Laplace’s equation in spherical polar coordinates

m In this lecture we will: m A comprehension question for this

¢ See how Legendre polynomials lecture:
arise in the solution of Laplace’s ¢ Prove that the function G=r""
equation in spherical polar is a solution of the equation

coordinates. 1d dG
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¢ Introduce spherical harmonics. G dr dr

¢ See how spherical harmonics are
used in the quantum mechanical
description of atoms.

Laplace’s equation in spherical polar coordinates

In spherical polar coordinates, the gradient is: VJ = r P+ 1 6+ 1 > .
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m Putting them together, we get the Laplacian in spherical polar coordinates:
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m Setting this expression equal to zero gives us Laplace’s equation in spherical
polar coordinates:
V-VV =V¥ =0.
m Lots of physical potentials are described by this equation and many of them
depend on r and 0, but not on ¢.

m Look for solutions to Laplace’s equation that are independent of ¢.
m Also assume we can solve by separating variables, i.e. that V' (r,0) = G(r)H (6).

Solving Laplace’s equation by separating variables

m  We can then rewrite the equation as: m Two solutions of this equation are:
li(rzﬁj:— 1 i[sinGd—HJ. G=r'andG=r"".
Gdr\ dr Hsin® d0 d® ) m Prove that G =/ is a solution of
m The qnly way that a function of 7 and a ii(rl dﬁj — (I +1).
function of 6 can be equal for all values G dr dr

of r and 0 is if they are both equal to the
same constant.

m  Write that constant as /(/ +1). (We will
see later why this form is chosen!)

m  We then have:

ii[rz d—GJ =[(l+1).
G dr dr

Solving Laplace’s equation by separating variables

m Also: — L _d sineiH =[(I +1). Change variables by setting w = cos®.
Hsin6 do do
m This gives: i:dli:_sinei and — 1 i:i
do do dw dw sin® d0® dw

m  We then have: L sin’ Gd—H =I(/+1)or a4 sin’ Gd—Hj =-I(l+1)H
H dw dw dw dw

m Rearranging: i(sinZ ed—Hj +I(I+)H =0=> i((1— wz)d—HjH(l +DH =0.
dw dw dw dw
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m Differentiating w.r.t. w gives: (1—w?) ——2w—+I(l+1)H =0.
dw dw

m This is Legendre’s equation (with / instead of n)!

m The solutions of this equation are the Legendre polynomials F(w) = F(cos 0).

m The solutions of the Laplace equation (without ¢ dependence) are therefore:
G(r)H(0) = r' B(cos 0) and G(r)H (6) = r"'" B(cos0).
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Spherical harmonics

m If we allow ¢ dependence, the Laplace equation can still be solved by separating
variables; the angular part of the solution is given by the spherical harmonics:

Y,"(6,¢) oc sin” Od—B(cos 0)exp[imd], with =/ <m <.

d(cos0)”

m The picture shows the
first few real spherical
harmonics (m =0...3).

m The distance from the
origin shows the value of
¥ (6,9) in the (6,¢)
direction, with blue being
positive and yellow
negative.
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Schrodinger’s equation for an H-like atom

m Schrddinger’s equation describingan ~ m  The magnetic quantum number m is
restricted to the range —/ <m < /.

electron moving around a nucleus is:

2
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m The solutions are of the form:
\anm (}", es \V) = Rnl (r)Ylm (93 ¢)
m The energy E, oc 1/n? i.e. it can only
take on discrete values.
m The value of / is limited by / <n—1.
m The magnitude of the orbital angular
momentum of the electron is given
by L =/I({+1)h.
m The z component of the orbital
angular momentum is given by L, = mh.

Schrédinger’s equation for an H-like atom

m The value of n, is called the principal
quantum number.

m If an electron shifts from an orbit
with n =n, to one with n =n,, it
emits (or absorbs) an energy:
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® ASE = hf = hc/A, this means energy
is emitted from atoms at particular
frequencies/wavelengths.

m  As the nuclear charge of (and the
number of electrons in) an atom
influence the energy levels, this gives
rise to distinctive spectra which allow
atoms to be identified.

Note that, in this solution, the energy
is independent of / and m.

The independence of the energy on
the magnitude of the angular
momentum vanishes when relativistic
effects are considered.

These effects introduce fine structure
to the spectra.

A further / dependence is also
introduced if the atom is placed in a
magnetic field, the Zeeman effect.
This latter effect is used in nuclear
magnetic resonance spectroscopy
(NMR) and magnetic resonance
imaging (MRI).
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