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Laplace’s equation in spherical polar coordinates

■ In this lecture we will:

♦ See how Legendre polynomials 
arise in the solution of Laplace’s 
equation in spherical polar 
coordinates.

♦ Introduce spherical harmonics.

♦ See how spherical harmonics are 
used in the quantum mechanical 
description of atoms.

■ A comprehension question for this 
lecture:

♦ Prove that the function
is a solution of the equation 
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Laplace’s equation in spherical polar coordinates

■ In spherical polar coordinates, the gradient is:

■ The divergence is:

■ Putting them together, we get the Laplacian in spherical polar coordinates:

■ Setting this expression equal to zero gives us Laplace’s equation in spherical 
polar coordinates:

■ Lots of physical potentials are described by this equation and many of them 
depend on r and q, but not on f.

■ Look for solutions to Laplace’s equation that are independent of f.

■ Also assume we can solve by separating variables, i.e. that 

1 1ˆ ˆˆ .
sin

  
   q  f

 q q f
V V V

V r
r r r

2
2

1 1 1
( ) (sin ) ( ).

sin sinrA r A A A
r r rr q f

  
    q 

 q q q f



2
2 2

2 2 2

1 1 1
sin .

sin sin

              q       q q q q f    

V V V
V V r

r rr

2 0.    V V

( , ) ( ) ( ).q  qV r G r H
2

Solving Laplace’s equation by separating variables

■ We can then rewrite the equation as:

■ The only way that a function of r and a 
function of q can be equal for all values 
of r and q is if they are both equal to the 
same constant.

■ Write that constant as              (We will 
see later why this form is chosen!)

■ We then have:

■ Two solutions of this equation are:

■ Prove that            is a solution of
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Solving Laplace’s equation by separating variables

■ Also:                                                            Change variables by setting

■ This gives:

■ We then have: 

■ Rearranging:

■ Differentiating w.r.t. w gives:

■ This is Legendre’s equation (with l instead of n)! 

■ The solutions of this equation are the Legendre polynomials

■ The solutions of the Laplace equation (without f dependence) are therefore:  
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Spherical harmonics

■ If we allow f dependence, the Laplace equation can still be solved by separating 
variables; the angular part of the solution is given by the spherical harmonics:

■ The picture shows the 
first few real spherical
harmonics 

■ The distance from the
origin shows the value of

direction, with blue being
positive and yellow
negative.  
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Schrödinger’s equation for an H-like atom

■ Schrödinger’s equation describing an 
electron moving around a nucleus is:

■ The solutions are of the form:

■ The energy                , i.e. it can only 
take on discrete values.

■ The value of l is limited by

■ The magnitude of the orbital angular 
momentum of the electron is given 
by 

■ The z component of the orbital 
angular momentum is given by 

■ The magnetic quantum number m is 
restricted to the range 

2
2 ( ) .

2
      


V r E

m

6

( , , ) ( ) ( , ). q   q fm
nlm nl lr R r Y

21nE n

1. l n

( 1) .  L l l

. zL m

.  l m l

Wikimedia

Schrödinger’s equation for an H-like atom

■ The value of n, is called the principal 
quantum number.

■ If an electron shifts from an orbit 
with            to one with           , it 
emits (or absorbs) an energy:

■ As                        , this means energy 
is emitted from atoms at particular 
frequencies/wavelengths.

■ As the nuclear charge of (and the 
number of electrons in) an atom 
influence the energy levels, this gives 
rise to distinctive spectra which allow 
atoms to be identified. 

■ Note that, in this solution, the energy 
is independent of l and m.

■ The independence of the energy on 
the magnitude of the angular 
momentum vanishes when relativistic 
effects are considered. 

■ These effects introduce fine structure
to the spectra.

■ A further l dependence is also 
introduced if the atom is placed in a 
magnetic field, the Zeeman effect.

■ This latter effect is used in nuclear 
magnetic resonance spectroscopy 
(NMR) and magnetic resonance 
imaging (MRI).
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