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Phys108 – Mathematics for Physicists II

■ Lecturer:

♦ Prof. Tim Greenshaw.

♦ Oliver Lodge Lab, Room 333.

♦ Office hours, Fri. 11:30…13:30.

♦ Email green@liv.ac.uk

■ Lectures:

♦ Monday 14:00, HSLT.

♦ Tuesday 13:00, HSLT. 

♦ Thursday 09:00, HSLT.

■ Problems Classes:

♦ Friday 9:00...11:00.

♦ Central Teaching Labs, GFlex.

■ Outline syllabus:

♦ Matrices.

♦ Vector calculus.

♦ Differential equations.

♦ Fourier series.

♦ Fourier integrals.

■ Recommended textbook:

♦ “Calculus, a Complete Course”, 
Adams and Essex, (Pub. Pearson).

■ Assessment:

♦ Exam end of S2: 70%.

♦ Problems Classes: 20%.

♦ Homework: 10%.
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Vector calculus – the gradient of a scalar field

■ In this lecture we will:

♦ Revise partial differentiation.

♦ Introduce scalar and vector fields.

♦ Look at some methods of 
visualising scalar and vector 
fields.

♦ Define the gradient of a scalar 
field.

♦ Look at electric fields and 
potentials.

■ Some comprehension questions for 
this lecture.

♦ Explain which of the following 
can be represented as scalar and 
which as vector fields:

• Atmospheric pressure.

• Ocean currents.

• Height above sea level across 
the UK.

♦ Calculate the electric field 
associated with the electric 
potential (x, y,z) 4z. 
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Some revision – partial derivatives

■ Consider a function of two variables, 
f(x, y).

■ The partial derivatives of this 
function w.r.t. x and y are defined by:

■ Example: f(x, y) = xy2.

■ Geometrically, consider z = f(x, y) as 
shown opposite:

■ Keep y = y0, then z = f(x, y0) traces 
out the red curve shown.

■ The slope of this curve at (x0, y0) is 
given by 
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Some revision – partial derivatives

■ Calculate the following derivatives:

■

■
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Scalar fields

■ A scalar field is a scalar that is 
defined at all points in space.

■ Example, electric potential around  
point charge:

■ Can plot in “3D” for field defined in 
(x, y) plane, or use contour plot.

■ The contours are “equipotentials”:
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Contour plot of Snowdon
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Scalar fields and equipotentials

■ Electric potential in drift chamber 
illustrated using equipotentials.

■ Electric field always normal to 
equipotentials.

■ Electrons produced in drift volume 
by high energy charged particle 
passing through gas in chamber.

■ Electrons drift along electric field 
lines to anode wires (central potential 
wells) where they produce electrical 
signals.

■ Drift electric field ~ 1 MV/m.

■ Using information on time taken for 
electrons to reach wires, reconstruct 
path of high energy charged particle.
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Vector fields

■ A vector field is a vector that is 
defined at all points in space.

■ Physical examples include the 
electric field, e.g. that surrounding a 
point charge can be sketched as:

■ Can represent a vector field defined 
in the (x, y) plane using arrows in the 
direction of the vector whose length 
is proportional to the magnitude.

+q
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Scalar and vector field examples

■ A scalar field is defined by:

■ What is the value of the field at the 
point                              ? 

■ A vector field is defined by:

■ What is the magnitude of the field at 
the point                              ?

■ What is its direction at the origin?
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Vector fields and field lines

■ Electric field lines are 
another way of 
visualising E fields.

■ Lines trace path 
followed by (slow) 
test charge.

■ Density of lines 
proportional to field 
strength.

■ Examples shown 
opposite. 

■ Note that positive and 
negative charges are 
not balanced – how 
can you tell this?
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Gradient of a scalar field

■ The gradient of a scalar field f(x, y, z) 
is defined by:

■

■ The gradient of a scalar field is a 
vector field.

■ Can also write as row vector:

■ Example, in 2D (so can draw on screen).

■ f(x, y) = – x2 – 2y2 + 8, 

f (x, y, z)
x

f (x, y, z) f (x, y, z)
y

f (x, y, z)
z

 
  
    

 
 

  

f f f
f

x y z

   
      

11

 f 2x 4y   

Gradient of a scalar field

■ Plot the scalar field
f(x, y) = – x2 – 2y2 + 8
as a contour plot.

■ Plot the field’s gradient

as a vector plot.
 f 2x 4y   
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Gradient of a scalar field

■ The gradient vectors point in the 
direction of the steepest slope of the 
scalar field at the positions at which 
they are defined.

■ The magnitude of the gradient vector 
gives the steepness of the slope (the 
gradient).

■ A physical example:

■ Around a point charge q:

■ Calculate E field using our 
prescription, x component:
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Calculating 

■ Doing the same for the y and z 
components we have:

■

■ and

■

■ Hence:

■

■ Now, x/r = cos qxr is the component 
of the radius vector in the x direction, 
y/r that in the y direction and z/r that 
in the z direction, so we see:    

■

■ ...the E field is directed radially away 
from the charge, as expected.
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