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Partial differential equations

■ In this lecture we will:

♦ Introduce a classification scheme 
for partial differential equations 
(PDEs).

♦ Revisit the superposition 
theorem.

♦ Derive the partial differential 
equation that describes the wave 
motion of an elastic string.

♦ Solve the PDE by separating
variables. 

■ A comprehension question for this 
lecture:

♦ What is the order of the equation

♦ Is this equation linear?

♦ Is it homogeneous?
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Classifying PDEs

■ PDE classification is similar to that 
for ordinary differential equations 
(ODEs).

■ The order is given by the highest 
derivative, e.g. the 1D heat equation

is second order.

■ The equation is linear if the 
dependent variable (u) and its 
derivatives appear only to the first 
power (the heat equation is linear).

■ The equation is homogeneous if 
every term contains the dependent 
variable or one of its derivatives (the 
heat equation is homogeneous).

■ Another similarity to ODEs!

■ If u1 and u2 are solutions of a linear 
PDE, then:

where c1 and c2 are constants, is also 
a solution of the PDE.

■ The proof of this is similar to the
proof for the ODE case…

■ …and is left as an exercise for the 
student!
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Principle of superposition

1 1 2 2 ,u c u c u 
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Equation of motion of string

■ Want to work out how string 
behaves, assume:

♦ Homogeneous, with mass per 
unit length r.

♦ Tension much larger than gravity. 

♦ Small motions (i.e. a and b
small) in one plane:

■ No motion in horizontal direction:

■ Vertical motion, Newton’s second 
law gives:

■ Using first equation:

■ Now:
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Equation of motion of string

■ So we have:

■ and hence:

■ Letting dx → 0 gives:

■ This is the 1D wave equation, 
generally written: 

■ (Use c2 to indicate constant positive!)

■ Solution of equation is function u(x, t).

■ Have boundary conditions u(0, t) = 0 
and u(l, t) = 0 (string fixed at ends).

■ At t = 0, initial deflection is f(x) and 
initial velocity is g(x).

■ This means:

■ Need solution that satisfies these 
conditions!

■ Three steps:

♦ Separate variables, get 2 ODEs.

♦ Solve ODEs satisfying boundary 
conditions.

♦ Put these solutions together to 
solve PDE.
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Solving equation of motion of string – step one

■ Assume can write solution in form:

■ Differentiating gives:

■ Our wave equation becomes:

■ Rearranging:

■ LHS depends only on x, RHS on t, so 
must both be equal to a constant, k.

■ We have:

■ This gives:

■ and

■ These are two ODEs that we can 
solve using the techniques we have 
already developed…

■ …while ensuring that the boundary 
conditions are satisfied, i.e. we need:
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Solving equation of motion of string – step two

■ First look at positive k = m2:

■ Hence:

■ But                                     force 
A = 0 and B = 0, so F = 0: not useful!

■ Try negative k = –p2:

■ This gives:

■ The boundary conditions then give:

■ This means:

■ Setting B = 1, we have an infinite 
number of solutions of the form: 

■ The equation for G with k = –(np/l)2 is:

■ Writing                     we get:

■ This has solutions:

■ Hence a solution of the PDE is:
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Solving equation of motion of string – step three

■ Some jargon:

■ The un(x, t) are called
eigenfunctions and the n

eigenvalues (or characteristic 
functions and values, 
respectively).

■ The eigenvalue set 1, 2, 
3… is called the spectrum.

■ The motion with of the string 
with wavelength n is called 
the nth normal mode.

■ In order to satisfy the initial 
conditions (the shape and 
velocity of string at t = 0), we 
need to exploit the 
superposition theorem...

■ …write the solution in the form:

■ Then                                                   and

■ Choosing the An to be the Fourier coefficients 
for f(x) and the Bn to be those for g(x) ensures 
that the initial conditions are satisfied.
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An example – initial
deflection triangle 

■ Find solution to 1D wave equation
with initial conditions g(x) = 0 and

■ g(x) = 0 implies Bn = 0 for all n.

■ Fourier analysis of f(x) gives:

■ Hence:
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