Vector calculus - some odds and ends

- In this lecture we will:
- Look again at finding the potential associated with a field using the expression:

$$
\phi=\int_{C} \stackrel{\rightharpoonup}{\mathrm{E}} \cdot \mathrm{~d} \stackrel{\rightharpoonup}{\mathrm{r}} .
$$

- Look at another way of finding the potential associated with a field.
- Look at an exam question or two
- Some comprehension questions for this lecture.
- Calculate the curl of the field

$$
\stackrel{\rightharpoonup}{\mathrm{E}}=\left(\begin{array}{l}
6 x y^{2}+2 x z^{3} \\
6 x^{2} y-6 y^{2} z \\
3 x^{2} z^{2}-2 y^{3}
\end{array}\right)
$$

- Is it possible to represent this field as the gradient of a scalar potential?
- What is the quantity for gravitational fields that is analogous to electric charge for electric fields?

More on deriving a potential from a field

- Check path independence.
- Example field $\overrightarrow{\mathrm{E}}(\mathrm{x}, \mathrm{y})=\left(\begin{array}{ll}2 \mathrm{x}+\mathrm{y} & \mathrm{x}\end{array}\right)$.
- Find the associated potential,

$$
\phi=\int_{C} \stackrel{\rightharpoonup}{\mathrm{E}} \cdot \mathrm{~d} \overrightarrow{\mathrm{r}}
$$

- Integrate along $\overrightarrow{\mathrm{r}}(\mathrm{t})=(\mathrm{x}(\mathrm{t}) \quad \mathrm{y}(\mathrm{t}))$ with t running from 0 to 1 .
- Choose $\vec{r}(t)=\left(\begin{array}{ll}x t^{2} & y t^{2}\end{array}\right)$ so:

$$
\begin{aligned}
\phi(x, y) & =\int_{0}^{1} \overrightarrow{\mathrm{E}}(\mathrm{x}(\mathrm{t}), \mathrm{y}(\mathrm{t})) \cdot \frac{\mathrm{d} \overrightarrow{\mathrm{r}}(\mathrm{t})}{\mathrm{dt}} \mathrm{dt} \\
& =\int_{0}^{1} \mathrm{E}_{\mathrm{x}}(\mathrm{x}(\mathrm{t}), \mathrm{y}(\mathrm{t})) \frac{\mathrm{dx}(\mathrm{t})}{d t} d t \\
& +\int_{0}^{1} \mathrm{E}_{\mathrm{y}}(\mathrm{x}(\mathrm{t}), \mathrm{y}(\mathrm{t})) \frac{\mathrm{dy}(\mathrm{t})}{\mathrm{dt}} \mathrm{dt}
\end{aligned}
$$

- $\frac{\mathrm{dx}(\mathrm{t})}{\mathrm{dt}}=\frac{\mathrm{dxt}^{2}}{\mathrm{dt}}=2 \mathrm{xt}, \frac{\mathrm{dy}(\mathrm{t})}{\mathrm{dt}}=2 \mathrm{yt}$.
- This then gives:
$\phi=\int_{0}^{1}\left[2 \mathrm{xt}^{2}+\mathrm{yt}^{2}\right] \times 2 \mathrm{xtdt}+\int_{0}^{1} \mathrm{xt}^{2} \times 2 \mathrm{yt} \mathrm{dt}$
$=\int_{0}^{1}\left[4 x^{2}+2 x y\right] \times t^{3} d t+\int_{0}^{1} 2 x y \times t^{3} d t$
$=\frac{t^{4}}{4} \times\left(4 x^{2}+2 x y\right)+\frac{t^{4}}{4} \times\left. 2 x y\right|_{0} ^{1}$
$=x^{2}+\frac{x y}{2}+\frac{x y}{2}$
$=x^{2}+x y$.
- Same result as with $\overrightarrow{\mathrm{r}}(\mathrm{t})=\left(\begin{array}{ll}\mathrm{xt} & \mathrm{yt}\end{array}\right)$.

2

Potential from a field Constants in potentials

- Now take the partial derivative with respect to z :
$\frac{\partial}{\partial z} \phi=3 x^{2} z^{2}-2 y^{3}+\frac{\partial}{\partial z} g(z)$.
- Compare this to [3]:
$3 x^{2} z^{2}-2 y^{3}=3 x^{2} z^{2}-2 y^{3}+\frac{\partial}{\partial z} g(z)$
$\Rightarrow \frac{\partial}{\partial \mathrm{z}} \mathrm{g}(\mathrm{z})=0$
$\Rightarrow \mathrm{g}(\mathrm{z})=$ const.
- We now have:
$\phi=3 x^{2} y^{2}-2 y^{3} z+x^{2} z^{3}+$ const.
- Potentials are related to potential energies.
- Some examples:
- Electric potential.
- (Scalar) field V(x y z).
- Units, volts = joules/coulomb.
- A charge q in the field V has a potential energy $\mathrm{U}=\mathrm{qV}$ (joules).
- Gravitational potential.
- $\mathrm{G}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{g} \times \mathrm{z}$ (close to Earth).
- Units J/kg.
- A mass m in the field G has a potential energy $\mathrm{U}=\mathrm{m} \times \mathrm{G}$ (joules).

Constants in potentials

- Can measure differences in potential energy (and hence potential), but not absolute values.
- Gravitational example:

- Gravitational potential in "table coordinates" is $\mathrm{G}(\mathrm{z})=\mathrm{gz}$.
- Gravitational potential in "floor coordinates" is $\mathrm{G}\left(\mathrm{z}^{\prime}\right)=\mathrm{gz}^{\prime}=\mathrm{gz}^{+} \mathrm{gh}_{\mathrm{T}}$
- Potential energy change when ball falls to table, in table coordinates
- $\Delta \mathrm{U}=\mathrm{mgh}_{\mathrm{B}}-0$

$$
=\operatorname{mgh}_{\mathrm{B}}
$$

■ Potential energy change when bal falls to table, in floor coordinates

- $\Delta \mathrm{U}=m g\left(\mathrm{~h}_{\mathrm{B}}+\mathrm{h}_{\mathrm{T}}\right)-\mathrm{mgh}_{\mathrm{T}}$
$=\mathrm{mgh}_{\mathrm{B}}$.

Phys 108 Exam May 2012

MATHEMATICS FOR PHYSICISTS II

TIME ALLOWED: 3 hours
INSTRUCTIONS TO CANDIDATES

Answer all questions.

Question 1 carries 50% of the total marks.
Questions 2 and 3 each cany 25% of the total marks.
Answer either part (a) or part (b) of questions 2 and 3 .
In the event of a student answering both parts of an either/or question and not clearly crossing out
one answer, only the answer to part (a) of the question will be marked.
The marks allotted to each part of a question are indicated in square brackets.
All symbols have their usual meanings umless otherwise stated.

6

Phys 108 Exam May 2012

Question 1.

(a)

The matrices \mathbf{A}, \mathbf{B} and \mathbf{C} are given by:

$$
\mathbf{A}=\left(\begin{array}{ccc}
-1 & 1 & 0 \\
1 & -1 & 1 \\
-1 & -1 & 1
\end{array}\right), \mathbf{B}=\left(\begin{array}{ccc}
0 & \frac{1}{2} & -\frac{1}{2} \\
1 & \frac{1}{2} & -\frac{1}{2} \\
1 & 1 & 0
\end{array}\right) \text { and } \mathbf{C}=\left(\begin{array}{ccc}
1 & -2 & 0 \\
2 & 0 & 1
\end{array}\right) \text {. }
$$

Calculate the products $\mathbf{A B}$ and $\mathbf{C A}$.
State which of the following expressions are correct:
(i) $\mathbf{A}=\mathbf{B}$.
(ii) $\mathbf{B A}=\mathbf{I}$, where \mathbf{I} is the unit matrix
(iii) $\mathbf{A}^{-1}=\mathbf{B}$.
(iv) $\mathbf{B}=\frac{1}{4}\left(\begin{array}{ccc}0 & 2 & -2 \\ 1 & 2 & -2 \\ 1 & 1 & 0\end{array}\right)$.

Calculate the determinant $|\mathbf{A}|$ and the transpose \mathbf{A}^{T} of \mathbf{A}.

Phys 108 Exam May 2012

(b)

Firstly, use Cramer's method to solve the system of simultaneous equations:
$y+2 z=-2$
$z+2 x=5$
$x+2 y=3$.
Secondly, write down the above simultaneous equations in the matrix form $\mathbf{A} \bar{x}=\overline{\mathbf{c}}$, where \mathbf{A} is a
3×3 matrix and $\overline{\mathrm{x}}$ and $\overline{\mathrm{c}}$ are column vectors.
Invert A and use the inverted matrix to again solve the system of simultaneous equations.
(c)

A vector field is defined by $\overline{\mathrm{E}}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{x}^{2} \hat{\mathbf{i}}+\mathrm{xy} \hat{\mathbf{j}}+\mathrm{z}^{2} \hat{\mathbf{k}}$, where $\hat{\mathrm{i}}, \hat{\mathrm{j}}$ and $\hat{\mathbf{k}}$ are unit vectors in the x, y
and z directions of a Cartesian coordinate system.
Find the divergence $\nabla \cdot \overline{\mathrm{E}}$.
Calculate the curl, $\nabla \times \overline{\mathrm{E}}$. [7]

