
PHYS488: Modelling Physical Phenomena (Lecture 4) 1

PHYS 488

Modelling Physical Phenomena

Lecture 4



PHYS488: Modelling Physical Phenomena (Lecture 4) 2

Phys488: What we learnt in week 3.

Last week we encountered the powerful concept of an abstract data type
(class Histogram). By making multiple instances of this class with different 
parameters,  e.g.

Histogram hist1 = new Histogram("Random",20,0.4,0.9);

Histogram hist2 = new Histogram("Gauss",40,-1.0,1.0);

Histogram hist3 = new Histogram("D ln(r)",40,0.0,4.0);

any number of histograms can easily be made this way. 

Several useful instance methods could be added to this class. 

E.g.  with an instance method  writeToDisk() included in class Histogram, it 
was very easy to write each histogram to disk into its own file. This could be 
done for example by passing the filename to the method in the parameter list 
as a String: 

hist1.writeToDisk("hist1.csv");



Monte Carlo techniques

In PHYS205 you saw how to calculate the value of  by throwing pairs 

of random numbers. 

Particularly useful to simulate physics processes that involve a 

convolution of multiple probability distributions.

Last week we used the gauss method to throw random numbers 
following a Gaussian distribution function. 

Look up the “Central Limit Theorem” to understand why the gauss
method gives you a distribution that is (approximately!) Gaussian.

This week we encounter a general method that allows us to throw 
random numbers following any probability distribution. 

PHYS488: Modelling Physical Phenomena (Lecture 4) 3



PHYS488: Modelling Physical Phenomena (Lecture 4) 4

If we have a normalised probability distribution P(x) such that

(1)

then values of D which satisfy

(2)

(where r is  a uniformly distributed random number in the range 0 < r < 1) 
will follow the distribution P(x).

Sometimes it is possible to do this integral analytically, and solve it to find 
D as a function r (as in assigment 2 below). 

Otherwise the integration has to be done numerically. For this it is adequate 
to approximate the integral as the sum of the areas of small strips (bins) from 
the lower limit up to D. An example of this attached (class ThrowDist). 

 
max

min

1)(

x

x

dxxP



D

x

dxxPr

min

)(

Looking ahead:



PHYS488: Modelling Physical Phenomena (Lecture 4) 5

1. On the Excel chart showing the Gaussian distribution you did last week, draw 
the predicted curve. Hint: the predicted contents of a bin in the histogram is 
given by: N P(x) dx where N is the total number of entries in the histogram 
(including underflows and overflows), P(x) is the normalised Gaussian 
distribution, dx is the bin width and x is the coordinate of the bin centre.

One can use the Chi-squared per Degree of Freedom (CSFD) value to 
compare a theoretical function (here a predicted curved) T(x) with data (here a 
randomly thrown distribution)  Ei. For all the data values at coordinates xi one 
evaluates the 2 value.

where σ is the error on (T(xi) –Ei) and CSPD is defined as: CSPD = 2 / d.o.f. 
with d.o.f. (the number of degrees of freedom) = number of data points –
number of free parameters in the theory curve T(x). 

(free parameters occur when a theory function is fitted to the data)

The curve T(x)  is in good agreement with the data if CSPD ~ 1.

For your Gaussian distribution calculate the CSPD in EXCEL.

[1]

p.t.o.





i

2

2

ii2

σ

)E)(T(x
χ

PHYS488: Work for Week 4



PHYS488: Modelling Physical Phenomena (Lecture 4) 6

Work to be done this week

2. You will produce a histogram with random numbers following the 
probability distribution P(x) = x exp(-x3).

First find the normalisation factor for P(x) = x exp(-x3) using the 
Integrate class. You will have to adjust the range and the number 
of integration steps taken. By varying these parameters convince 
yourself (and explain why) that your normalisation factor is correct to 
at least 4 decimal places. 

Now produce the histogram using the ThrowDist class and show 
that the generated distribution follows the expression N P(x) dx by 
plotting the expected curve together with the thrown distribution and 
by calculating the CSPD value.

[1]

p.t.o.



PHYS488: Modelling Physical Phenomena (Lecture 4) 7

Work to be done this week

3. A distribution of e.g. decay lengths, given a mean free path , is 
given in the interval 0 < x <  by 

(3)

Show that this is normalised. 

In this particular case, the integral (2) can be done analytically. Do 
this, and show that the explicit expression for D in terms of r is: 

D(r)   = - *ln(r)

[tip: if r is a random number between 0 and 1, then so is (1-r)]

Last week you showed that this formula ‘throws’ an exponential 
distribution of D’s (using λ =15). Draw the expected curve given by 
equation (3) on the EXCEL histogram you made last week and 
show they agree using the CSPD value. 

[1]

p.t.o.

dx
λ

) x/λexp(
dxP(x)






PHYS488: Modelling Physical Phenomena (Lecture 5) 8

Work to be done this week

4. Use ThrowDist to produce a histogram of random numbers 
following a Gaussian distribution:

Use the same sigma () and mean parameters as for your 
Gaussian distribution of week 4.  

As in week 4’s exercise make a graph of the produced histogram, 
showing also the expected distribution and calculate the CSPD 
value.

You’d expect the CSPD value to be slightly better since as the 
previous Gaussian distribution was only approximate. Do you see 
any improvement?

[1]

p.t.o.











2

2

2

mean)-(x-
exp

2

1
P(x)





PHYS488: Modelling Physical Phenomena (Lecture 5) 9

More challenging work to be done this week

5. write a program (using your work for parts 3 and 4) to simulate a 
distribution of lifetimes measured with a detector with a limited 
resolution.

To do this you will need to convolution the probability distributions 
of parts 3 and 4. 

First throw a random number following the distribution of decay 
lengths for a particle with a mean free path of 15 cm(see part 3).

Then add to this number a second random number following a 
Gaussian distribution with mean 0 and width of 5cm (see part 4).

Make a histogram of the resulting distribution using 30 bins 
between -5cm and +10 cm.

[2]

p.t.o.



PHYS488: Modelling Physical Phenomena (Lecture 4)10PHYS488: Modelling Physical Phenomena (Lecture 5) 10

Work for Week 4:  class Integrate
// Example of Integrating an arbitrary distribution

import java.io.*;

import java.util.Random; // notice this..needed to load the class Random.

class Integrate

{

static PrintWriter screen = new PrintWriter( System.out, true); 

private static double func(double x) 

{ 

return ( x*x*Math.exp(-x*x)); 

}

public static void main (String [] args ) throws IOException

{

double sum = 0; 

int nsteps = 200;// this is a guess.. making it smaller will make program faster

// but the result will be less accurate

double maxOfX = 4;   

double minOfX = 0;   

double x;

double deltaX = ( maxOfX - minOfX )/(double)nsteps;

for (int n = 0; n <= nsteps-1; n++) // integrate func(x) 

{

x = minOfX + n*deltaX + deltaX/2. ;

sum =sum +  func(x)*deltaX; 

}      

screen.println("Integral is " + sum);       

}

}



PHYS488: Modelling Physical Phenomena (Lecture 5) 11

Work for Week 4:  class ThrowDist
// Example of throwing an arbitrary distribution in a Monte Carlo program.

import java.io.*;

import java.util.Random; 

class ThrowDist

{

static BufferedReader keyboard = new BufferedReader (new InputStreamReader(System.in));

static PrintWriter screen = new PrintWriter( System.out, true);

static Random value = new Random();

//---------class Methods start here -----------------------------------------------

private static double p(double x) 

{

// define the normalised function to be 'thrown'.

// remember, p(x) MUST BE normalised over the range    minOfX <= x <= maxOfX .

return ( x*x*Math.exp(-x*x)/0.44311);

}

//----------------------------------------------------------------------------------

p.t.o.



PHYS488: Modelling Physical Phenomena (Lecture 5) 12

Work for Week 4:  class ThrowDist

private static double  throwAValue()

{ 

double sum = 0; 

double nextOne; // primitive variable to store each random number

int nsteps = 200; // this is a guess.. making it smaller will make program 

// faster but the 'thrown' function will not be as smooth.

double maxOfX = 4;   // above this x-value, p(x) ~ 0.

double minOfX = 0;   // below this x-value, p(x) ~ 0.

double x = 0;

double deltaX = ( maxOfX - minOfX )/(double)nsteps;

nextOne = value.nextDouble();// generate a new random in range (0 , 1)

// integrate p(x) until sum > the random number 'nextOne'.

for (int n = 0; n <= nsteps-1; n++)

{

x = minOfX + n*deltaX + deltaX/2. ;// find x-value at the centre of each 

strip.

sum =sum +  p(x)*deltaX;  // add up the areas of the strips

if ( sum > nextOne ) break;// note this way to jump out of a loop

}

return x ; 

}

//------------------------end of class methods---------------------------------------

p.t.o.



PHYS488: Modelling Physical Phenomena (Lecture 5) 13

Work for Week 4:  class ThrowDist

public static void main (String [] args ) throws IOException

{

int trials;    // number of random numbers to generate

double nextX;  // random number 'thrown' from the distribution

int numberBins;

Histogram hist1 = new Histogram(" P(x) = x*x exp(-x*x) ",20,0,4);

screen.print( "Input the number of random numbers to generate ");screen.flush();

trials = new Integer(keyboard.readLine()).intValue();

for ( int goes=1; goes <= trials; goes++) 

{

// Make histogram and store it in disk to import into EXCEL to make the plot.

nextX = throwAValue();

hist1.fillh(nextX);

}

//histogram has been filled. Show the contents on the screen.

numberBins = hist1.getSize();

for (int bins =0; bins <= numberBins-1; bins++) 

{

screen.println(  hist1.getContent(bins) + "\t");   

}

hist1.writeToDisk("histfile.csv");

}

}


