
08/03/19

1

Filters and forced oscillations –
Fourier series in physics

■ In this lecture we will:

♦ See a practical use of Fourier 
series in analysing electronic 
circuits.

♦ See how 2nd order differential 
equations can arise in physical 
situations such as the motion of 
masses on springs.

♦ Examine the case of periodic 
“forcing terms” and see how to 
deal with them using Fourier 
series.

♦ Do an example.

■ A comprehension question for this 
lecture:

♦ Deduce as much as you can about 
the coefficients in the Fourier 
series for the following function:

♦ Compare your guesses with the 
true values.
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Fourier series in practical physics

■ Suppose we have two electronic 
circuits that only let through signals 
in  certain frequency ranges:

♦ f < ftop (a “low-pass” filter).

♦ f > fbot (a “high-pass” filter).

■ What will we see if we send a square 
wave signal through these circuits?

■ Input:

■ Represent as a Fourier series.

■ Show that:

■ First few terms:
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Why use Fourier Series?

■ If add up first 20 terms get reasonable 
representation of input:

■ What do we get if we pass this signal 
through our low- and high-pass 
filters?

■ Find out by applying effect of circuit 
to sine and cosine terms that make up 
input, then adding them up again. 

■ Low-pass (cut off terms above tenth):

■ High-pass (remove terms below fourth):
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Forced oscillations

■ Consider a mass m attached to a 
spring with spring constant k.

■ The force on the mass, at distance y 
from equilibrium, is

■ Newton’s second law relates the 
force to the acceleration,

■ Hence

■ Now assume that an external force 
r(t) is also applied to the mass.

■ Then:

■ We have seen how to solve this if r(t) 
is something like

■ What if r(t) is a more complicated 
periodic function?

■ Can solve by representing r(t) as a 
Fourier series.

■ An example:
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Forced oscillations

■ First compute the Fourier series for r(t).

■ Only cosine terms (even function), a0 is zero 
(average of r(t)) and 

■ Hence:

■ Now                 is 2 if n is odd 
and zero if n is even, so:

■ The term in cos nt in the 
series for r(t) is:
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Forced oscillations

■ Look at the original equation for 
this cos nt term:

■ The particular integral is of the 
form:

■ Equating coefficients gives:

■ Since the complete force term is the sum 
of                                              the full 
particular integral yp will be the sum of 
terms y1, y3, y5…

■ That is:

■ The solution of the homogeneous 
equation is:

■ The full solution is                   :
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Forced oscillations

■ We see the force term excites a 
spectrum of oscillations with 
amplitudes that decrease with 
frequency.

■ There is no friction; initial conditions 
influence the oscillations for all t.

■ If motion due to force only:

■ Motion including component due to a 
particular initial position and velocity.

■ Friction would cause component due to 
initial motion to die out, leaving only 
that due to the force. 
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Resonance

■ What happens if we change the spring 
constant?

■ If the chosen value means that the 
natural frequency of the system is the 
same as one of the frequencies in the 
force term, resonance occurs.

■ E.g. pick 

■ Then 

■ In the particular integral, we now have 
to use 
as yc already contains cos 5t and sin 5t 
terms.

■ We can see this frequency component 
(“mode”) has an amplitude that grows 
with time, there is a “resonance”.

■ If there is no (or only little) friction, 
this mode can become large: the 
results can be quite interesting!

■ Tacoma narrows bridge collapse.
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