Vector calculus

m In this lecture we will:
¢ Define the Laplace operator, or
Laplacian.
¢ Introduce the Poisson and
Laplace equations.
¢ Look at spherical polar and
cylindrical coordinate systems.

® Some comprehension questions for
this lecture.

¢ Write down the Laplace equation.

¢ Show that the surface area of a
sphere of radius R is 47R2.

¢ Write down the equations that
give the cylindrical coordinates
1, ¢ and z in terms of the
Cartesian coordinates x, y and z.

The Laplace operator and Poisson’s Equation

m The Laplace operator, or the
Laplacian, is the operator
“divergence of gradient”.

m  Written V? or sometimes 0.
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The Poisson Equation is:
VZh(x,y,2) = g(x,¥,2)

Setting g(X, y, z) = 0 in the Poisson
Equation gives Laplace’s Equation:
V24(x,y,z) =0.

These equations appear often in physics.
For example, we know:

E=-V¢ and V-E=F.
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Putting these together:
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Numerical solution of Poisson’s Equation

m Taylor’s expansion at x; in 1D:
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m  Adding these gives:
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m Substitute in Poisson’s equation:
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m Rewriting:
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m Extending to 2D:

h. *h’
T
(h,”+h,)
< ¢i—1,j+¢i+l,j+¢i,j71+¢i,j+l+ Pij
hx2 hy2 €€

m Use this to solve iteratively for ¢.
m “Tortoise convergence” i.e. sure, but

slow!

m Look at an example...

Numerical solution of Poisson’s Equation
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m Put a charged blob in the centre of a
box with side walls at earth potential.
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Use the method of relaxation to
calculate the resulting potential
distribution.

Final potential
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Spherical polar coordinates

m Sometimes use coordinate systems
other than Cartesian (x, y) or (X, y, Z).

m E.g. circular motion, use (r, 0) rather
than (x, y) coordinates.

m Consider spherical polar coords:

m Relationship between Cartesian and
spherical polar coordinates:
X =rsincosd
y =rsin0sin¢
zZ=r1cos0

m Note, these are “physics” definitions,
mathematicians often label the 6 and
¢ coordinates the other way round!

m Inverting the above:

r=4x’+y’ +7°
6 = acos N —
X4y +7?

= Y
¢—atan[xj s

Spherical polar coordinates

m Line element from
T =(r,0,¢) to T +dr.

m  dr =(dr,rdO,rsin 6d¢)

m Variation of the spherical polar
coordinates produces the following
volume element: A

® Volume of this element is:
dV =drxrd®xrsin6d¢
=r’sin0dOd¢dr

Spherical polar coordinates

m The surface element spanning from
0 to 6+d6 and ¢ to d+do is
dS=rdOxrsin6dd
=r’sin0d0d¢
m Solid angle subtended by this element
0=-%
r’
=sin0d0d¢

m Can calculate area of sphere of radius
R by integrating over 0 and ¢ (try it!):
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m  Get volume of sphere by integrating
over r, 0 and ¢.
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Spherical polar and cylindrical coordinates

m Gradient in Spherical Polar
coordinate system:
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m Divergence:
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m Expressions for curl and Laplacian in
Spherical Polars are messy — look
them up when you need them!

m Cylindrical coordinate system also
often useful.

T X =1Cosd
T y=rsin¢
%z z=2
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Cylindrical Coordinates

m Gradient in cylindrical coordinate
system:
yy=|V 1oV v
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m Divergence:
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m Cartesian, spherical polar and
cylindrical coordinates are the most
commonly used systems.

m  General approach to use of
orthogonal curvilinear coordinate
systems described in text book.

m  Good introduction to some of the
ideas that are important in General
Relativity.
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