Fourier series

- In this lecture we will:
 - See how to represent functions with period 2π using Fourier series.
 - Derive expressions for the coefficients in these series.
 - Do an example.

- A comprehension question for this lecture:
 - Show that:

$$\int_{-\pi}^{\pi} \sin mt \sin nt \, dt = 0 \text{ if } m \neq n.$$

Fourier series

- Fourier series are a basic tool for representing periodic functions.
- A function is periodic, with period T, if f(t+T) = f(t).
- For example, cosines and sines have period 2π : $\cos t = \cos(t + 2\pi)$, and $\sin t = \sin(t + 2\pi)$.
- If $f(t) = f(t + 2\pi)$, we can write the function as a sum of cosine and sine terms:

$$f(t) = a_0 + a_1 \cos t + b_1 \sin t + a_2 \cos 2t + b_2 \sin 2t + ...$$

$$= a_0 + \sum_{n=1}^{\infty} a_n \cos nt + \sum_{n=1}^{\infty} b_n \sin nt$$

- Each term has period 2π , so this is also true for the sum.
- Look at an example, a square wave:

$$f(t) = \begin{cases} -1 \text{ if } -\pi \le t < -\frac{\pi}{2} \\ 1 \text{ if } -\frac{\pi}{2} \le t < \frac{\pi}{2} \\ -1 \text{ if } \frac{\pi}{2} \le t < \pi \end{cases}$$

 First try and visualise how this can be represented as a sum of cosines and sines.

1

3

2

Fourier series of square wave by inspection

Square, cosine and sine waves:

See cosine can form approx. to this square wave, but sine doesn't work: Square, sine, cosine waves

- (Amplitude of cosine above is 1.3.)
- To get better approx. need to flatten peaks and sharpen flanks of cosine.

Fourier series of square wave by inspection

Sketch the cosine curve with freq. 1 (period 2π) on the graph, below.

Can adding a cosine with freq. 2 (i.e. period π) and appropriate amplitude improve the approximation?

 Try adding a cosine with freq. 3, amp. 0.5:
 Square, cosine waves

10 05 -0.5 -1.0 -1.0 -7.5 -5.0 -2.5 00 2.5 5.0 7.5 10.0

- Looks better!
- How can we determine the freq.s and amplitudes of the cosines and sines that give the best approximation?

Determining Fourier coefficients

 Use the fact that cosines and sines form a set of orthonormal basis functions:

$$\begin{split} & \int_{-\pi}^{\pi} \cos nt \cos mt \ dt = 0, \ for \ n \neq m, \\ & \int_{-\pi}^{\pi} \sin nt \sin mt \ dt = 0, \ for \ n \neq m, \\ & \int_{-\pi}^{\pi} \sin nt \cos mt \ dt = 0, \ for \ m \neq n, \\ & \int_{-\pi}^{\pi} \cos^2 nt \ dt = \int_{-\pi}^{\pi} \sin^2 nt \ dt = \pi. \end{split}$$

Example proof one:

$$\int_{-\pi}^{\pi} \sin nt \cos mt \, dt = =$$

$$\int_{-\pi}^{\pi} \frac{1}{2} \left(\sin(n+m)t + \sin(n-m)t \right) dt$$

$$=$$
Same is
$$\int_{-\pi}^{\pi} \frac{1}{2} \left(\sin(n+m)t + \sin(n-m)t \right) dt$$

$$=$$
Hence:
$$\left[\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta \right]$$

$$\int_{-\pi}^{\pi} \sin nt \cos nt \, dt =$$

Now cosine is even, that is, $cos(\theta) = cos(-\theta)$, so:

$$\begin{aligned} \cos((n+m)t\big|_{-\pi}^{\pi} \\ &= \cos\left(((n+m)\pi\right) - \cos\left(-(n+m)\pi\right) \\ &= \cos\left(((n+m)\pi\right) - \cos\left(((n+m)\pi\right)\right) \end{aligned}$$

■ Same is true for 2nd term above.

$$\int_{-\pi}^{\pi} \sin nt \cos mt \, dt = 0.$$

Determining Fourier coefficients

Example proof two:

$$\int_{-\pi}^{\pi} \cos^2 nt \, dt = \int_{-\pi}^{\pi} \frac{1}{2} (1 + \cos 2nt) \, dt \qquad \int_{-\pi}^{\pi} f(t) \cos mt \, dt =$$

$$[\cos 2\alpha = 2\cos^2 \alpha - 1]$$

Hence:

$$\int_{-\pi}^{\pi} \cos^2 nt \, dt = \frac{1}{2} \left[t + \frac{\sin 2nt}{2n} \right]_{-\pi}^{\pi}$$
Every term is zero except for when $m = n$.

In this case the "sin × cos" term is zero (odd function integrated over symmetric cond) and we are left with:

■ We can use these orthonormality properties to determine the coefficients in our Fourier series:

$$f(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos nt + \sum_{n=1}^{\infty} b_n \sin nt.$$

■ E.g. multiply f(t) by cos mt and integrate.

$$\begin{split} &\int_{-\pi}^{\pi} f(t) \cos mt \, dt = \\ &\int_{-\pi}^{\pi} \left(a_0 + \sum_{n=1}^{\infty} a_n \cos nt + \sum_{n=1}^{\infty} b_n \sin nt \, \right) \cos mt \, dt. \end{split}$$

(odd function integrated over symmetric range) and we are left with:

$$\begin{split} &\int_{-\pi}^{\pi} f(t) \cos mt \, dt = \int_{-\pi}^{\pi} a_m \cos^2 mt \, dt = a_m \pi \\ &\Rightarrow a_m = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos mt \, dt. \end{split}$$

5

Determining Fourier coefficients

■ Similar proofs lead to the full ■ First, constant term: set of expressions needed to determine the Fourier coefficients.

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) dt,$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos nt dt,$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin nt \, dt.$$

 Go back to the square wave example and work out the coefficients using the above formulae.

$$\begin{split} a_0 &= \frac{1}{2\pi} \int_{-\pi}^{-\pi/2} (-1) \, dt + \frac{1}{2\pi} \int_{-\pi/2}^{\pi/2} (1) \, dt + \frac{1}{2\pi} \int_{\pi/2}^{\pi} (-1) \, dt \\ &= \frac{1}{2\pi} \Big[-t \Big]_{-\pi}^{-\pi/2} + \frac{1}{2\pi} \Big[t \Big]_{-\pi/2}^{\pi/2} + \frac{1}{2\pi} \Big[-t \Big]_{\pi/2}^{\pi} \\ &= 0. \end{split}$$

- Also, see that a₀ is the average of the function over the interval $[-\pi, \pi]$.
- Hence, expect $a_0 = 0$ for this function.
- Function f(t) is even, so there can be no contributions from the odd sine functions, hence $b_n = 0$.

6

Determining Fourier coefficients

Cosine is even, so it will contribute to series.

$$\begin{split} a_n &= \frac{1}{\pi} \int_{-\pi}^{-\pi/2} -\cos nt \, dt + \frac{1}{\pi} \int_{-\pi/2}^{\pi/2} \cos nt \, dt + \frac{1}{\pi} \int_{\pi/2}^{\pi} -\cos nt \, dt \\ &= \frac{1}{\pi} \left[-\frac{\sin nt}{n} \right]_{-\pi}^{-\pi/2} + \frac{1}{\pi} \left[\frac{\sin nt}{n} \right]_{-\pi/2}^{\pi/2} + \frac{1}{\pi} \left[-\frac{\sin nt}{n} \right]_{\pi/2}^{\pi} \\ &= \frac{1}{n\pi} \left(-\sin \frac{-n\pi}{2} + \sin \frac{n\pi}{2} - \sin \frac{-n\pi}{2} + \sin \frac{n\pi}{2} \right) \\ &= \frac{4}{n\pi} \sin \frac{n\pi}{2}. \end{split}$$

Numerically:

n	a_n
1	1.27
2	0
3	-0.42
4	0
5	0.25

■ The first few terms are:

$$a_1 = \frac{4}{\pi}$$
, $a_2 = 0$, $a_3 = -\frac{4}{3\pi}$, $a_4 = 0$, $a_5 = \frac{4}{5\pi}$...

7

8

Square wave as Fourier series

Square wave with first three non-zero Fourier terms (i.e. five terms):

Square wave, three terms

- Opposite, square wave with:
 - Fourier series for square wave, first three non-zero terms.
 - Fourier series, first twenty terms.