OPCCD potential, 3D structure

- Introducing asymmetry in the OPCCD by using shaped gates.
- Looking down at top of pixel:

- ϕ_{1} and ϕ_{2} are the two gates, with no overlap here.
- P is the pedestal gate.
- Sections:
- Normal to gates, pixel edge:

- Normal to gates, pixel centre:

3DOPCCD potential

- Check periodic boundary conditions.
- Here top view at a depth of $1.1 \mu \mathrm{~m}$.
- $\phi_{1}=2.0 \mathrm{~V}, \phi_{2}=0.0 \mathrm{~V}$.

3DOPCCD potential

- Check boundary conditions.
- Here normal to gates, close to left hand edge of pixel.

Upfxy

3DOPCCD potential

- $\phi_{1}=2.0 \mathrm{~V}, \phi_{2}=0.0 \mathrm{~V}$, witrh "ground" plane $4 \mu \mathrm{~m}$ below Si surface at 0.8 V .
- Normal to gates, near pixel edge:

Upfxy

- Normal to gates, pixel centre:

Upfxy

3DOPCCD potential

- Along gates, under G1:

Upfyz

- Along gates, under P and G1:

Upfyz

3DOPCCD potential

■ Horizontal, just below gates ($0.2 \mu \mathrm{~m}$ depth):

Upfxz

- Horizontal, centre of buried channel ($0.3 \mu \mathrm{~m}$ depth):

Upfxz

3DOPCCD potential

- Horizontal, "bottom" of buried channel ($0.4 \mu \mathrm{~m}$ depth):

Upfxz

- Horizontal, below buried channel (1.0 $\mu \mathrm{m}$ depth):

