Differential equations

■ In this lecture we will:

- Find out how to solve various types of inhomogeneous second order differential equation.
- Some comprehension questions for this lecture.
- Find the general solution of the equations:

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-3 y=x^{2}+5 \\
& \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-3 y=5 e^{-3 x}
\end{aligned}
$$

Inhomogeneous second order differential equations

- Here, we look at inhomogeneous (or non-homogeneous) second order differential equations, i.e. equations of the form:

$$
\mathrm{a} \frac{\mathrm{~d}^{2} \mathrm{y}}{\mathrm{dx}}+\mathrm{b} \frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{c} \mathrm{y}=\mathrm{f}(\mathrm{x})
$$

- The homogenous differential equation obtained by setting $f(x)=0$,

$$
a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0
$$

with the same coefficients as the above, is called the complementary equation.

- Suppose the general solution (containing arbitrary constants) of the complementary equation is $y_{c}(x)$ and that a particular solution (no arbitrary constants) of the inhomogeneous equation is $y_{p}(x)$.
- We can then show that $y(x)=y_{c}(x)+y_{p}(x)$ is a general solution of the inhomogeneous equation.
- Do this by writing the solution of the complementary equation in the form $y_{c}(x)=y(x)-y_{p}(x)$.

Inhomogeneous second order differential equations

- Then, substituting for $y_{c}(x)$:

$$
\begin{aligned}
& a \frac{d^{2}}{d x^{2}}\left(y-y_{p}\right)+b \frac{d}{d x}\left(y-y_{p}\right)+c\left(y-y_{p}\right) \\
& =a \frac{d^{2}}{d x^{2}} y_{c}+b \frac{d}{d x} y_{c}+c y_{c} \\
& \Rightarrow a \frac{d^{2}}{d x^{2}} y+b \frac{d}{d x} y+c y \\
& \quad-\left(a \frac{d^{2}}{d x^{2}} y_{p}+b \frac{d}{d x} y_{p}+c y_{p}\right)=0 \\
& \Rightarrow a \frac{d^{2}}{d x^{2}} y+b \frac{d}{d x} y+c y \\
& =a \frac{d^{2}}{d x^{2}} y_{p}+b \frac{d}{d x} y_{p}+c y_{p}=f(x)
\end{aligned}
$$

- Hence, if we can find a general solution of the complementary equation, $y_{c}(x)$, and a particular solution (particular integral) of the inhomogeneous equation, their sum will be a general solution of the inhomogeneous equation.
- We already know how to find solutions of homogeneous equations with constant coefficients.
- How can we find particular solutions of inhomogeneous equations (again restricted to constant coefficients)?
- Educated guesswork...also known as the method of undetermined coefficients.

Inhomogeneous second order differential equations

- An example:
- Find the general solution of the equation:

$$
\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-2 y=x^{2}
$$

- The complementary equation is...

$$
\frac{d^{2} y}{d^{2}}+\frac{d y}{d x}-2 y=0
$$

- ...and the associated auxiliary equation:

$$
\begin{aligned}
& \mathrm{m}^{2}+\mathrm{m}-2=0 \\
& \Rightarrow(\mathrm{~m}-1)(\mathrm{m}+2)=0 \\
& \mathrm{~m}_{1}=1, \mathrm{~m}_{2}=-2
\end{aligned}
$$

- Hence the general solution of the complementary equation is

$$
y_{c}(x)=C_{1} e^{x}+C_{2} e^{-2 x}
$$

- Since $f(x)=x^{2}$ and differentiating this will give both a term in x and a constant, we try the particular solution

$$
y_{p}(x)=A x^{2}+B x+C
$$

- The values of A, B and C can be determined by substituting into the inhomogeneous equation.
- We need y_{p} and its differentials:

$$
\frac{d y_{p}}{d x}=2 A x+B \text { and } \frac{d^{2} y_{p}}{d x^{2}}=2 A
$$

Inhomogeneous second order differential equations

- Hence:

$$
\begin{aligned}
&(2 \mathrm{~A})+(2 \mathrm{Ax}+\mathrm{B}) \\
&-2(\left.\mathrm{Ax}^{2}+\mathrm{Bx}+\mathrm{C}\right)=\mathrm{x}^{2} \\
& \Rightarrow-2 \mathrm{Ax}^{2}+(2 \mathrm{~A}-2 \mathrm{~B}) \mathrm{x} \\
&+2 \mathrm{~A}+\mathrm{B}-2 \mathrm{C}=\mathrm{x}^{2}
\end{aligned}
$$

- For this to hold for all x, must have:
$-2 \mathrm{~A}=1$ [coefficents of x^{2}]
$2 \mathrm{~A}-2 \mathrm{~B}=0$ [coefficents of x]
and $2 \mathrm{~A}+\mathrm{B}-2 \mathrm{C}=0$ [constants].
- Hence:
$\mathrm{A}=-1 / 2,2 \mathrm{~B}=2 \mathrm{~A} \Rightarrow \mathrm{~B}=-1 / 2$ and
$\mathrm{C}=\frac{2 \mathrm{~A}+\mathrm{B}}{2}=-\frac{3}{4}$.
- Our particular solution is thus:

$$
y_{p}=-\frac{1}{2} x^{2}-\frac{1}{2} x-\frac{3}{4} .
$$

- And the general solution is:

$$
\begin{aligned}
y(x) & =y_{c}(x)+y_{p}(x) \\
& =C_{1} e^{x}+C_{2} e^{-2 x}-\frac{1}{2} x^{2}-\frac{1}{2} x-\frac{3}{4} .
\end{aligned}
$$

- Note, we still have two arbitrary constants, the values of which can be determined using initial conditions.
■ This illustrates how inhomogeneous differential equations can be solved if $f(x)$ is a polynomial.
- There is one possible difficulty..

Inhomogeneous second order differential equations

- Find a particular solution to the differential equation:

$$
\frac{d^{2} y}{d^{2}}+\frac{d y}{d x}=5
$$

- Try $y_{p}=C$

$$
\Rightarrow \frac{d y_{p}}{d x}=0
$$

- Cannot substitute to work out coefficients.
- Must modify trial function to ensure we get required behaviour.
- In general, multiply y_{p} by x, e.g. if trial function $x^{2}+2 x+1$ doesn't work, $\operatorname{try} x\left(x^{2}+2 x+1\right)$.
- Example here, try $\mathrm{y}_{\mathrm{p}}(\mathrm{x})=\mathrm{Cx}$.
- Then have:

$$
\frac{\mathrm{dy}_{\mathrm{p}}}{\mathrm{dx}}=\mathrm{C} \text { and } \frac{\mathrm{d}^{2} \mathrm{y}_{\mathrm{p}}}{\mathrm{dx}^{2}}=0 .
$$

- Hence $C=5$ and $y_{p}(x)=5 x$.
- The auxiliary equation is $m(m+1)=0$ so the general solution of the complementary equation is:

$$
y_{c}=C_{1} e^{0}+C_{2} e^{-x}=C_{1}+C_{2} e^{-x}
$$

- The general solution of the inhomogeneous equation is therefore

$$
y(x)=C_{1}+C_{2} e^{-x}+5 x
$$

- C_{1} and C_{2} can then be determined using the initial conditions.

Inhomogeneous second order differential equations

- Now consider case that $\mathrm{f}(\mathrm{x})$ is of the form $\mathrm{Ae}^{\gamma \mathrm{x}}$.
- The trial function depends on the roots of the auxiliary equation.
- If $\mathrm{m}_{1}, \mathrm{~m}_{2} \neq \gamma$, try $\mathrm{y}_{\mathrm{p}}=\mathrm{Ae}^{\gamma \mathrm{x}}$.
- If $m_{1}=\gamma, \mathrm{m}_{2} \neq \gamma$, try $\mathrm{y}_{\mathrm{p}}=\mathrm{Axe}^{\gamma \mathrm{x}}$.
- If $m_{1}=m_{2}=\gamma$, try $y_{p}=A x^{2} e^{\gamma x}$.
- Example:
- Find a particular solution to:

$$
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+y=3 e^{-x}
$$

- The auxiliary equation

$$
\begin{aligned}
& \mathrm{m}^{2}+2 \mathrm{~m}+1=0 \\
& \Rightarrow(\mathrm{~m}+1)^{2}=0 \text { and } \mathrm{m}_{1}=\mathrm{m}_{2}=-1
\end{aligned}
$$

- Hence we try:

$$
y_{p}=A x^{2} e^{-x}
$$

$$
\begin{aligned}
\frac{d y_{p}}{d x} & =-A x^{2} e^{-x}+2 A x^{-x} \\
\frac{d^{2} y_{p}}{d x^{2}} & =A x^{2} e^{-x}-2 A x^{-x}-2 A x^{-x}+2 A e^{-x} \\
& =A x^{2} e^{-x}-4 A X^{-x}+2 A e^{-x}
\end{aligned}
$$

- Substituting gives:

$$
\begin{aligned}
& \left(A x^{2} e^{-x}-4 A x e^{-x}+2 A e^{-x}\right)+ \\
& \quad 2\left(-A x^{2} e^{-x}+2 A x e^{-x}\right)+A x^{2} e^{-x}=3 e^{-x}
\end{aligned}
$$

- Similar to previous case, compare coefficients, in this case of e^{-x}, xe^{-x} and $\mathrm{x}^{2} \mathrm{e}^{-\mathrm{x}}$, to determine A .

Inhomogeneous second order differential equations

- Hence $2 \mathrm{Ae}^{-\mathrm{x}}=3 \mathrm{e}^{-\mathrm{x}}$ and $\mathrm{A}=3 / 2$.
- The solution of the complementary equation is $y_{c}=C_{1} e^{-x}+C_{2} x e^{-x}$ giving a general solution of the inhomogeneous equation

$$
\mathrm{y}=\mathrm{C}_{1} \mathrm{e}^{-\mathrm{x}}+\mathrm{C}_{2} \mathrm{xe} \mathrm{e}^{-\mathrm{x}}+\frac{3}{2} \mathrm{x}^{2} \mathrm{e}^{-\mathrm{x}}
$$

