
Vector calculus

■ In this lecture we will:

♦ Define the curl of a vector field.

♦ Look at some examples to try and 

gain some insight into what the 

curl represents.

♦ Discuss the curl of the electric 

and magnetic fields.

■ Some comprehension questions for 

this lecture.

♦ Indicate where the curl will be 

positive below.

♦ Calculate the curl of the field:

( )F(x, y, z) y xy 0=
Vf4xa Vf4ya ( )
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Curl of a vector field

■ The curl of a vector field is defined 

by the equation: 

■ The curl of a vector field is a vector 

field.

■ Can think of curl as cross product of

and vector.

■ Look at an example (with z 

component zero so we can plot it!).

■
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Curl of vector field

■ Plot the x and y components of    as 

a vector field and the curl as a 

contour plot (shaded):

■ What does the curl tell us about the 

field?

■ Again, the name gives as a hint! 

■ (A further hint is that the curl of a 

field is sometimes called the 

rotation.)

■ See that the curl is positive where a 

small object “dropped into the field” 

would rotate in an anticlockwise 

direction and negative where it would 

rotate in a clockwise direction.

F
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Curl of vector field

■ Now define field which has constant 

angular velocity and look at its curl.

■ Use v = rw and set w = 1, implies:

■

■ Hence 

■ Magnitude of curl is twice the 

angular velocity.

■ Direction of curl is that of axis

about which rotation occurs.

■ Plot these quantities:
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Calculate a curl

■ Calculate the curl of the field:

■ Determine the value of 

( )2( , , ) 3sin 2cos .F x y z x x z= −
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Curl of vector field

■ Construct further examples:

■

■

■ Plotting these quantities:
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Curl of vector field

■ Now using a contour plot for the curl:

■

■
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Curl of vector field

■ Now field with opposite curl:

■

■

■ Plotting these quantities:
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Curl of vector field

■ And again as contour plot: 

■

■
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Curl of electric field

■ One of Maxwell’s equations 

(Faraday’s Law) involves the curl of 

the electric field:

■ This implies that changing a 

magnetic field will cause an electric 

field to “swirl” around it.

■ A further one of Maxwell’s equations 

(Ampere’s Law with Maxwell’s 

correction) involves the curl of the 

magnetic field: 

■ Here,    is the current density.

■ A magnetic field can therefore be 

induced by an electric current...

■ ...or by a changing electric field.

■ Changing E fields causes B fields and 

vice versa, so get waves!
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Vector and vector calculus identities

■ Some useful vector identities: ■ Identities for vector calculus:
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Example of proof of vector calculus identity

■
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