Series solution of differential equations
_egendre polynomials

m In this lecture we will: m A comprehension question for this
¢ Use the power series method to lecture:
solve general differential ¢ Write x° +2x in terms of
equations. Legendre polynomials by using
¢ Use the power series technique to their orthonormality.

solve Legendre’s equation using
Legendre polynomials.

¢ Look at some properties and
applications of Legendre
polynomials.



Power series solution of differential equations

m So far, we have found solutions for m Power series solution example.
differential equations which have a = Find an approximate solution to the
number of specific forms. equation:

m For general 1D differential equations, d’y dy
we can find a solution as a power VIR AN

series which will give us an

approximation to the exact general = Write downy as a polynomial:

. . _ 0 1 2 r
solution for x close to a given value y=8,X" +a, X" +a,X" +..+a,X +...
(often for x close to zero). m Calculate needed derivatives:

m For some equations, exact solutions y' =a, +2a,X +3a,X" +...
can be found using the power series

_ +(r+Da _ x" +...
technique. ) A

: L y" =2a,+6a,Xx+12a,x" +...

m Legendre’s equation is one such case.

+(r+2)(r+da,_,x +..



Power series solution of differential equations

m Substitute polynomial and derivatives = Comparing powers of x°:

in differential equation. a,
28, +a,=0=>a, =——-.
m Yy +y=Xy so: 2
28, +6a,x +12a,X" +... m Comparing powers of xZ:
+(r+2)(r+Da, x" +... 6a, +a, =a, = a; =0.
+a, +a, X +a,x> +... m  And powers of X"
rax +.. (r+2)(r+Da,,,+a, =ra,
= X(a, +2a ,X +3613X2 +... therefore a, ., = ( I‘2)—(1 D a,.
r+2)(r+
+(r+Da, x" +..)

m This must hold for all values of x, so
coefficients of x" on LH and RH
sides must be the same for all n.



Power series solution of differential equations

Hence we can write down the
polynomial incorporating the
relationships between its coefficients:

a
y =a, +a1x—?°x2 +0x° +...

Further coefficients can be found
using the recurrence relationship.

What are the values of the
coefficients multiplying x* and x>?

There are two arbitrary constants, a,
and a, (this is a second order
equation!).

These can be found using the initial
conditions.

For example, if y(0) =0, we see a, =0.
Using this, and differentiating the
polynomial solution, we see y' =a, +...
So if y'(0) =1, this implies a, =1.



Legendre’s equation

m Legendre’s equation is: m Tidying up:
2 c r— r
(1-x )d y 2xj—y+n(n+1)y:0. Z;r(r—l)arx ; Z;r(r 1a,x —ZZra X
X r= r
m Crops up a lot in physics, in +n(n +1)Za x" =0
particular in quantum mechanics. s Term in x°: il
m Solve using a power series. 2a,x° +n(n+1a,x° = 0.
yzzarxr :y’:Zrarxr‘l m Termin x%:
=0 E 6a,x' —2a,x" +n(n+1)ax" =0.
and y” = Z r(r—1a x> m Termin X"
r=2 (r+2)(r+Da, x —r(r-1a x"—2rax’
= Hence w +n(n+lax =0

_ w2 N _ r-2 r—1
(1-x );r(r 1)a,x ZXrZ:;rarx (42 DA X

r=0



Legendre’s equation

m From x° term: m Rewriting this:
n(n+1 > +r—n’ -n.

2= ( 2 )ao. ez = (r+2)(r+1) .
m From x! term: __(tr+h(n-r) -

a, = 2—n(n+1) . (r+2)(r+1)

6 m Ifweputr=n,weseea_ , =0.

m From x'term: m Hencea,,6 =a,,=..=0.

(r+2)(r+Da,,, = m Soifniseven, the series starts at a, and

(r(r+1)—n(n+1))a, Stops at a,.

m If nisodd, the series starts at a, and
stops at a,..

m In both cases, the solution is a finite
Legendre polynomial.

R :r(r+1)—n(n+1)a.
2 r+2)(r+1)




Legendre polynomials

m The first few Legendre m Plot of first 45 Legendre polynomials:
polynomials are: Legendre polynomials
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Properties of Legendre polynomials

m Legendre polynomials have
Interesting properties, the most
Important being orthonormality:

(Pa(X).P,(x)) = [P, (X)P, (x) X

=0, m=#n

(P,(¥),P, () = [ [P, ()] dx
2

T o+l

m The operation ( )is analogous to
the scalar product (dot product)
of two vectors.

We can think of functions defined on
the interval [-1, 1] as spanning an
Infinite vector space.

One basis is formed by the monomials
1, X, X2, x3...
The Legendre polynomials form
another.

For example, we can write:

x* = ¢ P, (X) +¢,P,(X) +c,P,(x).
The values of c,, ¢, and c, could be

found by comparing coefficients of x on
each side of the above equation.

Alternatively, the function x? can be
projected onto the Legendre polynomial
“basis vectors” using ( >



Properties of Legendre polynomials

m For example: m The Legendre polynomials can
(x*,P,) =(coPy +C,P, +C,P,,P,) also be constructed by using their

orthonormality properties...
=Cy(Py,P,)+C, (P,P,)+¢,(P,,P ,
o (Po.Po)+Cy (PP )+, (P Py m ...and noting that:

=C,(P,,P) ¢ P (x) is of degree n.
2 _ ¢ The even P, (x) only contain
2x2+1 even powers of Xx.

¢ The odd P,(x) only contain
odd powers of X.

:C2

ariNo
o

1M 1% 4 m Suppose we know P,(x) = x and
=5 3;—? "5 we want to find P5(x).
5 4 -1 ) m  Write P,(x) = ax® + bx.
m Hence gc2 =— 0rc, =3



Properties of Legendre polynomials

m Using the results above we can
write:

(P, P) = J'_ll(ax:” +bx)x dx

5 371
PR _Z(a b
5 3 |, 5 3

= Now (P,,P,)=0 so:

Z(a bj O:>b——3
5 3 5
m Lookat:

2 2
P, P ——
(Pa.Ps) = 2%3+1 7

)

8 , 2 , 25 5
a = a =
25x 7 {

By convention, the highest power has a
positive coefficient.

Putting this together, we have:
P,(X) = %(5X3 —3x).

= But:(P,,P :j_ll(ax3+bx)2dx
2 2 1
:{a—x7+2@x5+b—x3}
° -1
INES 2ab+b2 8
7 5 3 25x 7
Hence:
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