Vector calculus

- In this lecture we will:
 - Define the Laplace operator, or Laplacian.
 - Introduce the Poisson and Laplace equations.
 - Look at spherical polar and cylindrical coordinate systems.
- Some comprehension questions for this lecture.
 - Write down the Laplace equation.
 - Show that the surface area of a sphere of radius R is $4\pi R^2$.
 - Write down the equations that give the cylindrical coordinates r, φ and z in terms of the Cartesian coordinates x, y and z.

The Laplace operator and Poisson's Equation

- The Laplace operator, or the Laplacian, is the operator "divergence of gradient".
- Written ∇^2 or sometimes \square .

$$\nabla^2 = \nabla \cdot \nabla$$

2

$$\begin{split} &= \left(\frac{\partial}{\partial x} \quad \frac{\partial}{\partial y} \quad \frac{\partial}{\partial z} \right) \cdot \left(\frac{\partial}{\partial x} \quad \frac{\partial}{\partial y} \quad \frac{\partial}{\partial z} \right) \\ &= \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \end{split}$$

• E.g.
$$\nabla^2 \phi = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) \phi$$

$$=\frac{\partial^2\varphi}{\partial x^2}+\frac{\partial^2\varphi}{\partial y^2}+\frac{\partial^2\varphi}{\partial z^2}$$

- The Poisson Equation is: $\nabla^2 \phi(x, y, z) = g(x, y, z)$
- Setting g(x, y, z) = 0 in the Poisson Equation gives Laplace's Equation: $\nabla^2 \phi(x, y, z) = 0$.
- These equations appear often in physics.
- For example, we know:

$$\vec{E} = -\nabla \phi$$
 and $\nabla \cdot \vec{E} = \frac{\rho}{\epsilon_0}$

Putting these together:

$$\nabla \cdot (-\nabla \phi) = \frac{\rho}{\varepsilon_0}$$

$$\Rightarrow \nabla^2 \phi = -$$

1

Numerical solution of Poisson's Equation

- Taylor's expansion at x_i in 1D: $\phi(x_i + h) \approx \phi_i + h \frac{\partial \phi_i}{\partial x} + \frac{h^2}{2} \frac{\partial^2 \phi_i}{\partial x^2},$ $\phi(x_i h) \approx \phi_i h \frac{\partial \phi_i}{\partial x} + \frac{h^2}{2} \frac{\partial^2 \phi_i}{\partial x^2}.$ Adding these gives:
- Adding these gives: $\phi_{i+1} + \phi_{i-1} \approx 2\phi_i + h^2 \frac{\partial^2 \phi_i}{\partial x^2}.$
- Hence: $\frac{\partial^2 \phi_i}{\partial x^2} = \frac{1}{h^2} (\phi_{i-1} + \phi_{i+1} - 2\phi_i)$
- Substitute in Poisson's equation: $\frac{1}{h^2} (\phi_{i-1} + \phi_{i+1} 2\phi_i) = -\frac{\rho_i}{\epsilon_i \epsilon_0}$

Rewriting:

$${\varphi_i}^{\mathrm{new}} = \frac{h^2}{2} \Biggl(\frac{\varphi_{i+1} + \varphi_{i-1}}{h^2} + \frac{\rho_{i,j}}{\epsilon_{i,j}\epsilon_0} \Biggr)$$

Extending to 2D:

$$\phi_{i,j}^{new} = \frac{{h_x}^2 {h_y}^2}{2({h_x}^2 + {h_y}^2)}$$

$$(\phi_{i-1,j} + \phi_{i+1,j-1}, \phi_{i,j-1} + \phi_{i,j+1-1}, \rho_{i,j-1})$$

- Use this to solve iteratively for φ.
- "Tortoise convergence" i.e. sure, but slow!
- Look at an example...

Numerical solution of Poisson's Equation

 Put a charged blob in the centre of a box with side walls at earth potential. Use the method of relaxation to calculate the resulting potential distribution.

3

Spherical polar coordinates

- Sometimes use coordinate systems other than Cartesian (x, y) or (x, y, z).
- **E.g.** circular motion, use (r, θ) rather than (x, y) coordinates.
- Consider spherical polar coords:

Relationship between Cartesian and spherical polar coordinates:

 $x = r \sin \theta \cos \phi$

 $y = r \sin \theta \sin \phi$

 $z = r \cos \theta$

- Note, these are "physics" definitions, mathematicians often label the θ and φ coordinates the other way round!
- Inverting the above:

$$r = \sqrt{x^2 + y^2 + z^2}$$

$$\theta = a\cos\left(\frac{z}{\sqrt{x^2 + y^2 + z^2}}\right)$$

$$\phi = \operatorname{atan}\left(\frac{y}{x}\right)$$

Spherical polar coordinates

Line element from $\vec{r} = (r, \theta, \phi)$ to $\vec{r} + d\vec{r}$.

 $\mathbf{d}\mathbf{r} = (\mathbf{d}\mathbf{r}, \mathbf{r}\,\mathbf{d}\theta, \mathbf{r}\sin\theta\,\mathbf{d}\phi)$

 Variation of the spherical polar coordinates produces the following volume element:

Volume of this element is: $dV = dr \times r d\theta \times r \sin \theta d\phi$ $= r^2 \sin \theta d\theta d\phi dr$

5

Spherical polar coordinates

- The surface element spanning from θ to $\theta + d\theta$ and ϕ to $\phi + d\phi$ is $dS = r d\theta \times r \sin \theta d\phi$
- Solid angle subtended by this element

$$d\Omega = \frac{dS}{r^2}$$
$$= \sin\theta \, d\theta \, d\phi$$

 $= r^2 \sin \theta d\theta d\phi$

 Can calculate area of sphere of radius R by integrating over θ and ϕ (try it!):

$$A = \int\limits_0^{2\pi} \int\limits_0^\pi R^2 \sin\theta \, d\theta \, d\varphi$$

■ Get volume of sphere by integrating over r, θ and ϕ .

$$V = \int_{-\infty}^{R} \int_{-\infty}^{2\pi} \int_{-\infty}^{\pi} r^2 \sin \theta \, d\theta \, d\phi \, dr$$

$$=\frac{R^3}{3}\int_{1}^{2\pi}\int_{1}^{\pi}\sin\theta\,d\theta\,d\phi$$

$$=\frac{R^3}{3}\int_0^{2\pi}-\cos\theta\Big|_0^{\pi}d\phi$$

$$=\frac{2R^3}{3}\int_0^{2\pi}d\phi$$

$$=\frac{4\pi R^3}{3}$$

Spherical polar and cylindrical coordinates

 Gradient in Spherical Polar coordinate system:

$$\begin{split} \nabla V = & \left(\frac{\partial V}{\partial r} - \frac{1}{r} \frac{\partial V}{\partial \theta} - \frac{1}{r \sin \theta} \frac{\partial V}{\partial \phi} \right) \\ = & \frac{\partial V}{\partial r} \hat{r} + \frac{1}{r} \frac{\partial V}{\partial \theta} \hat{\theta} + \frac{1}{r \sin \theta} \frac{\partial V}{\partial \phi} \hat{\phi} \end{split}$$

Divergence:

$$\begin{split} \nabla \cdot \vec{A} &= \frac{1}{r^2} \frac{\partial}{\partial r} r^2 A_r + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} \sin \theta \, A_\theta \\ &+ \frac{1}{r \sin \theta} \frac{\partial}{\partial \varphi} A_\varphi \end{split}$$

- Expressions for curl and Laplacian in Spherical Polars are messy - look them up when you need them!
- Cylindrical coordinate system also often useful.

7

8

6

Cylindrical Coordinates

Gradient in cylindrical coordinate system:

$$\begin{split} \nabla V &= \left(\frac{\partial V}{\partial r} - \frac{1}{r} \frac{\partial V}{\partial \varphi} - \frac{\partial V}{\partial z} \right) \\ &= \frac{\partial V}{\partial r} \hat{r} + \frac{1}{r} \frac{\partial V}{\partial \varphi} \hat{\varphi} + \frac{\partial V}{\partial z} \hat{z} \end{split}$$

Divergence:

$$\nabla \cdot \bar{A} = \frac{1}{r} \frac{\partial}{\partial r} r A_r + \frac{1}{r} \frac{\partial}{\partial \varphi} A_{\varphi} + \frac{\partial}{\partial z} A_z$$

- Cartesian, spherical polar and cylindrical coordinates are the most commonly used systems.
- General approach to use of orthogonal curvilinear coordinate systems described in text book.
- Good introduction to some of the ideas that are important in General Relativity.

9