 128 scans. The attenuator and

integration time of the FPA were chosen to maximise the signal-to-noise ratio.

Background scans were acquired using a blank CaF2 disk situated within the

perspex box before each session of measurements; data was extracted from

raw output using MATLAB methods from ChiToolBox [46].

Data Preprocessing & Analysis

The selection of tissue areas to include in the analysis was undertaken by a con-

sultant oral pathologist (AT), who identified regions containing high proportions

of tumour cells on the H&E images. These were subsequently co-registered

with IR images at 1650cm−1 (the amide-I peak) from the same tissue core to

extract IR data for analysis.

To correct for atmospheric scattering, extracted spectra were pre-processed

using an open-source extended multiplicative scattering correction (EMSC) code

[47]. An unsupervised quality control check of all data to eliminate anomalous

spectra through the use of the multivariate Hotelling’s T 2 statistic [48, 49]; spec-

tra determined to have a T2 value lying outside the 95th percentile were deemed

to be anomalous and were omitted from further analysis.
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The following preprocessing steps were carried out on the dataset before a

final classification step was performed using a LR classifier. The absorbance

contribution attributable to paraffin situated in the range (1340cm−1 - 1460cm−1)

was removed and all spectra were limited to the fingerprint region (1000cm−1-

1800cm−1). Vector normalisation was used to account for sample thickness;

wavenumber absorbance features were mean-centred, and variance scaled to

one; before a final PCA step to reduce the dimensionality of the dataset. Seven

principal components were taken to assist convergence when fitting the LR

classifier. A large L2 regularisation term (1 × 105) was applied to the objective

function when fitting the LR model to mitigate the potential for overfitting.

Scientific Python packages [50, 51, 52] were used to implement classifica-

tion models and survival analysis. The classification power of an FTIR spectrum

as a prognostic biomarker was estimated using the AUROC and AUPRC met-

rics. To obtain an estimate of the variability of the classification power of FTIR,

bootstrap out-of-bag sampling was utilised as follows. A training data set was

constructed by drawing 80% of patients in the total dataset without replace-

ment. The remaining 20% was used as the ”out of bag” test set on which fitted

models were evaluated and statistics calculated. This process was repeated

100 times, ensuring that no two sample sets were identical. When fitting the

LR model, data points were inversely weighted to compensate for the differing

number of acquired spectra per patient and by risk group to mitigate the imbal-

anced nature of the dataset. Predictions of the risk group from the LR model

are presented as a list of probabilities for each risk group; the final prediction

scores for each patient are the median probability predicted for that patient.

Calculated statistics included: AUROC, Matthew’s correlation coefficient

(MCC), specificity, sensitivity, PPV, and NPV — all statistics were calculated

using appropriate weightings to compensate for class/patient imbalance and

to ensure a classification statistics were not skewed. Prognostic efficacy was
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investigated using Kaplan-Meier survival analysis, a Cox proportional hazards

regression, and a log-rank test.

Prediction of patient outcomes

Rather than utilising arbitrary outcome cutoffs to identify the degree of risk,

the cohort was stratified into ”high” and ”low” risk categories. The choice of

the risk group for each patient was determined through an optimisation routine

which maximised the log-rank statistic with respect to the groupings of patients

solely using outcome data. The optimisation procedure was performed using

a genetic algorithm (GA) based approach utilising the distributed evolutionary

algorithms for python (DEAP) library [53]. The ”individuals” involved in the GA

routine are vectors comprising the identity of the risk group of each patient in the

analysis. The ”fitness” of an individual set is the log-rank statistic — calculated

using the patient risk groups specified by that individual.

Plotting the maximum individual fitness of the generation against the gen-

eration number, shows a plateauing of the log-rank statistic at around 40 (Fig-

ure 3.2 [A]). The resulting risk groups show a clear distinction in clinical out-

comes (Figure 3.2 [B,C]).
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Figure 3.2: Stratification of patients into high and low-risk. A:
Maximum log-rank statistic vs GA generation, plateauing around
40. B: Whisker box plots of survival duration in each risk group. C:
Kaplan-Meier Survival curves showing optimal risk stratification
of the patient cohort; also shown are the log-rank statistic and

corresponding p-value for the optimal groupings.
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3.3 Results

The inclusion criteria designated in Materials and Methods gave a sample set

of 29 patients from the original 102 previously described [32]. Of these 29

patients, 19 remained alive 12 months after surgery, while 14 remained alive

at two years. The cohort was representative of this original patient set except

that the male: female ratio was inverted (Table 3.1) but now corresponds more

closely with larger datasets (Table 3.1; final column). In agreement with the

published cohort, the sample set was enriched for cases with ENE (i.e. poor

prognosis) in comparison to the general HNSCC population [54].
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Table 3.1: Characteristics of the sample cohort

Outcome at
12 months

Outcome at
24 months

Original
cohort

[32]

Larger,
local

cohort [54]
All

(N=29)
Dead Alive Dead Alive N=102 N=489

Age (years)
Mean 60 70.4 56.3 64.5 57.2 60
Range 29-85 59-85 29-72 48-85 29-68 29-89
Median 61 70.5 56.5 64 60
α-SMA
High/Intermediate 26 (94) 10 16 14 12 60 (64) ND
Low 3 (6) 0 3 1 2 33 (36) ND
Gender
F 7 (24)† 0 7 2 5 57 (56)a 187 (38)b

M 22 (76) 10 12 13 9 45 (45) 302 (62)
T Stage*
1 1 (3) 0 1 0 1 8 (8) 123 (25)b

2 14 (48) 4 10 7 8 57 (54) 175 (35)
3 2 (7) 0 2 2 0 12 (11) 47 (10)
4 8 (28) 4 4 3 5 20 (19) 144 (30)
4a 4 (14) 2 2 2 2 9 (8)
N Stage#

0 7 (24) 2 4 1 5 38 (37)b 314 (64)c

1 7 (24) 2 4 2 4 18 (17) 64 (14)
2a 1 (3) 1 0 1 0 101(20)
2b 16 (55) 4 9 8 5 45 (44)
2c 3 (10) 1 2 3 0
Pathological Site
Floor of mouth 8 (28) 2 6 4 4 35 (34)b 162 (33)
Other 12 (41) 5 7 5 7 24 (24) 183 (36)
Tongue 9 (31) 3 6 6 3 37 (36) 144 (30)

a: p<0.005
b: p=NS
c: p<0.00001

*: T stage 1+2 v 3+4
†: numbers in parenthesis are percentages
#: N stage 0 v 1 v 2
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FTIR and ASMA data from the reduced sample set were evaluated as prog-

nostic indicators of death within one year of surgery, both separately and to-

gether (Figure 3.3). A total of 168,460 FTIR spectra were obtained from the

19 patients who survived beyond one year, and 96,402 spectra were obtained

from 10 patients who died within 12 months.

Evaluation of individual spectra

Using prediction scores derived from individual spectra only, ROC and PR anal-

ysis were performed (Figure 3.3). The ASMA model shows poor performance

across all thresholds for both analyses; the FTIR model is slightly better and is

a reasonable predictor in its own right. However, the combined model shows

superior ROC and PR curves overall. The baseline shown in Figure 3.3[B] cor-

responds to the prevalence of spectra labelled as high-risk.
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Figure 3.3: Median ROC and PR curves shown in solid lines;
dashed lines represent baselines scores associated with random
chance. AUROC and AUPRC scores are shown for each set of

prognostic indicators.
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(Figure 3.4) shows distributions of classification statistics calculated for each

set of prognostic variables. As shown in (Figure 3.3[A,B]) AUROC and AUPRC

scores of the FTIR models show promising scores but also a small spread

in comparison to the ASMA model. Many other statistics show the combined

model as the most effective, with the exception of the sensitivity score.
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Figure 3.4: Whisker boxplots of classification statistics calculated
across all data subsets. AUROC (A); AUPRC (B); F1 (C); MCC
(D); specificity (E); sensitivity (F); PPV (G); NPV (H). Boxes show
the median, 25th, and 75th percentiles; whiskers extend to points
that lie within 1.5 inter quartile ranges of the lower and upper quar-
tiles; points lying outside this range are shown as individual dia-

monds.
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Evaluation on a patient basis

To obtain a prediction of the risk group for each patient, final prediction scores

were taken as the median probability predicted across all spectra for any given

patient.
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Figure 3.5: Median ROC and PR curves shown in solid lines;
dashed lines represent baselines scores associated with random
chance. AUROC and AUPRC scores are shown for each set of

prognostic indicators.

The median AUROC obtained from FTIR alone was 0.89 (Figure 3.6 [A,C]);

incorporation of the ASMA data into this analysis, increased the AUROC slightly

to 0.92; while ASMA alone achieved a significantly poorer score of 0.46. Preci-

sion and recall scores both remained high for the FTIR and combined ASMA/FTIR

models across a range of decision thresholds — indicating that both models

can balance both statistics effectively, and that imbalance in the dataset was

not detrimental (Figure 3.6 [B]).
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Figure 3.6: Whisker boxplots of classification statistics calculated
across all data subsets. AUROC (A); AUPRC (B); F1 (C); MCC
(D); specificity (E); sensitivity (F); PPV (G); NPV (H). Boxes show
the median, 25th, and 75th percentiles; whiskers extend to points
that lie within 1.5 inter quartile ranges of the lower and upper quar-
tiles; points lying outside this range are shown as individual dia-

monds.

Furthermore, additional classification statistics produced comparable con-

clusions, showing that the combined model was a good predictor of poor out-

come (Figure 3.6 [A-H]).
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Table 3.2: Median classification statistics. Classification thresh-
olds (Table 3.2) used to convert probabilities to binary decisions
were determined to be those that maximised the log-rank statistic.

AUROC AUPRC F1 MCC Spec Sens PPV NPV Thresh
Variables

ASMA 0.46 0.41 0.22 0.00 0.18 0.50 0.19 0.48 0.48
ASMA+FTIR 0.92 0.85 0.51 0.00 1.00 0.08 0.95 0.66 0.69
FTIR 0.89 0.79 0.54 0.17 0.83 1.00 0.62 0.85 0.34

A comparison of the median scores of these statistics shows that ASMA

alone is a poor predictive variable for this dataset with low scores in all metrics

(Table 3.2), while the FTIR alone scores are consistently high. The combined

model shows high specificity and low sensitivity, with a high PPV and moderate

NPV indicating numerous false negatives.

The classification threshold for each model was used to assign patients to

high or low-risk groups and survival analyses were undertaken. As expected,

the use of ASMA alone did not show good separation of the high and low-risk

groups as shown in Kaplan-Meier curves (Figure 3.7a) and, indeed, the risk

group predictions were inverted to that expected. The use of FTIR alone to

predict risk showed significant separation of the groups (Figure 3.7c; p=0.01),

while the combined model produced good separation with a highly significant

p value (Figure 3.7b; p<0.005).
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(a) ASMA
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Figure 3.7: Kaplan-Meier survival curves for each risk group ac-
cording input variables. Low-risk:blue, high-risk:red. Confidence
intervals are computed using the exponential Greenwood method

[55].

A univariate Cox proportional hazard model was fit to prediction scores ob-

tained from the LR model to assess the prognostic utility of the prediction score

before conversion to a binary decision. Both models using FTIR data have

significantly higher hazard ratios than the pure ASMA model suggesting the LR
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classifier is able to stratify risk groups effectively. However, the 95% confidence

intervals for all models spanned a wide range.

Table 3.3: Cox proportional hazards model fit statistics

Coefficients z p Hazard ratio
Variables

ASMA -0.03 -0.02 0.98 0.97 (0.06-15.08)
ASMA+FTIR 1.84 2.12 0.03 6.29 (1.14-34.59)
FTIR 2.02 2.07 0.04 7.52 (1.12-50.62)

(Figures 3.8a to 3.8c) show predicted survival curves for five simulated pa-

tients. Patients’ prediction scores vary between 0 (definitely low-risk) and 1

(definitely high-risk), showing how LR predictions translate to expected survival

outcomes. As expected (Figure 3.8a) showed very little stratification between

simulated predictions; this is consistent with a hazard ratio of ∼1 as shown in

(Table 3.3). The combined model shows a much better level of stratification by

risk than ASMA alone, with distinct survival curves clearly visible. The FTIR

model also shows distinct survival curves consistent with a large hazard ratio.

The addition of ASMA data appears to be detrimental to the overall prognostic

utility of the combined model.
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Figure 3.8: Predicted survival curves for five simulated patients
varying between 0 and 1. A dotted line represents the hazard

baseline.
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3.4 Discussion

It has previously been established that the presence of ENE is a marker of

poor prognosis in oral cancer. However, the presence of ENE cannot be firmly

established until after pathological inspection of surgically removed nodal ma-

terial. This prevents the use of neo-adjuvant treatment in those patients with

poor prognosis, for whom current treatment regimens do not work. It has been

shown that the chemical ’fingerprint’ of the primary tumour, readily observed

through the use of FTIR microscopy is able to identify individuals whose dis-

ease will progress following treatment.

Much of the existing literature concerning prognostic indicators utilises disease-

specific survival and overall survival as indicators of patient prognoses. Strat-

ification of these measures into groups according to risk is typically decided

according to a number of years e.g. one year, two years. The decision to use

a cut off threshold of a discrete number of years is somewhat arbitrary, thus,

it would be desirable to determine a threshold that was decided objectively. A

GA approach was used to stratify patients in this cohort into either a low or

high-risk group, where the log-rank statistic calculated from a log-rank test was

maximised — indicating the best separation. This threshold was determined to

be 11 months and was used to dichotomize patients into risk groups.

Results presented here suggest that FTIR spectra can be used to strat-

ify patients into useful clinical risk groups. Models utilising a combination of

FTIR and ASMA data showed some diminished prognostic utility — suggesting

that the addition of ASMA data was detrimental. Many other statistics show

the combined model as the most effective, with the exception of the sensitivity

score; indicating a high proportion of false negatives and thus suggesting that

low-risk patients are often misclassified and would be undertreated in a clinical

setting. The FTIR model scores are generally high, indicating that FTIR spectra



3.4. Discussion 101

can serve as a prognostically useful biomarker. A slightly lower PPV however

suggests the FTIR model incurs more false positives — indicating that patients

with better prognoses may be given inappropriate treatment.

A significant improvement was observed when taking the median predic-

tion score for each patient. This is potentially a reflection of the fact that the

molecular fingerprint for poor prognosis varies in magnitude across the mea-

sured tumour section — genetic heterogeneity within OSCC lesions has been

noted previously [56]. The aggregation of scores across an entire tumour sec-

tion may cause a ’regularising’ effect, thus mitigating the effects of overfitting

to specific chemical fingerprints. This regularisation effect may be dependent

upon the size of the measured tumour section present within the core. Data

subsets containing patients with relatively few measured spectra may experi-

ence lower scores as a result; possibly explaining the large degree of variation

within sample scores to some extent.

Survival analysis showed that groups allocated by the classifier had signifi-

cantly different outcomes. The combined model (Figure 3.7b) is able to closely

replicate the ideal survival curves in (Figure 3.2[C]). Model predictions using

FTIR data showed a marked improvement over the pure ASMA model. Hazard

ratios of 6.29 and 7.5 for the ASMA+FTIR and FTIR model respectively show

that the prognoses of patients allocated to the high-risk group are significantly

poorer. 95% confidence intervals for hazard ratios span a large range (FTIR:

1.12-50.62; ASMA+FTIR: 1.14-34.59). This is indicative of a high degree of

heterogeneity in the sample cohort and would justify further exploration with a

larger cohort in the future.

A relatively small sample set was a key issue facing this study due to the dif-

ficulty in acquiring and imaging large numbers of samples. Despite attempts to

determine the feasibility of FTIR as a prognostic tool through multiple sampling

of the dataset; a larger study would be required in the future to estimate wider
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clinical utility. A large degree of variation was observed across some classifica-

tion statistics, potentially signifying a large degree of biological heterogeneity in

the dataset. A potential cause for this could be the effect of inherent molecular

heterogeneity of the tumour microenvironment, or perhaps varying extents of

lymphocyte infiltration present in specimens. The difficulty of annotating sam-

ples is also likely to introduce noise into the dataset; alongside inconsistencies

in sample preparation and measurement procedure.

3.5 Conclusion

It would be of considerable benefit to be able to direct patients with poor prog-

noses towards appropriate treatment. Currently, it is not ethically possible to

select patients for neo-adjuvant treatment in window trials; patients who would

not benefit from such treatment would incur unnecessary adverse effects and

additional health risks. It is currently only possible to determine patient prog-

noses after post-surgical nodal biopsies have taken place. The work presented

here would allow for this crucial window of opportunity to be seized and to en-

able the development of new treatment methods to take place.

The use of FTIR in a clinical setting is still in its infancy, however, the work

covered here shows that it has the potential to be of significant benefit as a

prognostic tool. The addition of ASMA information was shown to be benefi-

cial in certain cases, and demonstrates that additional information from other

modalities could lead to the creation of a novel and informative prognostic tool.

FTIR spectroscopy has been shown to be capable of detecting a molecular

fingerprint associated with poor prognosis; combining FTIR spectra with ad-

ditional measurement modalities from the same patient would further test this

hypothesis. As multiple adjacent slices of the same biopsy sample can be ac-

quired and divided across multiple imaging modalities; the respective strengths
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could be compounded whilst simultaneously mitigating the weaknesses of each

modality with minimal disruption to current clinical routines.
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4 FTIR Preprocessing Pipeline

Optimisation

4.1 Introduction

In recent decades, vibrational spectroscopy has emerged as a useful analysis

method applicable to a range of specimens, from food and pharmaceutical sam-

ples to security and medical applications. Vibrational spectroscopy techniques

interrogate the molecular structure of a specimen by utilising infrared radiation,

either directly (infrared absorption spectroscopy) or indirectly (Raman scatter-

ing spectroscopy). The absorption of discrete photon energies by molecular

vibrational modes within the sample gives rise to characteristic spectral pro-

files, which can be associated with the inherent chemistry of the sample under

interrogation.

4.1.1 Optimisation

Despite the undeniable promise of the field, it is somewhat hampered by the

lack of consensus on precisely how to preprocess the data and subsequently

analyse it. The number of available preprocessing methods and predictive mod-

els is vast; each method typically has one or more parameters associated with

it, exacerbating the problem further.
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Analysis of spectroscopic data is typically a multi-step procedure, starting

with preprocessing, and ultimately the employment of pattern recognition and

machine learning tools to classify the data into distinct groups. Preprocessing is

a vital step in the analysis process of IR data, as it has been shown to generally

increase performance of classification models [1] allowing them to generalise

more effectively to larger clinical cohorts, and to increase the interpretability of

results.

FTIR and Raman data sets are highly dimensional. In the case of Ra-

man mapping and FTIR imaging, sample numbers are very large, with data

sets comprising large numbers of patients typically having tens of thousands of

spectra. A further motivating factor known as the ’no free lunch’ (NFL) theorem

states that ’any two optimisation algorithms are equivalent when their perfor-

mance is averaged across all possible problems’ [2]. This was stated generally

for optimisation problems; due to the close relationship between optimisation

and machine learning methods, the same theorem applies [3]. The implica-

tions of the NFL theorem would require a thorough search of multiple machine

learning models to ensure some degree of certainty that the task is possible.

An optimisation protocol that can efficiently search across a highly dimen-

sional space would be of considerable benefit to users of multivariate anal-

ysis techniques. One approach [4] utilised a genetic algorithm (GA) to per-

form an optimisation search procedure to determine more effective processing

pipelines. A single ’individual’ in this framework was represented as a pro-

cessing pipeline; many generations of preprocessing pipelines were allowed to

‘evolve’ in a manner analogous to Darwinian evolution. The ’fittest’ individuals

which influence subsequent generations were chosen to be those with the low-

est prediction error, hence directing the process towards optimal values. The

optimised pipeline resulted in a 16% reduction in the model error compared with
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the raw data model. Similar work [5] utilised a GA approach to assist with fea-

ture selection. The authors were interested in using Curie-point pyrolysis mass

spectrometry to differentiate between bacterial spore samples. The highly di-

mensional nature of these datasets makes interpretation prohibitively difficult;

the GA approach was used to select a subset of these features for further anal-

ysis. A trial-and-error approach was more recently reported [6] which trialled

every permutation of preprocessing steps within a defined search space on

an ATR-FTIR biofluid dataset comprising patients with varying types of brain

cancer. The authors utilised RF and SVM classifiers. However, the hyperpa-

rameters of the final classifiers were not optimised in this approach. A brute

force approach will cover every possible combination, but the number of com-

binations grows extremely quickly and is generally infeasible as a strategy.

This work proposes a novel approach to objectively optimise an effective

preprocessing and classification pipeline. We perform a Bayesian hyperparam-

eter search on several candidate pipelines using a parallel computing approach

— more efficiently searching all possible solutions. The focus of this paper will

be on FTIR imaging data, but the process is in theory generalisable to any

pipeline type inference problem.

4.2 Theoretical

4.2.1 Preprocessing

Preprocessing of FTIR data can be broken into several discrete steps, with each

step designated to mitigate unwanted spectral aberrations and measurement

artefacts. Using modern object-oriented programming languages, preprocess-

ing step can be encapsulated as a transformer object — an abstract represen-

tation of a preprocessing step. A transformer will typically take a data set as
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input, perform the transformation associated with it, and then output the trans-

formed data. A sequence of transformers with or without a final estimator can

be visualised as a pipeline. A pipeline consists of a sequence of transformers

that take data as an input and pass the data through each transformer sequen-

tially until a final result is obtained. Such a preprocessing sequence is briefly

set out below.

Spectral
Smoothing Normalisation Baseline

Correction
Feature
Scaling

Dimensionality
Reduction

Figure 4.1: Preprocessing pipeline flowchart

Spectral smoothing - Accounts for high frequency noise in the data. This un-

wanted noise may have instrumental, environmental, or sample origins. There

are several associated methods, including the commonly used Savitzy-Golay

[7], whereby a polynomial is fit to a local moving window of a specified length.

Other methods such as PCA de-noising and FFT filtering are also commonly

applied.

Normalisation - Accounts for unimportant changes in absolute absorbances.

This important step accounts for absolute differences in absorption according to

the Beer-Lambert law [8] — which is to be expected with a biologically diverse

data-set from multiple samples. This step helps mitigate the effect of sample

thickness on the analysis — a potential confounding factor.

Baseline correction - Accounts for variations . Spectra are often superim-

posed on a non-linear baseline due to background scattering interference ef-

fects. Methods such as rubberband correction and spectral differentiation are

often applied to compensate for these effects.
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Feature scaling - Ensures variables all lie within the same range. A scaling

step is sometimes applied to scale the absorbance for each wavenumber to a

common range. This can often increase the performance of some classifiers

and is sometimes a required preprocessing step for dimensionality reduction

algorithms.

Dimensionality reduction - A reduction in the number of predictive variables.

Reducing the dimensionality of the data to a much lower space often facilitates

more robust classifier results and can mitigate issues arising from correlated

variables. Feature selection/extraction techniques such as PCA [9] and forward

feature selection (FFS) [10] are often used to reduce the number of variables

while retaining maximum important information.

In addition to numerous preprocessing methods, each may have intrinsic

parameters, referred to from here on as hyperparameters, which must also be

determined. Exhaustively trialling every possible combination of preprocessing

transformations to a dataset is often prohibitive. Whilst this would yield the true

optimal combination of methods, it would be at a high computational cost.

Whilst it is possible to exhaustively trial all preprocessing transformations

to find the true optimal combination of methods, this may come at a prohibitive

computational cost. For instance, consider a case where there are five pre-

processing steps, each containing five methods to select from. Each of these

methods has a hyperparameter space that spans twenty possible values. The

total number of pipelines to construct and evaluate is equal to 1010, rendering

this brute-force approach prohibitive when faced with a large, multidimensional

search space.

There is a demand for an optimisation protocol that can efficiently and intelli-

gently search across a high dimensional space. One approach [4] utilised a GA

by which generations of preprocessing sequences were allowed to ‘evolve’ in a
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manner analogous to Darwinian evolution. The optimised pipeline resulted in a

16% reduction in the model error compared with the raw data model. GA does

not scale well with complexity as each generation is dependent on the previous.

Therefore improvements to the runtime using parallelisation are not possible.

A trial-and-error approach was more recently reported [6] which trialled every

permutation of preprocessing steps within a defined search space on an ATR-

FTIR biofluid dataset of brain cancer patients before classification using either

random forest (RF) or RF/GA fed support vector machines (SVM). This brute

force approach is comprehensive but can also lead to prohibitive runtimes. Fur-

thermore, the hyperparameters of the final estimators were not optimised in this

approach. This work proposes a novel approach to objectively optimise a pre-

processing and classification pipeline. We combine parallel processing with

Bayesian hyperparameter search to search a large parameter space efficiently.

An FTIR-imaging dataset comprising several patients and over 100,000 spectra

is used to test the framework on an existing problem.

4.2.2 Bayesian hyperparameter Search

To efficiently search for optimal pipeline configurations, it was necessary to

perform a Bayesian hyperparameter search due to the computational expense

of evaluating each pipeline. An open-source python library scikit-optimize [11]

was used to leverage a Gaussian process (GP) regression over the parameter

space associated with each job.

A GP is an efficient method of searching for maxima or minima over a com-

plicated function. The GP model is utilised to approximate the loss function with

limited data. The loss function is the score obtained when a proposed set of

hyperparameters is used. The search for an optimal set of hyperparameters is

summarised in Equation (4.1).
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θ∗ = argmin
θ

f(θ) (4.1)

Where θ∗ is the optimal hyperparameter configuration, and f(θ) corresponds

to the process of training and evaluation of the pipeline in question using the

hyperparameter vector θ. This framework is well-suited to the problem, which

can be described as a sequential model-based optimisation task. The loss

function is estimated sequentially, using previous evaluations to determine the

optimal hyperparameter configuration to evaluate next. To evaluate the next

point, which will result in the most significant improvement in the loss function

given all previous evaluations and current estimates of the space; the expected

improvement criterion is used [12]:

EI (θ) = (µ(θ)− f(θ̂))Φ(Z) + σ(θ)φ(Z) (4.2)

Z = µ(θ)− f(θ̂)
σ(θ) (4.3)

Where Φ(z), and φ(z), are the cumulative density function and probability

density function of a multivariate normal distribution.

4.2.3 Gaussian Processes

A GP regression seeks to estimate a distribution over an infinite set of candidate

functions over a noisy loss function [12]. A GP frames the problem in such a

way that each point in the optimisation space is considered to be a dimension

in a multivariate Gaussian, described by a mean function Equation (4.4) and

covariance matrix Equation (4.5):
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m(x) = E[f(x)] (4.4)

k(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))] (4.5)

Where a GP is defined as:

f(x) ∼ GP(m(x), k(x, x′)) (4.6)

The mean function approximates the underlying hyperspace, which we wish

to estimate. Whereas the covariance function quantifies the relationship be-

tween the points in this space. The covariance function k(x, x′) can be repre-

sented by several different functions and can be used to instil prior knowledge

of the relationship between data points. A commonly used covariance function

is the Matern kernel:

kMatern(r) = 21−ν

Γ(ν)

(√
2νr
l

)v
Kν

(√
2νr
l

)
(4.7)

Where

r = x− x′ (4.8)

Where Kν is a modified Bessel function of order ν and l is the parame-

ter governing the length of the relationship between data points. The Matern

kernel can cope with a noisy loss function and is the default kernel for the GP

optimisation in skopt’s BayesSearchCV. A GP is generally considered to be a

non-parametric method. However, it is conceptually helpful to consider a GP

as having an infinite number of parameters. This is due to the fact that a GP
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instead seeks to estimate the posterior distribution over an infinite number of

potential functions. This can be contrasted with a typical random variable as

instead of drawing a scalar value from the corresponding distribution, a function

is drawn instead. The function is drawn from a Gaussian distribution of mean

Equation (4.4) and covariance Equation (4.5).

Toy example

To demonstrate the sequential optimisation procedure described above and re-

enforce the intuition behind a GP, a toy example has been constructed, a visual

representation is shown in Figure 4.2. Shown in plot (a) is the true underlying

function to be approximated. Plots (b) and (c) show the mean and standard

deviation at each point respectively. Plot (d) shows the expected improvement

at each point in the space given by Equation (4.2).
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Figure 4.2: Bayesian hyperparameter search using a GP

The optimiser is initialised with 5 random points to assist with the conver-

gence of the algorithm. These initial points are then used to fit a GP regression

at the first step. The GP regression (Figure 4.3) then predicts the mean func-

tion (b) and standard deviation (c) at each point in the search space given.

The expected improvement is then calculated using the observed data at that

step. The maximum expected improvement is then taken as the point which will

next be sampled. This next point is then taken with all previous data, and the

process is repeated for the desired number of iterations. The hyperparameter
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configuration chosen is then taken to be that which resulted in the most optimal

score from the sequence of previous evaluations.

Start

Sampled
points

Fit GP

Sample
maximum EI

Convergence
criteria met?

Append new
point to data

Select

Optimal
hyperparameters

End

no

yes

Figure 4.3: GP hyperparameter optimisation flowchart showing
the overall process.

The number of iterations can be dictated by several criteria such as the
convergence of the loss score, a preferred number of iterations, or a set amount
of time. The convergence criteria are generally subject to the constraints of
the available computing resources, but if resources are plentiful, convergence
criteria are usually used.

Figure 4.4 shows a comparison between the mean function represented in
Figure 4.2 (a), and the true function we wish to approximate (b).
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Figure 4.4: A comparison of true function to GP regression ap-
proximation. The optima predicted by the GP regression (red dot)

is very close to that of the true function (black dot).

Shown in red and black dots are the global optimum of the true function,

and the maximum of the GP mean function. Whilst a GP can approximate a

high-dimensional loss surface well, it only serves to direct the search process.

The optimal hyperparameter set chosen is selected as the set which was known

to yield a low loss score through evaluation. This avoids using the somewhat

speculative maximum given by the GP mean function, which can be particularly

important when considering very high dimensional search spaces where the

number of points sampled is relatively low compared to the entire volume of the

space.

4.3 Methods

To utilise the framework, first the methods and hyperparameter search spaces

they wish to trial must be input. Also defined in this stage is the order in which

the steps are applied, with an estimator always occupying the final step. At
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this point, it is instructive to define the validation procedure to use in the scor-

ing stage. Protocols such as k-fold cross-validation and leave-one-out cross-

validation are preferential over a single train-test split to mitigate the risk of

overfitting. A completely independent set of data is put aside to test the final,

optimised model. Each possible combination of methods is generated and dis-

tributed to a network of computers. The initial release of the framework is opti-

mised for those utilising the well established HTCondor service [13]. HTCondor

is an open-source high throughput package that enables the user to distribute

parallelisable computationally expensive tasks (jobs) to a pool of idle comput-

ers on a local network, a method known as ’cycle-scavenging’. A flowchart

summary of the process is shown in Figure 4.5.

StartMethod
Dictionary Data

Generate
pipeline

combinations

Split
data into
train, test

Bayesian
optimisation

routine

Hyperparameter
space

Split train
into inner
train and
validation

Rank
pipelines

Ranked
pipelines

End

pipeline train

test

validation

inner
train

for each pipeline

for each sample

Figure 4.5: Flowchart of overall optimisation process

The number of jobs is directly related to the number of methods n belonging

to each step i by the following:
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npipelines =
nparameters∏

i=0
ni (4.9)

Each distributed job is a unique combination of preprocessing transformers

and final estimator. Contained within the job configuration is the set of search

spaces associated with the hyperparameters, which can be initialised as one

of three different types:

- Categorical — hyperparameter values can be any from an unordered list.

- Continuous space — hyperparameters are drawn from a defined prob-

ability distribution.

- Integer space — hyperparameters are discretised values from a given

range.

Different sampling distributions can be specified when viable hyperparam-

eter values span a wide range. Specifying sampling distributions for hyper-

parameters allows the user to provide prior knowledge of feasible values; or

avoided entirely by specifying a uniform distribution.
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PCA
de-noising

Min-max
normalisation

Rubber band
correction

None

PCA

Logistic
regression

Retained variance:
Real(0.95, 0.99, uniform prior)

None

None

None

Number of principal components:
Integer(3, 10, uniform prior)

Regularisation parameter:
Real(0.01, 100, log-uniform prior)

Figure 4.6: An example pipeline showing each step with associ-
ated hyperparameter search arguments (green).

As an example, consider a processing pipeline consisting of PCA-de-noising,

followed by min-max normalisation, PCA, and ending with a logistic regression

classifier. Three steps have hyperparameters that require tuning: the explained

variance of the PCA de-noising method, the number of principal components

retained by the PCA transform, and the regularisation parameter in logistic re-

gression. A reasonable range of values to optimise over for the explained vari-

ance would be 0.95-0.99 (95-99%) to eliminate low variance noise; the space

should be initialised as Real(0.95, 0.99, uniform prior). The regularisation pa-

rameter value of the logistic regression classifier is inversely proportional to the

regularisation strength — smaller values correspond to a stronger regularisa-

tion effect and mitigate the potential for overfitting. Optimal values exist on a

much wider domain, nominally taking up values between 10−2 and 102, there-

fore the search space argument is initialised as Real(0.01, 100, log-uniform
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prior) sampling from a log-uniform distribution.

The initialised job now begins the Bayesian search regime, through which

the hyperparameter space is sequentially sampled, updating the loss function

at each iteration and informing the subsequent search choices taken as the

maximum expected improvement in the loss score Equation (4.2). The number

of iterations, loss function, and validation protocol, are all pre-defined parame-

ters which can be selected based on the size of the search space and type of

optimisation problem. In the case of a classification task with a large param-

eter space, a large number of iterations will likely be needed. Once a set of

hyperparameters has been found the fine tuned pipeline is validated on an un-

seen dataset to prevent information leakage and thus overly optimistic results.

The completed jobs are then aggregated and ranked according to the mean

validation AUROC score.

4.4 Results

To test the framework, an evaluation was performed on the same FTIR dataset

described in 3. The objective was to obtain the optimised pipeline with the

best mean performance across several train-test splits. The task was to predict

whether a patient would live beyond or less than one year of the most recent

review date.

Using a test set of preprocessing methods 576 unique pipelines were eval-

uated using the optimisation routine. Approximately one third of patients were

held out for final model evaluation, with the remaining patients used for model

training and optimisation. The loss function was the aggregated mean AUROC

score of three patient-stratified folds; the optimiser iteration limit was set to 50.
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The jobs were distributed to the HTCondor framework at the University of

Liverpool, UK. Each of the 1900 PCs on the network is equipped with an Intel

Core i3 (quad-core) processor running at 3.3 GHz, 8 GB RAM and 120 GB

storage. Completed jobs were extracted from HTCondor and the results for

each permutation across the 50 train-test splits were aggregated to compare

average results. Pipelines were ranked according to the mean AUROC score

across the 50 iterations; classification scores for these pipelines are shown in

Figure 4.7.
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Figure 4.7: Classification statistics for the top 50 pipelines ranked
according to AUROC score; AUROC (A), MCC (B), Specificity (C),

Sensitivity (D).

The top 5 ranked pipelines discerned from the optimisation procedure are

summarised in Table 4.1 and Table 4.2.
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Table 4.1: Best performing pipelines with optimal processing
steps and number of parameters nθ.

Rank Spectral
smoothing

Baseline
correction Normalisation Feature

scaling
Feature

extraction Classifier nθ

1 N/A N/A Amide I Robust N/A LR 1
2 SG N/A Min-Max Standard PCA LR 3
3 N/A N/A Vector Robust N/A LR 1
4 N/A N/A Amide I Robust N/A LR 1
5 N/A RB Vector Standard PCA LR 2

Table 4.2: Top ranking pipeline classification scores as decimals.

Rank TN FP FN TP AUROC

1 0.51 0.16 0.11 0.22 0.63 ± 0.02
2 0.47 0.20 0.12 0.21 0.62 ± 0.02
3 0.44 0.22 0.10 0.24 0.61 ± 0.02
4 0.45 0.22 0.09 0.25 0.61 ± 0.02
5 0.42 0.25 0.11 0.22 0.61 ± 0.02

Table 4.1 summarises the specific methods used in each of the top 5 ranked

pipelines.
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Figure 4.8: ROC curves shown with standard errors for best (A)
and second-best (B) pipelines.

Figure 4.9 shows the loss functions sampled during the hyperparameter

search for pipeline two. The loss surface is shows a strong dependence upon

the fraction of components used in the feature extraction step. This contrasts
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with the relatively low dependence upon the regularisation parameter associ-

ated with the logistic regression classifier. This is likely due to the fact that both

parameters play a regularising role in the inference procedure so as to avoid

overfitting. If both steps were to have parameters indicating a high regularisa-

tion effect, this would be detrimental to the classification performance so feature

extraction seems to be preferred.
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Figure 4.9: GP hyperparameter surfaces showing mean function
in red and standard deviations in blue averaged across 50 sample

iterations.

Optimised pipelines from each of the 50 train test splits each have a unique

set of hyperparameters; these parameters are ”tuned” to specific training and

validation data sets during the training phase. To determine a more generally

applicable set of parameters the mode of the distribution of values was taken.

Figure 4.10 shows histograms of each of the selected hyperparameters for the

top two pipelines over 50 samples.
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Figure 4.10: Histograms of optimum hyperparameters over the
50 train-test splits.

To acquire a complete measure of the performance of the optimised pipelines,

the model is sequentially tested 50 times by randomly drawing train-test splits

without replacement. Modal values from Figure 4.10 are used as final model

hyperparameter values. Aggregated statistics for pipelines 1 and 2 are shown

in Figure 4.11.
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Figure 4.11: Mean confusion matrix and ROC curve shown with
standard errors for best (a,b) and second best (c,d) pipelines

trained and tested on full dataset.

Figure 4.11 shows a significant increase in both sensitivity and specificity

when the optimised pipelines and hyperparameters are deployed on the full

dataset. A lower specificity translates to more false positives indicating the

model struggles to identify patients with a poor prognosis.

4.5 Discussion

classification scores vary widely but generally exhibit good classification scores

well above random chance; shown in Figure 4.7. The more holistic measures
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of AUROC and MCC follow a similar trend, whereas the relatively noisy sensi-

tivity and specificity traces imply that there is often a trade off between the two

metrics, where high sensitivity often leads to low specificity. Ranking metrics

by AUROC or MCC favours pipelines with balanced sensitivity and specificity

scores. The trace in Figure 4.7(A) shows a number of small, relatively high scor-

ing pipelines, before gradually decreasing towards an AUROC of around 0.4,

and an MCC of 0.0. The steep increase in AUROC and MCC scores towards

the higher end imply the expense of the optimisation procedure is justified.

Table 4.1 indicates that the optimal classifier for this dataset is logistic re-

gression, with various choices of preprocessing options preceding this step.

Normalisation and scaling are never bypassed, suggesting this is an impera-

tive step. Two instances in the top five classifiers utilise PCA to reduce dimen-

sionality, suggesting this step is not such an important for this dataset paired

with logistic regression. Similarly, spectral smoothing by Savitzy-Golay filtering

appears in the second pipeline, but is absent for the top ranking and remaining

pipelines in the top five.

In order to investigate the effects of different methods on the performance of

the pipeline, the frequency that a certain method either enhances or diminishes

performances relative to a reference can be informative. Here, the reference

score is the median score of all pipelines in the analysis.
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Figure 4.12: Frequency each method either enhances (green)
or diminishes (red) relative to the median score (AUROC = 0.48).
Steps are (a) smoothing, (b) baseline, (c) normalisation, (d) scal-

ing, (e) feature-extraction, (f) classifier.

Figure 4.12 shows some interesting insights of the effects of various meth-

ods. The choice of smoothing method has a significant effect; the majority of

pipelines that utilise PCA de-noising perform worse than the median, whilst

Savitzy-Golay smoothing predominantly increases scores. It could be argued

that baseline correction has an insignificant effect, perhaps slightly detrimental,

this could be attributed to the data already being subject to a previous scatter

correction prior to the analysis, negating the requirement to perform a baseline

correction. Normalisation is a step that can not be bypassed, an expected re-

sult as spectra originate from different samples, each with differences in sample

thickness. Mitigating the effects of sample thickness has a positive impact on

classification scores.

It appears that min-max normalisation occurs most frequently in the higher-

performing pipelines. Scaling of the data appears to have a significant effect on

the performance of the pipeline, but the choice of scaling does not seem to be

hugely important. It should be reiterated that the top five pipelines in Table 4.1
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employ a scaling method to the data in the pipeline, suggesting that re-scaling

each wavenumber variable is beneficial for logistic regression. It would also

appear that application of PCA to decompose the data prior to classification

is slightly more beneficial than not. As previously stated, logistic regression

emerges as a favourable classifier to the tree based random forest and gradient

boosted classifiers, implying that a simpler, linear based model is preferred to

complexity, perhaps as complex models are more prone to overfitting and have

a much larger hyperparamater space to optimise. In fact, the dramatic drop

off at approximately AUROC = 0.40 is the result of pipelines with an XGBoost

classifier, which has a large hyperparameter space that requires fine tuning.

It may be the case that more iterations within the Bayesian hyperparameter

search would produce more favourable results for the tree based models such

as RF and XGBoost, but this would increase the time taken for the optimisation

to execute.

The histograms in Figure 4.10 show distributions of hyperparameters for

each of the two top performing pipelines. Interestingly, it reveals that the logistic

regression regularisation value in pipeline one Figure 4.10(A) converges to a

much lower value (∼ 0.01) than for pipeline two, where it appears to converge

towards 100. Pipeline two applies smoothing and feature extraction in addition

to normalisation and scaling, which themselves have a regularisation effect on

the subsequently fitted models. This may be the reason as to why the ultimate

C parameter of logistic regression needn’t be as low as 0.01 for pipeline two.

Taking the modal hyperparameter selections from Figure 4.10 and train-

ing and testing on all available data (using the same patients for each of the

50 train-test splits) enhances the scores significantly, as shown by the mean

confusion matrices and ROC curves in Figure 4.11. There is a 14% increase in

mean specificity for pipeline one and a 3% increase in mean sensitivity. Pipeline

two exhibits an 11% increase in specificity and 9% increase in sensitivity. This
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would suggest that the strategy of sampling equally small subsets of data from

each patient for the purposes of efficiency and stratification is sound, and trans-

lates well to a more realistic scenario where all the available data from different

patients would be used instead.

4.6 Conclusion

The work presented here demonstrates a versatile framework capable of de-

termining a near-optimal data preprocessing and classification pipeline. This

optimisation framework has been employed on a real inference problem and

has successfully demonstrated that this process can be performed objectively

and without specific prior knowledge of optimal parameters. The framework’s

performance has been tested across a range of sample datasets. It has shown

that effective configurations can be determined through a rigorous analysis, as

proven by validation on held-out data. The choices of preprocessing methods

resulting in pipelines with the highest ranks seem to follow conventional logic —

normalisation is necessary, Savitzky-Golay smoothing is beneficial, PCA is ad-

vantageous depending on the choice of the classifier. Valuable insights have

been gained from the procedure, showing that some preprocessing methods

are particularly beneficial compared to others.

To gain further knowledge of effective preprocessing methods, it would be

useful to perform the optimisation procedure in a broader variety of datasets.

This could yield insights into which preprocessing steps are effective or given

classes of inference problems.

This framework could be utilised by other researchers to perform a similar

process for a given problem and set of preprocessing steps. It is by no means

limited to FTIR spectroscopy and could be extended to other inference problems

with minimal adjustment.
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5 Deep Learning Prognostic Tools

5.1 Introduction

In recent years research a subcategory of machine learning called ’deep learn-

ing’ has rapidly emerged to become the state-of-the-art in field of artificial intel-

ligence. Deep learning is able to achieve superior performance where previous

approaches have fallen short, and has facilitated the development of many use-

ful applications [1]. Deep learning is a broad term covering a large swathe of

statistical models all comprising a multi-layered ANN of some form. The re-

cent surge in interest in ANNs has been driven by a number of factors. In the

last twenty years computing power, storage, and the availability of data have

increased dramatically [2]. This has facilitated a shift in the way that artificial in-

telligence systems are created; modern algorithms have been developed which

learn from data very efficiently, rather than being explicitly programmed by a hu-

man to accomplish a given task. Due to the highly parameteric nature of deep

ANNs, large quantities of data are required to obtain optimal model configu-

rations, this data-focused approach is responsible in large part for the recent

success of ANNs [2].

To evaluate the potential of CNNs as a prognostic model for oral cancer, a

one-dimensional CNN was created to establish if any improvement was gained

by adding spectral information. The network follows a similar structure to a

2D CNN; the objective is that the network would extract higher level features
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from raw absorbance values — potentially correlating to levels of known bio-

chemicals. A crucial factor in the transmission of FTIR microscopy into a clin-

ical setting is its ability as a technique to be universally adopted. To do this

factors including sample preparation, measurement environment, and mea-

surement technique must be as uniform as possible. Preprocessing data is

an attempt to mitigate the effects of potential inconsistencies in measurement

practice but the process is never perfect. It would be desirable for any analysis

method to be able to obviate the need for preprocessing all together by be-

ing robust to invariances introduced by experimental practice alone. A CNN is

able to manage this to some extent due to it expressing translational invariance

— attributable to the convolution [3], and pooling layers [4, 5]. By effectively

scanning the entire spectrum and learning how to recognise patterns spanning

multiple wavenumbers, the model is robust to slight alterations in wavelength-

dependent absorbance.

Convolutional neural networks

As outlined in 2.3.4 an ANN consists of a number of layers, each of which

comprise a number of nodes. Nodes in an ANN are a representation of a rel-

atively simple equation known as the perceptron equation (Figure 2.23); which

are combined in complex ways and used as a highly parametric model of a

particular inference problem. A neural network trained using labelled data will

optimise free parameters within the network to minimise a loss function con-

structed for the problem at hand. In particular, neural networks have allowed

for advances in applications where data contains temporal or spatial informa-

tion. Convolutional neural networks (CNNs) are a type of network containing

specialised layers capable of extracting spatial information from data. This is

accomplished with the use of a kernel which is convolved over the input data.

A kernel comprises a number of parameters which are refined during a training
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phase to capture the most relevant spatial information. The first few layers of

a CNN are utilised as a method of feature extraction; values of the convolution

kernels are refined progressively to extract useful spatial features in the data;

these features are then fed into a standard MLP network for further feature

extraction, and later classification or regression.
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Figure 5.1: A 2D convolution layer showing a simple (3×3) kernel
K convolved over an input image I of size (m×n). The resulting
convolution I ∗ K is effectively a spatial map of where in I most

closely resembles K.

This convolution operation can be expressed formally as:

(I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n) (5.1)

The kernel K is moved across the dimensions of the data where it is multi-

plied by the values in the kernel. A mapping of the similarity of the data to the

kernel at that point is obtained then aggregated, typically a maximum or mean

is taken and the values are pooled and assigned to an output. The behaviour of

a kernel layer is dictated by its size, stride — the number of elements the kernel

shifts per iteration, and dilation — the mapping of kernel elements to non con-

tiguous elements of the data. Like other layer types convolutional layers can be

altered by many parameters but will not be discussed further here. Depending

on the dimensionality of the data the kernel can be combined with other kernels
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to find correlations between them; allowing colour information in 2D images to

be used. A bias term is added to the pooled value and subjected to an acti-

vation function like in a normal perceptron layer. The next layer is obtained by

convolving over the preceding layer using another kernel, this continues for a

number of layers. The input is flattened into a one-dimensional vector where it

is passed into a normal MLP where it reaches a softmax layer output. This soft-

max layer Equation (5.2) outputs scores which sum to one and can be loosely

interpreted as probabilistic predictions of a given class.

softmaxk(x) = eW
T
k x∑n

i=1 e
WT
i x

(5.2)

Intermediate steps between these layers can be introduced to assist with

regularisation such as dropout layers, batch normalisation layers [6], and many

others. Dropout layers [7] are often included in ANN architectures as they pro-

vide a strong regularisation effect during the training phase. A simplified rep-

resentation of a CNN showing the sequential nature of the described layers is

shown in Figure 5.2. Dropout layers are typically implemented in a similar way to

regular hidden layers, however they differ in that when any forward pass occurs

in the training stage a node may become inactive, preventing any change in the

weights of connected nodes for that particular pass. Each dropout layer typi-

cally has a probability associated with it which dictates the chance of becoming

inactive. Dropout works effectively by discouraging weights from converging

towards similar values — encouraging redundancy in the network structure.
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Figure 5.2: An typical convolutional network example pipeline;
parameters associated with each step are shown in green; extra

parameters are shown in bold.

Batch normalisation layers were included in the CNN model to increase

the speed and efficiency of the training procedure. Batch normalisation layers

work by normalising the distribution of values flowing from one set of nodes to

the next, by scaling to a given range. This helps to prevent issues associated

with exploding/vanishing gradients whereby update values for nodes increase

or decrease rapidly to the detriment of the training process.

Furthermore, many parameters are associated with aspects of the training

procedure of the network itself. The objective of the optimisation procedure

used to train neural networks is to maximise or minimise a score with respect

to the network parameters. Number of optimisation techniques are used but
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stochastic gradient descent (SGD) was the chosen method for both ANNs de-

scribed here. SGD works by computing this objective score on a randomly

selected subset of the training data. This is beneficial for large datasets where

computing on the entire set may be computationally infeasible. When an up-

date occurs a coefficient called the learning rate is used to dictate the weighting

of the new value. Another parameter used to influence the optimisation strategy

is the weight decay; a coefficient used to alter the effect of the gradient value

on the objective function. A thorough description of SGD and its associated

parameters is available from [8]. Another commonly used technique to improve

convergence during the training stage is to initialise neural network weights.

Weights were intialised using the method described by Kaiming [9]; initialising

layer weights has been shown to decrease convergence times and improve the

stability of the optimisation procedure.

5.2 Materials and Methods

To evaluate the benefit of utilising convolution layers to analyse spectra, a com-

parison of a CNN model was made with a MLP. Both ANN models were con-

structed, trained, and evaluated using an open-source python libary PyTorch

[10]. Additional packages [11, 12, 13] were leveraged to implement the eval-

uation procedure along side other common machine learning operations. The

same procedure as discussed in Chapter 3 was followed; out of bag sampling

was utilised to obtain distributions of classification values, inverse weighting

was used to mitigate the effects of dataset imbalance.

The dataset comprised FTIR spectra taken from primary tumour sites of 29

patients with a diagnosis of OSCC. Inclusion criteria for this study were as pre-

viously described in Chapter 3: a diagnosis of OSCC; the presence of OSCC in
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the TMA core; the ability to co-register adjacent H&E stained and FTIR imaged

sections; a follow-up period after surgery of at least 24 months; HPV negative.

Images were acquired at a resolution of 6cm−1 over a spectral range of

990cm−1 to 3800cm−1 using a co-addition of 128 scans. Attenuator and inte-

gration time of the focal plane array (FPA) were chosen to gain the maximum

signal-to-noise ratio. Background scans were acquired using a blank CaF2 disk

situated within the perspex box before each session of measurements.

The preprocessing steps required for each type of network are slightly differ-

ent. Given that the convolutional layers in the CNN model are used to extract

features from multiple wavenumbers simultaneously, the only preprocessing

step is to normalise the data. For the MLP model vector normalisation was

used in order to account for sample thickness; wavenumber absorbance fea-

tures were mean-centered; and variance scaled to one; before a final PCA step

to reduce dimensionality of the dataset.

5.2.1 Optimisation of network structure

The sheer number of tunable parameters associated with ANNs necessitates a

hyperparameter search similar to that described in Chapter 4. The open source

optimisation framework Optuna [14] was used to determine and optimal net-

work structure and associated hyperparameters. The hyperparameters in bold

in Figure 5.2 were chosen for optimisation for the CNN network; in addition

the learning rate and weight decay parameter were included as optimal values

are task-dependent and have a large impact on the training efficiency of ANNs

[15, 16]. The median AUROC value was calculated across a five-fold cross

validation of data subsets to determine the general suitability of the network

configuration. Fifty sequential trials were chosen to allow sufficient exploration

of the parameter space.
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Convolutional network

A summary of the configuration determined by the procedure is given in Ta-

ble 5.1

Table 5.1: Optimal convolutional neural network hyperparame-
ters and values.

Parameter name Value
N convolutional layers 5
N kernels in convolution layer 1 96
N kernels in convolution layer 2 128
N kernels in convolution layer 3 32
N kernels in convolution layer 4 80
N kernels in convolution layer 5 128
Maxpool 1 size 3
Maxpool 2 size 3
Maxpool 3 size 7
Maxpool 4 size 5
Maxpool 5 size 3
N fully connected nodes 80
Dropout probability 0.45
Learning rate 8×10−5

Optimum AUROC value 0.84

A simplified diagram of the CNN network Figure 5.3 configuration deter-

mined by the optimisation procedure is shown in Figure 5.3. The CNN network

contains five convolutional and maxpooling layers of varying sizes. Deeper net-

work designs are typically better at extracting high-level structural information

in data [17].
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Figure 5.3: A simplified schematic of the optimal one-
dimensional CNN architecture. The shape of the data as it passes
through each layer is represented by vectors; the colour of each
vector represents a different kernel. Intermediate layer activa-
tions, regularisation steps etc are represented by orange boxes.
The final element represents the probability of a poor prognosis

for that spectrum.

Multilayer perceptron network

A summary of the optimal network configuration for the MLP determined by the

optimisation procedure is given in Table 5.2. A simplified representation of the

optimal MLP network is shown in Figure 5.4. The configuration is a relatively

shallow MLP with two layers. Both layers have a strong regularisation effect

applied by dropout layers with dropout probailities ∼0.3. The first layer has 169

nodes followed by 10 in the second layer; a potential explanation for this is that

there are fewer higher level features needed in the second layer to achieve a a

good level of discrimination between risk groups.
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Table 5.2: Optimal MLP network parameters.

Parameter name Value
N hidden layers 2
N nodes in hidden layer 1 169
N nodes in hidden layer 2 10
Dropout layer 1 probability 0.28
Dropout layer 2 probability 0.29
Learning rate 2×10−5

Weight decay 1.1×10−3

Optimum AUROC value 0.77

X1

X2

X3

X4

Output

Dropout

Hidden
layer 1

Hidden
layer 2

Input
layer

Output
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Figure 5.4: A multilayer perceptron neural network with an input
layer consisting of four input variables x0 . . . x4, two hidden layers
of five nodes each, and a single output layer. Dropout layers are

represented by red arrows between network layers.

5.3 Results

Much of the existing literature concerning prognositic indicators utilises disease

specific survival and overall survival as indicators of patient prognoses. Stratifi-

cation of these measures into groups according to risk is typically on a set num-

ber of years e.g. one year, two years. The decision to use a cut off threshold of

a discrete number of years is somewhat arbitrary, thus, it would be desirable to
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determine a threshold that was decided objectively. A GA approach discussed

in Chapter 3 was used to stratify patients into either a low or high-risk group.

This threshold was determined to be 11 months and was used to dichotomise

patients into risk groups which served as prediction objectives for the CNN and

MLP models.

As dicussed in detail in Chapter 3, the objective was to predict which risk

group a patient falls into, risk groups were determined by a GA optimisation

routine seeking to achieve the maximum prognostic information. Predictions

of risk groups for each patient were taken as the median probability predicted

across all spectra for any given patient. The threshold used to dichotomise

probabilistic predictions was set by maximising the MCC score (Table 2.2). The

MCC score considers all possible prediction outcomes and is a well-rounded

measure of performance for discrete predictions.
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Figure 5.5: Median ROC and PR curves shown in solid lines;
dashed lines represent baselines scores associated with random
chance. AUROC and AUPRC scores are shown for each set of

prognostic indicators.

Median ROC and PR curves (Figure 5.5) indicate that both models show
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some utility as classifiers. The AUPRC scores for both classifiers are both sig-

nificantly above the baseline score — Indicating that both models can balance

both precision and recall simultaneously, and that imbalance in the dataset was

not detrimental to classification scores (Figure 5.5[B]). The AUROC score is

modest for the MLP model at 0.63, the CNN model performs better across all

classification thresholds with a score of 0.74.
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Score distributions Figure 5.6[A-H] for both models are generally good. The

CNN model is superior for all statistics and generally varies less than the MLP

model despite the low threshold value. The low threshold value for the CNN

model indicates that the distribution of prediction scores spans a low range.

Table 5.3: Median classification statistics. Classification thresh-
olds (Table 5.3) used to dichotomise prediction probabilities were

determined to be those that maximised the MCC score.

AUROC AUPRC F1 MCC Spec Sens PPV NPV Thresh
Variables

CNN 0.74 0.22 0.89 0.63 1.00 1.0 1.0 1.0 0.01
MLP 0.63 0.05 0.79 0.37 0.92 1.0 0.7 1.0 0.58

Kaplan-Meier curves were plotted for groups dichotomised by the threshold

in Table 5.3 and show a clear distinction between groups determined by the

CNN classifier Figure 5.7; a significant p-value was obtained by performing a

log-rank test using the predicted groups. shows effectively no ability to discrim-

inate between risk groups, which is in agreement with an insignificant p-value

of 0.4.
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Figure 5.7: Kaplan-Meier survival curves of predicted risk groups
for CNN [A] and MLP [B] classifiers.
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5.4 Discussion

Deep learning methods are a popular choice for a variety of classification tasks

in the field of medical diagnostics. Due to the increasing availability of data and

computing resources. Deep learning methods coupled with vibrational spec-

troscopy data sets are rapidly finding use in cancer diagnostics [18]. The de-

velopment of CNNs has enabled researchers to utilise structural information

present in data to quantify spatially and temporally dependent features. FTIR

spectra possess such structural information due to the overlap of absorbance

bands associated with various chemical moieties present in a sample. The use

of multiple convolution layers facilitates the extraction of high-level structural

information present in data, determining patterns from multiple wavenumbers

simultaneously in a similar way to what might be done by a human search-

ing for known peaks in chemical spectra. Even slight shifts in absorption val-

ues induced by inconsistent measurement technique could result in the miss-

classification of spectra, negatively affecting the prospect of FTIR being widely

adopted as a clinical tool.

The work described here is an attempt to establish the viability of CNNs

coupled with FTIR spectroscopy as prognostic prediction tools. The objective

is to correctly predict the prognosis of a patient from spectra measured from

primary tumour sections taken from a TMA array. An initial optimisation proce-

dure was performed to determine a suitable network architecture; the Bayesian

optimisation procedure explored a large parameter space seeking to maximise

the median AUROC of a five-fold cross validation routine. Using the optimal

network configurations, both ANNs were evaluated using a sampling without

replacement bootstrap strategy to obtain distributions of classification scores.

ROC and PR analyses were used to estimate the general utility of each ANN

configuration. AUROC scores of 0.74 and 0.63 for the CNN and MLP networks
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respectively show that both classifiers have some utility across all classification

thresholds. AUPRC scores of 0.61 (CNN) and 0.52 (MLP) show that both mod-

els display some utility despite some imbalance in the dataset. Classification

statistics Figure 5.6[A-G] are generally very strong for both models; a median

MCC score of 0.63 for the CNN model indicates a very strong classifier, with

the MLP achieving a median score of 0.37. The optimal threshold used to di-

chotomise the CNN model output was particularly low, this however was not

detrimental to the classification performance of the model.

Survival curves for groups predicted by the CNN model Figure 5.7[A] show

good separation between risk groups; a significant p-value of 0.01 given by a

the log-rank test corroborates this. Interestingly despite the good overall clas-

sification performance of the MLP model, the threshold which maximised the

classification scores resulted in poor stratification of risk groups. This is likely

due to the fact that a high score for the log-rank statistic can be obtained by

allocating only a small number of patients to the high-risk group. Conversely,

to obtain strong classification scores, as many patients as possible must be

allocated to the correct risk group.

MLPs have also been utilised with vibrational spectroscopy methods to de-

tect breast cancer using ATR-FTIR data [19] and used three ANNs in a 10-fold

cross validation scheme to discriminate between FTIR spectra collected from

78 malignant and 88 benign breast tumours. The authors found that ANNs had

superior performance across many classification statistics in comparison to LR,

RF, and LDA classifiers; with the ANN models achieving AUROC scores ∼ 0.9.

The ANN models however did not perform as well as a SVM classifier on the

same data. The ANN models used most closely resembled the MLP classifier

discussed here, however the authors did not include additional regularisation

layers such as dropout layers.
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A second study [20] has leveraged 2D CNNs to dicriminate between differ-

ent grades of breast cancer from a cohort of 96 patients. The study followed

a similar analysis routine to that discussed in Chapter 3, where a series of

subsets of the data were drawn without replacement to obtain distributions of

classification scores. It was found that the addition of spatial information from

convolutional layers improved the model performance considerably over pixel-

level predictions of a large range of models including: SVM, random forest, and

an RBF kernel. Adding spatial information increased the overall accuracy of the

predictions by∼20%; the specificity and sensitivity increased considerably with

one class improving by ∼60%.

A one-dimensional neural network was used to classify FTIR, Raman, and

near infrared (NIR) data derived from a variety of food samples [3]. The ANN

developed by the authors was a shallow CNN, which improved on overall accu-

racy scores of other classifier methods on preprocessed data from 62% to 86%;

and from 89% to 96% on raw data. CNNs were used with success on ATR-FTIR

data in forensics to detect synthetic cannabinoids [21]. The authors found that

CNNs were capable of identify synthetic cannabinoids, achieving 98.7% accu-

racy and an F1 score of 98.5% — meeting the standards of a forensic screening

system. CNNs applied to vibrational spectroscopy have enjoyed further suc-

cess in forensic applications where they employed to identify amphetamines

with an accuracy of over 90% [22].

A rigorous analysis procedure was performed to obtain distributions of clas-

sification scores, and to gain an insight into the general applicability of each

model to unseen data. The relatively small sample set was a key issue fac-

ing this study due to the expense of acquiring and imaging large numbers of

samples. A large degree of variation was observed across some classification

statistics, potentially indicating a large degree of biological heterogeneity in the
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dataset — a known characteristic of OSCC primary tumours [23, 24]. A po-

tential cause for this could be the effect of inherent molecular heterogeneity of

the tumour microenvironment [25]; or perhaps varying extents of lymphocyte

infiltration present in specimens. The difficulty of annotating samples is also

likely to introduce noise into the dataset; alongside inconsistencies in sample

preparation and the measurement procedure and environment.

5.5 Conclusion

For FTIR spectroscopy to transition into widespread clinical use as a prognos-

tic tool, measurement errors must be mitigated wherever possible. CNNs have

the potential to mitigate some of these effects due to the usage of convolu-

tion operations as a means of extracting useful features from FTIR spectra.

This work has shown that through the use of an optimisation procedure it was

possible to use CNNs to correctly classify FTIR spectra derived from primary

tumour sites into useful risk groups. The CNN model evaluated here showed

superior classification performance over a comparable MLP network architec-

ture when evaluated using a number of conventional metrics. A thorough out

of bag bootstrap procedure was used to obtain distributions of classification

scores to estimate the variability of these scores. In comparison to the LR

models developed in Chapter 3 the CNN model compared particularly well in

a few key statistics. Whilst the FTIR-based LR models enjoyed higher AUROC

scores, the dichotomised predictions fell short in comparison to the CNN model.

The CNN model achieved a MCC score of 0.63 — signifying a very few mis-

classifications of any type.

The usage of these models could facilitate the ethical selection of patients

for neo-adjuvant treatment in clinical window-trials whilst minimising overtreat-

ment. This could be a crucial first step to improving the range of treatment
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options available to patients with OSCC.
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6 Conclusions and Future Work

The objective of this thesis is to investigate the viability of machine learning

methods applied to FTIR spectroscopy for use as prognostic tools in head and

neck cancer. Despite phenomenal progress in the development of treatment

options for OSCC over the past few decades, there is still work to be done; 5-

year survival rates for patients with OSCC still remain around 50%. Additional

treatment methods exist in the form of pre-operative neoadjuvant therapy, these

treatment options show promise for improving clinical outcomes for patients

with OSCC. However, research progress into neoadjuvant therapies is hindered

by the difficulty of identifying patients eligible for clinical window trials. Due to

the increased risk of adverse effects and additional health risks associated with

hormone treatment and chemotherapy, it is unethical to accept patients who

do not require additional treatment onto a trial. The difficulty lies in the fact

that using pre-existing prognostic biomarkers it is only possible to determine

a patient’s prognosis after post-surgical nodal resection has taken place. The

work undertaken in this thesis has shown that using sophisticated statistical

methods to analyse FTIR spectroscopy data it may be possible to predict the

prognosis of a patient from diagnostic biopsy tissue.

A list of criteria was set out in chapter 1 which summarises the requirements

of any diagnostic method aiming to be widely adopted in a clinical setting. The

performance of a diagnostic or prognostic test must be demonstrably superior

to or at least be able to supplement existing methods; the method must also

be sensitive to its intended range. Both of these criteria have been established
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to be true of FTIR spectroscopy in chapters 3 and 5; a rigorous analysis pro-

cedure was performed which demonstrated that developed statistical models

were able to stratify patients by risk status. Survival analysis was performed to

ascertain the prognostic utility of FTIR spectra; results showed that risk groups

had clearly distinguished survival curves. Chapter 3 contains a comparison to

a known prognostic biomarker: ASMA, which was shown to be substantially

less effective than FTIR in the data set used in the study. The two prognostic

biomarkers were then combined to create a hybrid model which demonstrated

superior performance in some cases over the two individual models. This sug-

gests that combining prognostic biomarkers from a variety of assay methods

may be an effective way to develop capable prognostic tools for use in a clini-

cal setting. The current ’gold standard’ for prognostic biomarkers are MRI and

CT; these methods show reasonable performance as prognostic tools but fur-

ther work is needed. The biological heterogeneity associated with OSCC has

proven to be a difficult obstacle to overcome. The introduction of FTIR mi-

croscopy into clinical practice has great potential as a prognostic tool; however,

the combination of a wide variety of prognostic biomarkers is likely a necessary

next step to truly improve patient outcomes.

Another important criterion is the identification of sources of error, whether

or not these sources of error can be addressed is crucial for the prospects for

any diagnostic test. Chapter 4 covers the development of a distributed pre-

processing optimisation framework for use with FTIR spectra; the work was

undertaken in collaboration with another PhD student Barney Ellis. The optimi-

sation framework was designed to provide a means of determining an effective

preprocessing and classification pipeline for a given prediction objective. It is

crucial to explore the parameter space of a pipeline as the classification perfor-

mance of a pipeline is highly dependent upon the choice of configuration. The

framework proved to be very successful, the top-performing pipeline configu-

rations showed substnatially better scores with the difference between the best



Chapter 6. Conclusions and Future Work 165

and worst pipelines being>70%. The configurations of the top-ranked pipelines

tended to be simpler but re-enforced some conventional wisdom about prepro-

cessing FTIR data. The framework was developed on a widely adopted parallel

processing framework, and could be easily adapted for other multivariate tasks

with similar constraints. The framework will be made available for public use.

An evaluation of deep learning based FTIR analysis in Chapter 5 included

a comparison between two different network architectures which were deter-

mined through a network optimisation process]. Both models showed some

promise as prognostic tools, with the CNN model performing particularly well

in comparison to all models developed in this thesis. This is an encouraging

result as CNNs are more robust to measurement inconsistencies which would

likely be a hindrance to the wider adoption of FTIR as a clinical tool.

To take the work covered here forward for further development; larger col-

laborative efforts should be made to improve the diversity and quality of data

available for model training. CNNs should be explored more thoroughly as they

have the potential to alleviate measurement issues, increasing the likelihood of

wider adoption of the technique.
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