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Vector calculus – some odds and ends

■ In this lecture we will:

♦ Look again at finding the 
potential associated with a field 
using the expression: 

♦ Look at another way of finding 
the potential associated with a 
field.

♦ Look at an exam question or two.

■ Some comprehension questions for 
this lecture.

♦ Calculate the curl of the field

♦ Is it possible to represent this 
field as the gradient of a scalar 
potential?

♦ What is the quantity for 
gravitational fields that is  
analogous to electric charge for 
electric fields?
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More on deriving a potential from a field

■ Check path independence.

■ Example field

■ Find the associated potential,

■ Integrate along
with t running from 0 to 1.

■ Choose                              so: 

■

■ This then gives:

■ Same result as with 
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Alternative way of getting a potential from a field

■ See by doing an example.

■

■

■ [1]

[2]

[3]

■ From [1], integrating w.r.t. x:

■ Take partial derivative w.r.t. y.

■ From [2]:

■ This now gives:
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Potential from a field

■ Now take the partial derivative with 
respect to z:

■ Compare this to [3]:

■ We now have:

■ Potentials are related to potential 
energies.

■ Some examples:

■ Electric potential.

♦ (Scalar) field V(x y z).

♦ Units, volts = joules/coulomb.

♦ A charge q in the field V has a 
potential energy U = qV (joules).

■ Gravitational potential.

♦ G(x, y, z) = g × z (close to Earth).

♦ Units J/kg.

♦ A mass m in the field G has a 
potential energy U = m × G (joules).
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Constants in potentials

■ Can measure differences in potential 
energy (and hence potential), but not 
absolute values.

■ Gravitational example:

■ Gravitational potential in “table 
coordinates” is G(z) = gz.

■ Gravitational potential in “floor 
coordinates” is G(z/) = gz/ = gz+ ghT.

■ Potential energy change when ball 
falls to table, in table coordinates:

♦ DU = mghB – 0
= mghB.

■ Potential energy change when ball 
falls to table, in floor coordinates:

♦ DU = mg(hB + hT) – mghT

= mghB. hT
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