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Abstract
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Infrared Spectroscopic Techniques & Predictive Modelling Applied to Oral Cancer

Diagnostics

by Barnaby George ELLIS

Cancer is a leading cause of mortality and morbidity worldwide. The burden cancer

imposes on health services is increasing, owing to an ageing and growing population.

Whilst effective treatment is essential, the prevention, diagnosis and risk stratification

of early stage cancer is paramount. Subjectivity and ambiguity are a hindrance in the

diagnosis of many cancers. Oral cancer is a condition that is often diagnosed at a late

stage as asymptotic early stage conditions regularly go undetected.

Vibrational spectroscopy is a family of techniques which allow an objective view of

the intrinsic chemistry of a sample. It has shown great promise in the field of can-

cer diagnosis, but there is still a significant gulf between research efforts and clinical

adoption.

The work contained within this thesis describes the utilisation of novel vibrational

spectroscopy analytical methods to extract important information from pathological

oral tissue. The important information is used to provide further insight into the bio-

chemistry of malignancy, as well as to attempt to predict malignant transformation in

early stage cancer.
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Chapter 1

Introduction

The burden of cancer is a crisis for health systems worldwide. Developed and devel-

oping nations unanimously regard cancer as a leading cause of death, with the World

Health Organisation (WHO) estimating in 2019 that cancer ranks as the first or second

leading cause of mortality in 112 out of 183 countries [1]. The severity of the crisis

is rapidly increasing, largely owing to ageing populations, socioeconomic factors and

increased exposure to high risk carcinogens such as tobacco, alcohol and processed

foods.

Cancer can be broadly defined as a biological malfunction that leads to the abnormal

and uncontrolled proliferation of cells. The cancer cells often accumulate to form solid

tumours, and many are able to spread (metastasise) to distant regions of the body via

the circulatory and lymphatic systems. Breast, lung, prostate, colorectal and stomach

cancer are amongst the most prevalent cancers [2], with lung cancer having by far the

highest mortality rate

Recently, the global cancer observatory (GLOBOCAN) estimated global incidence and

mortality rates for all cancers at 19.3 million and 10.0 million per year respectively [3].

This alarmingly high mortality rate results from a myriad of interconnected factors,

particularly deficiencies in health services, diagnostic difficulties and the scarcity of

expensive treatment, particularly in poorer countries.

Early diagnosis is of particular importance and focus in cancer research. The high

mortality associated with many cancers can be mainly attributed to the difficulties in

diagnosing early stage cancer. Many cancers may not present symptoms until a late
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stage, at which point the chances of survival are significantly diminished. A sobering

example of this is the mortality rate of lung cancer, which suffers an abysmal 5-year

survival rate of merely 21.7% [4]. However, when diagnosed as early stage IA1 small

cell cancer, the 5-year survival rate dramatically increases to 92% [5]. Clearly, improve-

ments in early diagnostics are pivotal in the fight against cancer.

Vibrational spectroscopy is a well established field which has recently been experi-

encing a surge in applications, owing primarily to advances in technology, analytical

techniques and understanding. Vibrational spectroscopic techniques, such as Fourier

transform infrared (FTIR) spectroscopy and Raman spectroscopy, all share the com-

mon defining feature that they are able to objectively and non-destructively probe the

chemical properties of a sample. This property has led to widespread analytical appli-

cations in food sciences [6], pharmaceuticals [7] and biomedical sciences [8].

Of particular interest is the exploitation of vibrational spectroscopic techniques to in-

vestigate and diagnose cancer. Combined with microscopy and sophisticated anal-

ysis, it has been shown to be an effective and promising objective diagnostic and

exploratory tool in tissue (histopathological), cell (cytological), biofluid, and in-vivo

applications. FTIR microspectroscopy (FTIR-MS) is a unification of microscopy and

spectroscopy which enables the relatively rapid acquisition of spatially resolved in-

frared spectra, revealing the intrinsic chemical distribution of a sample at microscopic

length scales of the order of 10−5 m.

Machine learning (ML) is a branch of artificial intelligence (AI) which can be gener-

ally defined as algorithms which ‘learn’ rules and patterns from sample training data,

with the intention of applying the learned rules and patterns to unseen data in order

to categorise them. Supervised learning is a subset of ML algorithms which build dis-

criminatory models based on prior knowledge of data labels. Unsupervised learning,

on the other hand, infers sub-groups based on the training data alone [9].

This thesis is based around the application of infrared imaging and novel analytical

techniques to the characterisation of oral tissue. Firstly, FTIR-MS and scanning near-

field optical microscopy are exploited as a tool to investigate the differences between
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different pathologies associated with oral squamous cell carcinoma (OSCC). Follow-

ing this, a novel framework which optimises an analysis pipeline is described with

real world examples. Finally, FTIR-MS and the analysis framework are deployed to

predict the malignant potential of oral epithelial lesions.
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Chapter 2

Clinical Problem

2.1 Oral Cancer

2.1.1 Definition and Statistics

The incidence rate of oral cancer in the UK has increased by 30% in the past two

decades, a trend which is expected to continue [10]. Oral cancer refers to malignancy

within the mouth, occurring at sites such as the lips, gums, tongue, inner lining of the

cheeks (buccal), floor of the mouth and hard palate. Whilst there are several diseases

that can be characterised as oral cancer, oral squamous cell carcinoma (OSCC) is by

far the most common, accounting for over 90% of cases [11]. As for all cancers, OSCC

progression stems from DNA mutation, leading to an accumulation of abnormalities

which ultimately result in the uncontrolled malignant spread of cancer [12].

Mucous membrane (mucosa) is the term given to the protective tissue that surrounds

organs and orifices such as the mouth. As its name suggests, mucosa is characterised

by it’s ability to secrete mucous, a thick fluid which acts as a first line of defence against

pathogens. Oral mucosa is the lining inside the oral cavity, consisting of an epithelial

layer (stratified squamous epithelium) and underlying connective tissue. The strati-

fied squamous epithelium is characterised by superficial horizontally flattened (squa-

mous) cells stacked atop several layers of more regularly shaped cells, acting as a

protective layer to the deeper lying tissue. A basic schematic of a stratified squamous

epithelium is shown in Fig. 2.1.



Chapter 2. Clinical Problem 5
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FIGURE 2.1: Schematic of stratified squamous epithelium.

It is within the squamous cells of the epithelium that OSCC originates. OSCC’s de-

velopment is a multi-step process by which the accumulation of genetic mutations

within the nuclei of the epithelial cells leads to their atypia and uncontrolled prolif-

eration, which can eventually result in invasive and metastatic tumour growth [13].

Exposure to carcinogens such as tobacco, alcohol and betel nut have been shown to

increase the risk of malignancy [14], with factors such as age and gender also posing

risk, yet these may be entangled with socio-economic factors.

The oral cavity is immediately prone to insult from carcinogens such as tobacco and

alcohol. Additional to this is the fact that the distribution of carcinogenic insult is es-

sentially uniform across the oral cavity. For instance, tobacco smoke disperses to take

the shape of the oral cavity once inhaled, similarly for alcoholic beverages. As a result,

relatively large regions of exposed tissue experience a uniform increase in malignant

risk. This theory, coined ‘field cancerization’, forms the basis of the current under-

standing of the mechanisms that lead to the occurrence of multiple macroscopically

distant lesions in the oral cavity.

There are multiple epigenetic pathways associated with tobacco smoking, depicted in

Fig. 2.2. The term ‘epigenetic’ implies influence of non-genetic factors on the intrinsic

genetic expression of cells. The TP53 gene codes for the p53 protein which regulates

the cell cycle by steering cell growth arrest and apoptosis (cell death). p53 damage

leads to a significant reduction in tumour suppression, leading to it being dubbed ‘the

guardian of the genome’ [15]. GLUT-1 is part of a family of proteins which mediate
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the influx of glucose into the cell, and thus the metabolic capability of the cell leading

to growth advantage. The deregulation of GLUT-1 has been strongly correlated with

grade of tumour [16], [17].

FIGURE 2.2: Possible pathways induced by tobacco smoking [14]

2.1.2 Diagnosis

Risk stratification and management of OSCC is influenced by numerous factors, pri-

marily the stage and grade of tumours. Categorisation into stages is carried out using

criteria reflecting the extent of tumour growth. The most commonly used system for

staging is the American Joint Committee on Cancer (AJCC) Tumour, Node, Metastasis

(TNM) system [18], which is based on the following:

• Tumour: Determine size of primary site tumour, assess spread to nearby tissue

in oral cavity.

• Node: Check for lymph node spread.

• Metastasis: Check for secondary tumours in distant organs.

Each of the three categories are assessed and assigned a stage. Table 2.1 summarises

the criteria associated with each category. The three categories carry significant prog-

nostic value, with the extent of the nodal (N) stage highly correlated with poor out-

comes [19].
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TABLE 2.1: TNM staging of OSCC

Tumour Node Metastasis

Tis- Carcinoma in situ N0- No cancer in lymph
nodes

MO- No spread to other
parts of body.

T1- xT < 2 cm, d < 5 mm N1- Cancer present in one
lymph node same side of
neck as primary tumour.
node < 3 cm.

M1- Cancer spread to
other parts of body

T2- 2 cm < xT < 4 cm,
5 mm < d < 10 mm

N2- (a) Cancer present
in one lymph node
same side of neck
as primary tumour.
3 cm < xN < 6 cm. (b)
More than one lymph
node same side as neck as
primary tumour contain
cancer cells, xN < 6 cm.
(c) Cancer present in
lymph node other/both
side(s) of neck to primary
tumour. xN < 6 cm

T3- xT > 4 cm, d >
10 mm

N3- (a) Cancer contain-
ing lymph node, xN >
6cm. (b) Any number
of lymph nodes contains
cancer, spread into sur-
rounding tissue.

T4- (a) Grown into sur-
rounding structures
(sinuses, skin, jaw), (b)
Grown beyond sur-
rounding structures
(skull, neck)

xT: Tumour size
xN : Lymph node size
d: Depth
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Each of the three stages is then used to stratify a patient into an overall stage group,

enumerated from stage 0 to stage IV, with stage IV indicating the poorest prognosis.

Each of the strata contains a near uniform survival across all patients. The prognos-

tic value of the staging system can be demonstrated through a Kaplan-Meier survival

curve, which is a non-parametetric representation of the survival of a population over

a defined time period. The Kaplan-Meier curves in Fig. 2.3 clearly illustrates the cor-

relation between stage and survival.

FIGURE 2.3: Kaplan-Meier survival curves for different stages of oral
cancer [18].

The grade of a tumour is determined by a histopathologist tasked with microscopi-

cally examining sectioned tissue, and is a measure of how differentiated the cancer

cells are compared to healthy cells. The first OSCC grading system was devised in

1920 by Broder, specifically for lip cancers [20] and is closely related to the the mod-

ern WHO system [21]. There are numerous studies which criticise grading systems,

suggesting they have little to no prognostic value [22]. Despite this, they are still em-

ployed as an important factor in the risk stratification of OSCC.
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Histopathological examination and diagnosis is a field with origins that can be traced

back to the nineteenth century. Extracted tissue is routinely treated with a fixative such

as formalin to halt autolysis (postmortem decay), then embedded in paraffin wax to

displace water and preserve the structure of tissue. The melting point of histology

grade paraffin (57 ◦C) is crucial as this temperature does not change the structure and

morphology of the tissue. The tissue is stored in formalin-fixed, paraffin-embedded

(FFPE) blocks. Thin sections (4 - 5 µm) can be easily extracted from FFPE tissue blocks

with a precision knife known as a microtome. Transfer onto a microscopy slide is

achieved by floating freshly cut sections onto the surface of a water bath and adhering

these to a clean glass slide.

Conventional microscopic images rely on chromatic contrast in order to reveal mor-

phological structures. Paraffin wax offers very little contrast, so is poorly suited to

histopathology. For this reason, samples are often dewaxed and stained with a color-

ing reagent which reveals specific contrast. Haemotoxylin and eosin (H&E) is a dye

routinely used in histopathology, and is the most widely used stain in medical diag-

nostics [23]. The haemotoxylin component of the dye stains cell nuclei blue, with the

eosin component staining protein rich components such as the extracellular matrix

and cytoplasm pink. This gives stained tissue the desired contrast between important

organelles, a critical augmentation to a histopathologist in the diagnosis of disease.

Other stains are commonly used to offer differing contrast, such as toluidine blue and

Masson’s trichrome.

The five year survival rate of patients with oral cancer over the previous three decades

has only marginally increased, with current figures between 50% and 55% for all

stages [24]. This relatively poor survival rate can be in part attributed to the fact that

most affected persons report symptoms to the clinic at a late stage, due to the difficul-

ties in early recognition at a naive individual level. OSCC is frequently preceded by

a spectrum of abnormalities, collectively termed potentially pre-malignant oral epithelial

lesions (PPOELs). These vary from small, flat white patches on the tongue, to large and

irregular red patches on the floor of the mouth. Particular emphasis should be put on

the early detection of PPOELs, as timely diagnosis and therapy is absolutely essential

in minimising the risk of malignant transformation.
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FIGURE 2.4: Microscopic image of H&E stained tissue section from dys-
plastic epithelium. Individual nuclei are discernible from the surround-

ing connective and epithelial tissue. Scale = 200 µ m.

2.2 Potentially pre-Malignant Oral Epithelial Lesions

The term ’potentially pre-malignant oral epithelial lesion’ is relatively new, and evolved

from ‘oral potentially malignant disorder’ (OPMD). This evolution in terminology

arises from the fact that not all of these conditions have any potential to transform into

cancer, with malignant transformation rates (MTRs) ranging from as low as ≈ 0.1% in

benign leukoplakia [25], to over 50% in some erythroplakias [26]. The current section

will focus on various types of PPOELs, associated risk factors, clinical and histopatho-

logical features, modes of detection and their respective flaws.

2.2.1 Clinical Lesions

Oral Leukoplakia

Oral leukoplakia (OL) has been most recently defined as ’white plaques of question-

able risk having excluded (other) known diseases or disorders that carry no increased

risk for cancer’ [27]. This definition indicates that the OL diagnosis is a diagnosis of
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exclusion, and it should be emphasised that there are a plethora of benign conditions

that share common characteristics but bear no malignant risk, making it difficult to

distinguish from common inflammatory disease. OL is diagnosed in the clinic: there

are no pathological criteria that can be examined by microscopy, although biopsy and

histopathological assessment is often recommended to probe for associated disorders.

OL’s account for 95% of histopathologically defined dysplastic lesions [28].

FIGURE 2.5: Oral leukoplakia of the lateral tongue. OL is characterised
by a flat, homogeneous white appearance.

Common sites of OL vary by region and culture. In western cultures, lesions are fre-

quently identified in the floor of mouth and on the lateral tongue due to carcinogen

pooling from smoking and alcohol, whereas in Asian populations lesions in the buccal

lining (inner cheek) are more abundant [29], attributed to the chewing of betel quid.

A study in Spain in 2010 [30] aimed to correlate clinical and pathological diagnosis

of OL from a patient cohort (n=54) spanning different age groups, genders, sites and

appearances. The male to female ratio of 1.45:1 (32 vs 22) implies that OL is slightly

more prevalent in males, potentially attributed to higher levels of smoking in males.

They also found higher occurrence of OL with a homogeneous white appearance, and

those situated on the lateral aspect of the tongue, with the latter being associated with

a higher risk of malignant transformation.

Another study by Kuribashi et al [31] implemented a long term ‘wait and see’ policy

to try and identify important factors in the development of OL. They segmented a

total of 237 lesions from 218 patients into five distinct groups: unchanged, reduced,
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disappeared, expanded and malignantly transformed. From long-term follow-up be-

tween 2001-2010, over half of the set (57.0%) remained unchanged, 12.7% reduced in

size, 18.6% had disappeared and 7.2% had clinically deteriorated or spread. The re-

maining 11 lesions (4.6%) had developed OSCC. They found that non-homogeneous

appearance and tongue-localisation were linked to transformation.

A recent systematic review [32] aimed to ascertain the MTR of OL and related risk

factors. Its findings showed a vast range of reported MTRs, between 0.13% and 34.0%,

with a mean of 3.5%. It is important to note that the systematic review is of retrospec-

tive studies, which carry potential sources of bias, necessitating carefully designed

prospective studies.

Oral Erythroplakia

Oral erythroplakia (OE) can be characterised as ‘a fiery red patch that cannot be char-

acterised clinically as any other definable disease’. They are often situated in close

proximity to leukoplakia lesions, but have much higher potential to be malignant,

with MTRs ranging from 14% to 50% [33]. OE prevalence ranges from 0.02% and

0.83%, mainly in older age groups and men. The floor of the mouth, soft palate and

buccal mucosa are reported as the most common sites [34]. The relatively high MTR of

OE necessitates surgical excision and close monitoring for patients who harbour the

condition.

There is poor understanding of the causes and mechanisms of OE progression. To-

bacco and alcohol consumption remain important carcinogenic risk factors [35].

2.2.2 Oral Epithelial Dysplasia

The aforementioned PPOELs (OL, OE) are clinically diagnosed conditions. This means

they are detected at the point of primary care based on reported symptoms, visual ap-

pearance and associated patient health records. They are both diagnoses of exclusion,

whereby a decision is informed by the absence of other possible conditions. The clini-

cian may deem it necessary to refer the patient for histopathological assessment. The

histopathologist will first determine whether there is any cancer amongst the tissue,

making a diagnosis at this point if necessary. In the absence of full-blown cancer, the
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histopathologist will examine in and around the epithelial layer to inspect the physical

appearance of the squamous cells.

Oral epithelial dysplasia (OED) is a histopathologically defined lesion, based on the

fulfilment of a range of architectural and cytological criteria [36]. The WHO defines

OED as ‘a precancerous lesion of stratified squamous epithelium characterized by cellular

atypia and loss of maturation and stratification short of carcinoma in situ’. The presence of

dysplastic cells within the epithelial layer is believed to be associated with a likely pro-

gression to cancer [37], with reported MTR’s in the range of 1.4 - 36% for all grades [38],

[39], however normal epithelial cells can bypass the dysplastic phase and progress to

OSCC.

Clinical Determinants

Despite the primary role histopathological grading plays in OED diagnostics, it is im-

portant to understand how clinical factors influence the potential of malignant trans-

formation. In this context, ‘clinical factors’ refers to information learned about the

patient and condition at the point of primary care. It encompasses patient metadata

such as age, gender, smoking-status, and physiological data such as the size, site and

appearance of a lesion. Numerous studies have attributed various clinical factors to

malignant transformation of PPOELs. Female gender [40], [41], tongue/floor of mouth

sub-site [42]–[44], the existence of multiple accompanying lesions [45] and large size

[46]–[48] are just a few risk factors that were found to be significant predictors.

The majority of these studies focus on a particular clinical lesion, such as leukoplakia,

rather than histopathologically diagnosed OED. A relatively recent study by Ho et

al [49] aimed to ascertain the clinical determinants which correlated with malignant

transformation of OED. A total of 91 patients who fulfilled strict inclusion criteria were

recruited for the study, and lesions were graded by two oral histopathologists. They

reported an MTR of 22%, which is relatively high compared with other hospital-based

studies [38], [50]. The most significant predictors in the study emerged as non-smoker

status, non-homogeneous appearance and size of lesion. Of less significance was the

consensus histopathological grade of the lesion. The prognostic weight attributed to

histopathological grading is a controversial topic, with various conflicting reports in
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the literature [38], [50]–[53]. A somewhat surprising finding was that non-smokers

were 7.1 times more likely to progress to cancer, which the authors speculate is linked

with intrinsic factors. It is consistent with the finding that idiosyncratic leukoplakia is

correlated with a higher risk of transformation [40], [53].

Diagnosis

The current convention for OED diagnosis is that lesions are assigned one of three

grades: mild, moderate or severe, reflecting the extent to which the criteria in table 2.2

are fulfilled. In this model, OED is part of a longer progression pathway, starting at

hyperplasia (increased number of cells) and terminating at invasive carcinoma, whereby

the now cancerous cells depart the epithelial tissue and propagate elsewhere. Each

step in the pathway is a more severe manifestation of the underlying biomolecular

transitions that occur during OSCC carcinogenesis. There are numerous alternative

systems for OED grading, such as the Ljubjana classification system [54], and a more

recent binary adaptation of the WHO system [55].

TABLE 2.2: WHO architectural and cytological criteria used for grading
OED.

Architecture criteria Cytology criteria

Irregular epithelial stratification Abnormal variation in nuclear size
Loss of polarity of basal cells Abnormal variation in nuclear shape
Drop-shaped rete ridges Abnormal variation in cell size
Increased number of mitotic figures Abnormal variation in cell shape
Abnormally superficial mitoses Increased nuclear- cytoplasmic ratio
Keratin pearls within rete ridges Increased nuclear size
Atypical mitotic figures Hyperchromatism
Premature keratinization in single
cells

Increased number and size of nucleoli

A brief description of each of the dysplastic grades in the context of table 2.2 follows.

(i) Mild dysplasia: Architectural disturbances limited to the lower third of the ep-

ithelium. Minimal cytological atypia.

(ii) Moderate dysplasia: Architectural disturbances extending into the middle third,

marked atypia may indicate severe dysplasia, mildly atypical may merit mild

dysplasia.
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(A) Mild dysplasia (B) Moderate dysplasia (C) Severe dysplasia

FIGURE 2.6: Examples of dysplasia grading

(iii) Severe dysplasia: Greater than two thirds of epithelium.

Figure 2.6 shows an example of each of three different dysplasia gradings, from mod-

erate through to severe. In Fig. 2.6a, the abnormal cells and architectural changes are

confined to the lower third of the epithelium, resulting in a diagnosis of mild dyspla-

sia. Conversely, Fig. 2.6c shows major abberations throughout the epithelium, with an

abundance of cytological variation, resulting in a diagnosis of severe dysplasia. Mod-

erate dysplasia (Fig. 2.6b lies somewhere between the two, with both cytological and

architectural changes extending to the middle third of the epithelial layer.

One of the key issues with OED grading is the inter- and intra-observer variability

amongst histopathogists. Since grading of OED remains the principal prognostic pre-

dictor, diagnostic disagreement is problematic. OED development is generally viewed

as a continuous progression of abnormal alterations, and present grading systems like

the one shown in table 2.2 attempt to quantise the condition based on subjective crite-

ria.

While there is universal understanding of the criteria shown in table 2.2 amongst

pathologists, the interpretation of the degree and significance of each of the criteria

is essentially subjective, giving rise to great variability amongst observers [37], [55].

In the study by Kujan et al [55], moderate agreement was observed between four ob-

servers for the following criteria: increased number of mitotic figures; drop-shape

rete ridges, increased nuclear size and abnormal variation in cell shape. The high-

est disagreement was observed for irregular epithelial stratification, loss of polarity
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of basal cells, abnormal variation in nuclear size, atypical mitotic figures and hyper-

chromatism. Interestingly, the same study showed that a cumulative scoring system

resulting in a binary grade of high or low risk led to a substantial increase in agree-

ment. This implies that the histopathologists in the study compensated for differences

in their scoring of individual criteria. They hypothesised this could be due to each

observer initially screening the sample and arriving at a prospective diagnosis, which

would bias the eventual diagnosis. Another study by Krishnan et al [56] concluded

that the inter-observer agreement ranged from poor to moderate for several grading

systems. These findings suggest that histopathological grading is not an exact science,

and would benefit from more objective tools to augment the process of diagnosing

OED.

2.2.3 Testing

Performance metrics

The gold standard for diagnosis of OED and OSCC remains histopathological assess-

ment, which carries disadvantages as previously discussed, particularly the invasive

nature of extracting tissue, subjectivity of diagnosis and long waiting times. Several

screening methods have been proposed to augment the clinical oral examination pro-

cess in a bid to improve diagnostic accuracy and aid the workflow in an already over-

loaded system.

A testing or screening method should be able to accurately detect both positive (dis-

ease) and negative (healthy) cases. If many positive (disease) cases are missed, then

there is potential for a high human cost - more people will have the condition unde-

tected and will not receive necessary treatment. If many people who do not have the

disease are being incorrectly diagnosed as having the disease, there is a high economic

and wellbeing cost - unnecessary time and money is being spent on treating an absent

disease, whilst the patient receiving treatment will experience heightened anxieties

for a condition they don’t have. Diagnostic performance can be quantified by sev-

eral different performance metrics, each conveying a different quality of the test. Each

quantity can be derived from a confusion matrix, depicted in Fig. 2.7.

The key performance metrics are summarised in Eqs. (2.1) to (2.4)
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FIGURE 2.7: Confusion matrix of a diagnostic test

sensitivity =
TP

TP + FN
(2.1)

specificity =
TN

TN + FP
(2.2)

Positive Predictive Value =
TP

TP + FP
(2.3)

Negative Predictive Value =
TN

TN + FN
(2.4)

Sensitivity quantifies how well a test can diagnose a positive case. For example, a

diagnostic test for oral cancer detection with high sensitivity will rarely fail to detect

those who have cancer. On the other hand, specificity (or true negative rate) quanti-

fies how well a test can correctly reject a positive diagnosis. Both are very important

for disease diagnostics, and it is important to strike a balance between the two mea-

sures. A 100% sensitive test with poor specificity means that a negative case has a high

probability of being diagnosed as having the condition. Conversely, a 100% specific

test with poor sensitivity means that a positive case has a high probability of being

incorrectly diagnosed as not having the condition.

Consider a quantitative diagnostic test which gives a Gaussian distribution of scores

for both patients with a disease (positive class), and patients without the disease (neg-

ative class). The patients with disease tend to score higher, whereas healthy patients
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have a lower score, as shown in the distributions in Fig. 2.8. There is a region of over-

lap, where there are similar scores for a small subset of both positive and negative

patients. By varying the decision threshold of the test, one can determine a new con-

fusion matrix from which a unique set of performance metrics can be calculated. The

receiver operating characteristic (ROC) curve is a parametric curve which displays the

sensitivity and specificity at different thresholds. Figure 2.8 contains three thresholds

shown on the distributions in (a), with the corresponding sensitivity and specificity

shown on the ROC curve in (b).
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FIGURE 2.8: Simple depiction of a diagnostic test and the resulting ROC
curve

Figure 2.8 demonstrates the trade off between sensitivity and specificity in a binary

diagnostic test. One can enhance either metric at the expense of the other. A test with

absolutely no diagnostic skill is characterised by a diagonal line bisecting the plot and

intersecting the origin (red line in Fig. 2.8b). Let’s say for instance, that Fig. 2.8a repre-

sents the distribution of scores for a test to identify patients at high risk of developing

lung cancer. If the threshold was shifted towards the right, the number of true and

false negatives will increase, with decreasing true and false positives. In such a test,

the specificity will be high, compensated for by a drop in sensitivity. If the test di-

agnosed the patient as being high risk, there is a heightened degree of certainty of

that patient actually going on to develop lung cancer. On the other hand, shifting

the threshold to the left will increase the sensitivity at the expense of the specificity,

producing a test where a negative diagnosis is very likely to truly be negative. Most

would argue that the latter scenario in the case of risk stratification is preferred over
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the former, where many high risk patients will go undetected.

A hypothetical test where specificity is preferred over sensitivity is one which informs

a decision on whether to perform dangerous surgery or treatment (e.g. radiotherapy,

chemotherapy) on a patient. In this case it is crucial to be certain that it is necessary

to carry out such a procedure. Most of the time, a good diagnostic test will favour

thresholds which yield sound values for both measures.

Clinical Adjunctive Tests

There have been several promising clinical adjunctive tests proposed for the detection

of OED and OSCC. The different techniques can be categorised into three groups:

optical imaging devices, high resolution microscopy and vital staining techniques. These

tools are developed with the understanding that they will aid the diagnostic process,

rather than replace it.

An example of an optical imaging device used is the VELScope® (Visually Enhanced

Lesion Scope) [57], which is based on the principles of autofluoresence. Autofluores-

ence is the emission of light from biological structures after the absorption of light,

without the need for other fluorescent markers. Illumination of the mucosa with a

light source emitting 400-460 nm results in green autofluorescence for normal tissue,

whereas abnormal tissue absorbs the incident light. Fluorescent substances such as

collagen, flavin adinine dinucleotide (FAD) and nicotinamide adenine dinucleotide

(NADH) are responsible for this effect. Collagen fibre linkage and the reduction of

FAD and NADH in malignant tissue relative to normal tissue reduces the emission

of autofluorescence, which results in a dark patch in abnormal regions [58]. A meta-

analysis of the limited number of studies associated with the technology report sensi-

tivities ranging from 0.73-0.97 and specificities from 0.22-0.87 [59]. Other light based

technologies include ViziLite® and Microlux®.

High resolution microendoscopy (HRME) is another example of a clinical adjunctive

test. This technique allows for the in vivo acquisition of microscopic images of oral

mucosa by means of an endoscopic probe and contrast agents such as acetic acid or

proflavin solution. The morphological features used by histopathologists to diagnose
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cancer and dysplasia can then be used as a basis for diagnosis, whilst allowing for the

quantification of properties such as the nucleic density and nuclear-cytoplasm ratio.

Vital staining techniques such as toluidine blue (TB) staining are amongst the most

frequently reported adjunctive tests. Either by rinsing the mouth with the dye or di-

rect staining with a swab, TB imparts a blue colour to acid rich regions of oral mucosa.

Abnormal tissue retains the dye after washing with acetic acid due to the increased

nucleic density (and hence relative abundance of nucleic acid), whilst normal tissue

does not retain the dye. The sensitivity of this technique ranges from 0.74-0.90, with a

specificity of 0.59-0.79 [59]. False positives arise predominantly as a result of pooling

within natural crevices within the mouth, or uptake by inflammatory tissue or benign

ulcerative conditions, whereas false negatives are primarily caused by a thick super-

ficial keratinised layer preventing the penetration of the dye. The technique is most

effective at diagnosing high grade dysplasia and carcinoma, lower grade dysplasia

tends to suffer from a drop in sensitivity [60], [61].

FIGURE 2.9: Velscope and Toluidine blue can locate abnormal dysplas-
tic tissue in vivo. (a) Photograph of lateral tongue ROI with leukoplakia.
(b) Photograph of ROI illuminated with Velscope. (c) Photograph of
ROI stained with toloudine blue. (d) Microscopic image of HE stained

tissue confirming the presence of dysplasia.

Despite the good sensitivities reported by the studies, the specificity of such tests is

still sub-optimal. This confounds the feasibility of the described techniques to support

clinical decision making, as false positives lead to unnecessary increased economic
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cost and anxiety in those patients. TB shows promising results in identifying high risk

lesions with poor outcomes, but the clinical studies had small numbers of patients,

therefore more extensive research is required before reaching meaningful conclusions.

The main drawback with these techniques is that they still depend on subjective inter-

pretation of results, they do not address the issue that demands objective and accurate

automatic tests are required.

Biomarkers

The inability to accurately predict the progression of OED on the basis of histopatho-

logical grade significantly hampers the field. Despite the promising clinical adjuncts

summarised in section 2.2.3, these are still fundamentally subjective, requiring inter-

pretation from clinicians and pathologists. Some of the adjuncts, especially the light

based ones, reveal the presence of PPOELs rather than actually indicate the prognosis

of underlying conditions. This makes the suitable as tools to specifically locate a lesion

with borders initially difficult to resolve, but not much more.

A systematic review [62] aimed to assess the use of biomarkers as prediction tool for

OED progression into OSCC. It concluded that there is a lack of strong evidence for

biomarker usage in OED prognosis due to a limited number of clinical studies. Nev-

ertheless, they found that the loss of heterozygosity and allelic instability at specific

loci in chromosomes significantly increases the risk of progression to cancer in the lim-

ited studies available. Cytogenic location of genes is specified using a standardized

address, which first specifies the chromosome number (1-22 or X,Y), followed by a p

or a q which encodes whether the gene appears on the short or long arm respectively.

For example, a location of 9p indicates the presence of the gene on the long arm of

chromosome 9. A loss of heterozygosity on 3p, 8q, 9p and 11p were all correlated with

a relative risk of progression to cancer. Heightened DNA content was also found to be

a significant predictor in OED transformation.

2.3 Summary and Motivations for Work

This chapter has summarised some of the many clinical and biological issues that sur-

round the diagnosis and prognosis of oral cancer and PPOELs. Despite a wealth of
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knowledge that exists within the field, there is need for tests which can augment the

flawed diagnostic workflow in a rapid, automatic and objective manner.

The motivations and objectives for this thesis are two-fold. Firstly, by exploiting ob-

jective chemical imaging techniques, the biochemistry of oral cancer and OED can be

investigated and compared with the existing consensus. Secondly, a new tool for OED

prognosis based on the rich information acquired by such chemical imaging modali-

ties can be built and assessed using a framework of data processing, machine learning

and optimisation. The prospective outcome of such studies will hopefully pave the

way for wider studies, as well as contribute to the vast knowledge pool that already

exists.

The next chapters will cover the relevant experimental and analytical techniques, with

accompanying data and results to support the objectives outlined previously.
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Chapter 3

Theoretical Concepts

3.1 Introduction

This chapter will focus on the theoretical principles that the techniques used in this

work are built upon. Starting from the fundamentals of light-matter interaction, dif-

ferent modalities of infrared (IR) imaging will be described, with comparisons made

to other prevalent techniques. Statistical analysis and machine learning will also be

introduced, with particular focus on the pre-processing and classification of IR data.

Relevant literature in the field will also be summarised.

3.2 Infrared Spectroscopy and Imaging

3.2.1 Fundamentals

Light-Matter Interactions

At the core of any light-based technique is the concept of electromagnetic (EM) waves,

and the rules that govern the interaction of such waves with matter. This extensive

field is termed optics, and is one of the most fundamental and established branches of

physics, relying on both classical electromagnetism and quantum mechanical princi-

ples to explain observed phenomena.

An EM wave is composed of an oscillating electric field and magnetic field, which ex-

ist in planes perpendicular to each other. Propagating EM waves travel in a direction

which is mutually orthogonal to both the electric field and magnetic field. The peri-

odic change in polarity of the electric and magnetic vector leads to a sinusoidal wave
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as a function of both position and time. This periodic nature allows EM waves to de-

fined in terms of their frequency and wavelength, with a fixed speed (in a vacuum) of

approximately c0 = 3× 1010 m s−1.

FIGURE 3.1: Basic depiction of an EM wave [63]

The behaviour of EM radiation at the boundary between media and within matter is

governed by the materials complex refractive index: n = n + iκ. The real component

of this quantity (n) indicates the phase velocity of EM waves through a particular

medium, whilst the imaginary component (κ) conveniently quantifies the absorption

of radiation in the same medium. Equation (3.1) and Eq. (3.2) show the plane wave

equation for the electric (E) and magnetic (B) fields both travelling in the z direction.

E(z, t) = E0 exp[i(kz−ωt)], (3.1)

B(z, t) = B0 exp[i(kz−ωt)]. (3.2)

Here,

k =
2πn

λ
. (3.3)

Substituting n = n + iκ, this yields:
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E(z, t) = exp(
−2πκz

λ
) · E0 exp[i(kz−ωt)], (3.4)

and similarly for the magnetic field. This proves that the imaginary component of the

refractive index leads to absorption: materials with higher κ values result in a more

rapid exponential decay, as implied by the first term of the product shown in Eq. (3.4).

The real component of the refractive index is given by n = c0/cm, where cm is the

speed of light through the material.

The spatial frequency of an electromagnetic wave (number of complete cycles per unit

distance) is expressed by a quantity called the wavenumber. Spectroscopists conven-

tially define electromagnetic radiation in terms of wavenumber (ν) in units of inverse

centimeters (cm−1) rather than wavelength. The relationship between wavelength and

wavenumber is given by Eq. (3.5).

ν =
10000
λ(µm)

. (3.5)

The complex refractive index (n) is a function of the wavenumber:

n(ν) = n(ν) + iκ(ν). (3.6)

This dependence leads to the observation that different wavelengths of EM radia-

tion interact differently when they propagate through a given medium. Snell’s law

(Eq. (3.7)) dictates the relationship between the angle of incidence (θi) and the an-

gle of refraction (θT) when a ray of light crosses the boundary from one medium to

another. Both angles are measured anti-clockwise from the normal to the interface.

Equation (3.7) is the reason why visible light disperses when it propagates through a

prism.

n1(ν)

n2(ν)
=

sin θt

sin θi
. (3.7)
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FIGURE 3.2: Behaviour of EM radiation at a boundary between two
media with refractive indexes n1(ν) and n2(ν).

The extent to which an EM wave is absorbed in a medium is governed by the first

exponential factor in Eq. (3.4). Since the intensity (I) is proportional to the square of the

amplitude of the electric field, one can deduce the relationship between the fractional

transmittance (T), the refractive index and the distance the wave has travelled in the

medium:

T(ν, z) =
I(z)
I(0)

= exp(−α(ν)z). (3.8)

Here, α(ν) is the linear absorption coefficient, and is equal to 4πκ(ν)
λ . The absorbance of a

pure sample of thickness b is subsequently calculated by taking the logarithm to the

base 10 of 1/T, giving:

A(ν) =
1

ln 10
α(ν)b = a(ν)b. (3.9)



Chapter 3. Theoretical Concepts 27

Here, a(ν) is the absorptivity of the pure sample. For a mixture consisting of N ab-

sorbing species, each with a defined absorptivity ai(ν) and concentration ci, Eq. (3.9)

is modified to yield the Beer-Lambert law, given by Eq. (3.10) [64]:

A(ν) =
N

∑
i=1

ai(ν)bci. (3.10)

This shows that the absorbance, rather than the transmittance, is directly proportional

to the concentration of absorbing media. It also shows that there exists a linear rela-

tionship between absorbance and optical path length. The refractive index and associ-

ated quantities are, in essence, macroscopic representations of an ensemble of underly-

ing microscopic mechanisms. The velocity of an EM wave changes in different media

due to their differing electric susceptibilities, which cause the electrons within the ma-

terial to oscillate, leading to the radiation of an EM wave with the same frequency but

(usually) a different phase difference. The superposition of these secondary waves

leads to a wave with the same frequency but different wavelength, hence the change

in phase velocity conveyed by the real component of the refractive index.

Absorption of EM light occurs due to energy transitions within atoms and molecules

within the material. Visible light is absorbed through a process by which a quantum of

energy corresponding to an electrons energy level within an atom is absorbed, exciting

the electron and causing it to vibrate, imparting thermal energy into its surroundings.

For lower energy EM radiation, a single quantum of energy is not enough to excite

an electron. However, lower energy shifts, such as those associated with molecular vi-

brations and rotations, correspond to the energy of quanta from the IR and microwave

region of the EM spectrum. The interaction between IR radiation and molecular vi-

brations can be exploited to offer a rich source of chemical information.

Molecular Vibrations

The number of ways a molecule with N atoms is allowed to move is equal to 3N.

There are three translational and three rotational degrees of freedom in 3D space. The

remaining 3N− 6 degrees of freedom represent the number of ways the atoms within

the molecule are able to vibrate. In the special case of a linear molecule, there is no
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rotational motion about the longitudinal axis, leaving 3N − 5 vibrational degrees of

freedom. For instance a diatomic molecule (which must be linear), can only vibrate

in one way, whereas a triatomic non-linear molecule, has three vibrational states. The

different vibrational states available to specific molecule are also known as its vibra-

tional modes.

FIGURE 3.3: Stretching vibrations of a simple linear diatomic molecule.
r0 is the equilibrium inter-atomic separation, r1,2 are the inter-atomic
separations at points of maximum extension and compression respec-

tively.

Figure 3.3 is a simple depiction of a diatomic molecule vibrating in the only mode

accessible. The system of two atoms joined by a chemical bond can be modelled as a

spring connecting two masses, which is assumed to follow Hooke’s law (Eq. (3.11)):

F = −kx. (3.11)

This law describes the relationship between a spring’s displacement from equilibrium

(x) and its exerted force (F). The linear relationship is scaled by a constant of propor-

tionality called the spring constant (k):

In the case of Fig. 3.3, x can be calculated by subtracting the equilibrium inter-atomic

separation r0 from the inter-atomic separation. Considering molecular vibrations oc-

cur at an atomic scale, the potential energy of the system must be described quantum

mechanically using Schroedingers equation, resulting in a set of discrete energy levels,

dictated by Eq. (3.12):
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V = (v +
1
2
)hν. (3.12)

Here, V is the potential energy, v is the vibrational quantum number (can take integer

values 0, 1, ...), h is Planck’s constant and ν is the vibrational frequency. Given that a

system which obeys Hooke’s law exhibits simple harmonic motion when displaced

from equilibrium, ν is related to the mass (m) and spring constant (k) as follows:

ν =
1

2π

√
k
m

. (3.13)

In addition to a quantised set of allowed energy levels, Eq. (3.12) implies that a molecule

can never have zero energy, a fundamental characteristic of quantum mechanical sys-

tems which has its origins in Heisenberg’s uncertainty principle. Figure 3.4 shows

the potential energy V as a function of the inter-atomic separation r, with the allowed

quantised energy levels.

The promotion of a molecule to a higher energy vibrational state can be achieved

through the absorption of IR radiation. The possibility of such an event is entirely

dependant on the following rules:

• A quantum of IR radiation must exactly match the energy difference between

adjacent energy levels for the excitation to occur.

• The dipole moment (µ) associated with the molecule must have a non-zero rate

of change with respect to position: ∂µ
∂r 6= 0.

The rule that there must be a changing dipole moment implies that homopolar di-

atomic molecules (identical atoms, same charge distribution) are not IR active, as the

change in charge distribution from one atom always cancels the other out. When IR

radiation of energy hν interacts with the oscillating dipole of same frequency, the ra-

diation is absorbed and the vibrational amplitude increases. Therefore the vibrational

amplitude is quantised.

The simple harmonic oscillator described here is in fact only the first order approx-

imation of a vibrational mode. The force required to compress a bond by a certain
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FIGURE 3.4: Harmonic oscillator potential energy (V) as a function of
inter-atomic separation (r). Red lines indicate discrete energy levels al-

lowed in a quantum harmonic oscillator

distance is actually greater than the force required to stretch it, resulting in an anhar-

monic potential, described by Fig. 3.5 and shown Eq. (3.14):

V = (v +
1
2
)hν− (v +

1
2
)2hνx. (3.14)

In Eq. (3.14), x represents the anharmonicity constant. As r increases, the potential en-

ergy asymptotically approaches the spectroscopic dissociation energy (green dashed

line), the energy at which the molecule dissociates. In contrast to a quantum harmonic

oscillator, where only transitions of ∆ν = ±1 are allowed, molecules are able to tran-

sition to higher energy levels, with ∆ν = ±2, 3 amongst others allowed.

The vibrational motion of a polyatomic molecule is described by a set of vibrational

modes each with a discrete frequency. In the harmonic approximation, the overall mo-

tion can be expressed as a superposition of the independent modes. For example, a

non-linear triatomic molecule such as water has three vibrational modes: symmetric



Chapter 3. Theoretical Concepts 31

FIGURE 3.5: Anharmonic oscillator potential energy (V) as a function
of inter-atomic separation (r).

stretching, asymmetric stretching and bending, each with their own characteristic fun-

damental frequency. Another example, which is the focus of much of the discussion

in this thesis, is the amide group of vibrations. These are vibrations about an amide

functional group, shown in Fig. 3.6.

C N

O

H

C N

O

H

(a) Amide I (b) Amide II

FIGURE 3.6: The amide I (a) and amide II (b) vibrational modes. The
amide I mode (≈ 1650 cm−1) is a stretching vibration centred on the
C=O bond, and the amide II mode (≈ 1550 cm−1) is a bending vibration

of the hydrogen atom.

The fact that every molecule has a unique dipole structure and mass, resulting in a

characteristic set of vibrational modes, allows IR active molecules to be identified
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based on the frequencies of IR it absorbs. This information can be acquired from

a family of techniques called vibrational spectroscopy. Fourier Transform IR (FTIR)

spectroscopy and Raman spectroscopy are the two most established techniques in the

field, and serve to complement each other on many levels. The work described in this

thesis utilises FTIR spectroscopy due to the ease of imaging, which will be discussed

in section 3.2.3.

3.2.2 Fourier Transform Infrared Spectroscopy

Spectroscopy is a broad field concerned with obtaining the frequency dependence

of how EM radiation interacts with or is emitted from matter. As discussed in sec-

tion 3.2.1, molecular vibrations can be probed using a family of techniques termed

vibrational spectroscopy. FTIR spectroscopy is a technique which is able to simultane-

ously acquire spectral data spanning a wide spectral range, allowing for the relatively

rapid acquisition of a sample’s IR spectrum. This section will introduce the theoretical

principles surrounding FTIR spectroscopy, before discussing its adaptations and uses

in the biochemical sciences.

Sources

A resistively heated silicon carbide rod, commercially termed a ‘globar’ is used in most

modern FTIR systems. A globar can be approximated as a Planck radiator or black-

body, which has an emission spectrum at temperature T governed by Planck’s equa-

tion (Eq. (3.15)):

Uν(T) = ε(ν) · C1ν3

exp(C2ν/T)− 1
, (3.15)

where

C1 = 1.19× 10−12 W cm−2· sr · (cm−1)4

and

C2 = 1.439 K · cm

.
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The standard operating temperature for a globar is ≈ 1300K. Since no material can

be described as a perfect blackbody, the emission spectrum is scaled by the frequency

dependant emissivity (ε(ν)) of the object, which is between 0.83 and 0.85 for a Globar

source [65].

Equation (3.15) implies that hotter sources (leading to higher spectral density, Uν(T))

would be ideal candidates for an FTIR system because the signal-to-noise-ratio (SNR)

is a critical factor in FTIR spectroscopy. However, there are other factors such as source

size, stability and emissivity that must be considered. For instance, a tungsten lamp

filament can reach temperatures of up to 3000 K, but needs to be sealed within a glass

vacuum chamber, which has low transmission in the mid-IR (400 - 4000 cm−1). Nernst

glowers are another commonly used source which have a superior spectral energy

density to globars, however the emissivity above 2000 cm−1 is poor, leading to high

SNRs at high wavenumbers. Another consideration is the size of the source, especially

for microscopic applications. Sources would ideally match the size of the sample to

maximise the flux through the sample.

Interferometer

Conventional spectroscopic systems vary the wavelength of light by means of a dis-

persive prism or tuneable laser. The obvious drawback with this approach is the time

taken to acquire a large enough signal-to-noise-ratio at each wavelength, in addition

to the time taken to change the wavelength. FTIR spectroscopy overcomes this obsta-

cle by decomposing the broadband radiation into a time domain signal by means of

an inter ferometer, before transmitting this through a sample and applying a Fourier

transform (FT) to resolve the signal in the frequency domain.

The interferometer utilised in FTIR systems is based on a Michelson interferometer

(MI). A simple MI divides a beam into two orthogonal rays, one ray is incident on a

mirror of fixed position, the other on a mirror moving along the axis of the beam at a

known velocity. The introduced path difference between the rays as they recombine

creates a condition where constructive or destructive interference can occur, generat-

ing a signal as a function of path length, which is a time domain signal.
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FIGURE 3.7: A schematic of a Michelson Interferometer.

The basic principles of an MI can be conveyed using a monochromatic narrow beam

as an example. A source emitting monochromatic light at intensity I(ν0) is split into

two orthogonal rays, with the intensity shared equally across the two beams (for a

perfect beamsplitter). If the two mirrors are equidistant from the beamsplitter, there

is no introduced path difference (δ) when the beams recombine. Considering the fact

that phase changes introduced by reflections from the beamsplitter and mirrors will

the same for both rays, and therefore have no effect, the two rays will constructively

interfere when δ = 0.

If the moving mirror is displaced by λ0/4, where λ0 is the wavelength, the path dif-

ference between the two beams when they recombine will be λ0/2, corresponding to

a phase difference of π radians. The rays are said to be in anti-phase with each other

and destructively interfere, resulting in zero signal propagating towards the detector.

If the mirror is moved again by λ0/4, constructive interference would occur. This si-

nusoidal dependence of the detected intensity on the path difference can be expressed

in Eq. (3.16):

I′(δ) = 0.5I(ν0)(1 + cos(2πν0δ)), (3.16)

where the AC term is known as an interferogram. If the mirror moves at a constant



Chapter 3. Theoretical Concepts 35

velocity v, the path difference can be expressed as δ = 2vt. Substituting for δ in the

interferogram gives Eq. (3.18):

I′(t) = 0.5I(ν0) cos(2πν0 · 2vt). (3.17)

In order to acquire the spectral intensity variation I(ν), an FT can be applied to the

time domain function I′(t):

I(ν) =
∫ +∞

−∞
I′(t) exp(−2πiνt) dt, (3.18)

where ν = 2vν is the Fourier frequency.

For the case of broadband radiation, the observed interferogram is the sum of the

interferograms that result from each individual wavenumber. The capability to simul-

taneously acquire data across the entire spectrum increases efficiency and signal to

noise ratio compared to conventional dispersive instruments.

Detectors

A sensitive and low noise method to detect IR photons is an integral part to any FTIR

spectrometer. IR detectors can be sub-categorised into two groups: thermal detectors

and quantum detectors. A thermal detector operates on the principle that materials

absorbing IR radiation experience an increase in temperature. This change in tem-

perature can be indirectly detected through, for example, the change in resistance of

a conductor or semiconductor. Thermal detectors are not well suited to FTIR spec-

troscopy due to the relatively large response time (≈ 10−3 s) [64], far too long for the

high frequencies within the interferogram.

Quantum detectors offer a highly tuneable and sensitive approach to detecting IR ra-

diation. They are named as such due to the quantum interactions between IR photons

and electrons within the detector, resulting in a measurable electric signal. For ex-

ample, photomultiplier tubes (PMTs) work on the principle of photoemission, which

occurs when a photon imparts enough energy to an electron to overcome the work-

function of the material. The liberated electrons then flow through a vacuum towards
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an anode to generate a current. The work-function of photoemissive materials is much

higher than the energy of an IR quantum, therefore the use of PMTs and other photoe-

missive techniques is prohibited for IR detection.

The tuneable and sensitive nature of semiconductor detectors make them ideal for the

detection of IR radiation. The defining feature of a semiconductor is the existence of a

relatively small energy gap between the valence and conduction bands of the material.

This is in contrast to an insulator which has a large energy gap (typically > 5 eV), and

to a conductor, where there is significant overlap between the valence and conduction

bands, allowing for the free movement of charge carriers which give rise to an electric

current. By choosing a semiconductor with a band gap similar to the energy of that of

the radiation that is to be detected, an incident photon promotes an electron from the

valence band to the conduction band.

The detectors generally used in the detection of IR radiation are p− n junction semi-

conductors. These consist of two adjoining semiconductors, one with a relative abun-

dance of electrons (n-type), the other with a relative deficiency of electrons, or abun-

dance of holes (p-type). Electrons and holes migrate across the interface between the

two semiconductors until the built up charge prevents any further diffusion. The re-

sulting depleted region near the interface consists of recombined electrons and holes,

whereby electrons exist predominantly in the valance band, preventing conduction.

The depleted region is maintained by applying a reverse bias voltage across the semi-

conductor. When a photon is incident on the detector, valence band electrons are

promoted to the conduction band and are attracted towards the positive terminal, and

vice-versa for the generated electron holes. They are prevented from recombining by

the reverse bias voltage.

Mercury cadmium telluride (MCT) is an alloy consisting of mercury telluride (HgTe)

and cadmium telluride (CdTe). HgTe is a semi-metal with an overlap between the

conduction and valence band, whilst CdTe is a semiconductor with a native band gap

of approximately 1.5 eV. Careful selection of the relative compositions in the alloy

allows for the continuous tuning of the band gap between -0.3 eV and 1.6 eV [66]. Due

to the relatively low energy required to excite electrons in MCT detectors, cryogenic

cooling is generally used to minimise thermal excitation of electrons.
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FIGURE 3.8: Semiconductor detector schematic. When a photon with
an energy greater than bandgap of the semiconductor is incident on
the detector, an electron is excited to the conduction band, leaving a
hole in the valence band. Movement of these charge carriers leads to a

measurable electric current.

3.2.3 Microscopy and Imaging

The core technique of FTIR spectroscopy as described is a powerful tool for analysing

the chemical composition of bulk, homogeneous materials. On the other hand, it is

not ideally suited to the analysis of heterogeneous samples, especially those which

vary at a microscopic level, as the output data is an indication of the absorption char-

acteristics integrated over a large volume. FTIR microspectroscopy (FTIR-MS) is the

combination of FTIR spectroscopy and conventional microscopy. The utilisation of

FTIR-MS enables the analyst to acquire spatially located spectral data by exploiting

conventional microscope optics and array detector technology.

FTIR-MS can be achieved by making a few essential modifications and additions to the

fundamental FTIR spectrometer configuration. The major differences are in the light

propagation and detection mode. A broadband source coupled to an interferometer

is initially used to generate an interferogram, and the IR light is then focused onto

the sample. In a manner specific to the mode of operation, the transmitted signal is

detected by an array of single element detectors called a focal plane array (FPA).

Figure 3.9 is a basic representation of the how modulated light from the interferome-

ter is propagated through an FTIR microscope operating in transmission mode. Light

from the interferometer reflects off a hyperbolic secondary mirror which distributes

the light onto a primary parabolic mirror. The parabolic mirror then focuses the light
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FIGURE 3.9: Basic schematic of an FTIR microscope in transmission
mode.

onto the sample. In the case of transmission FTIR, the transmitted signal is propa-

gated through another mirror configuration in order to collimate the light for detec-

tion. Reflective optics are generally preferred to refractive optics (lenses) as glass has

poor transmission for IR wavelengths, and IR transmissive lenses forged from mate-

rials such as calcium fluoride are expensive. Another consideration with a refractive

optical system is chromatic abberation, a phenomenon whereby the wavelength de-

pendent refractive index leads to dispersion according to Snell’s law (Eq. (3.7)) and

therefore different wavelengths of radiation will have dissimilar foci.

Conventional far-field optics places a fundamental limit on the spatial resolution one

can obtain from an optical system. A point source of light cannot produce an equiv-

alent point in the resulting image due to the diffraction pattern observed in optical

systems with a finite diameter, such as lenses, mirrors and apertures. This diffraction

pattern is known as an Airy pattern [67]. If the Airy patterns from two sources are

too close, they coincide with each other and the sources are no longer resolvable. The

Rayleigh criterion [68] places a theoretical limit on the separation between two points

before their Airy patterns are indiscernible, defined by:
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∆r =
1.22λ

2 ·NA
. (3.19)

Here, ∆r is the spatial resolution, λ is the wavelength, and NA is the numerical aper-

ture, defined as NA = n sin(α), where n is the refractive index and α is the half angle

of the cone of light emerging from or entering the optical system. In the case of FTIR

imaging in the mid-IR spectral region (2.5 µm - 10 µm), Rayleigh’s criterion would im-

pose a spatial resolution limit of absolutely no less than ≈ 5 µm. The diffraction limit

can be overcome by exploiting near-field characteristics of light, which will be further

discussed in section 3.4.

Hyperspectral Imaging

FPA technology has enabled FTIR-MS to flourish. At its inception, apertures would be

used to specifically restrict the beam to a small region of the sample, so that only a rel-

atively small fraction of energy was reaching the sample, which results in a low SNR.

In order to increase the SNR, multiple readings would usually be co-added, however

this approach can only ever increase the SNR by a factor of
√

N, where N is the num-

ber of readouts at the detector. To add to this, formation of an image would require

the raster scanning of the sample stage in order to focus the light on different regions

of the sample. Both of these factors dramatically limit the speed of the instrument.

Use of FPAs has allowed this liitation to be overcome. An FPA is essentially a two-

dimensional array of single element detectors situated in the focal plane of the objec-

tive. Each detector corresponds to a pixel in the resultant image. This eliminates the

requirement to guide the beam using an aperture, as the entire field of view (FoV) can

be simultaneously imaged without the need to raster scan the stage. The capability to

simultaneously acquire both spectral and spatial data provides a very high-throughput

chemical imaging instrument, and is termed hyper-spectral imaging (HSI).

The data format emerging from an HSI instrument consists of two spatial dimensions

and one spectral dimension. This data, commonly referred to as a hyperspectral dat-

acube, or hypercube, can be thought of as a sequence of planes, each one encoding the

absorption profile at a particular resolution element in the spectrum. The data can
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be alternatively but equivalently visualised as a 2D arrangement of one dimensional

spectral vectors.

𝜈

𝑥

𝑦

FIGURE 3.10: Depiction of hyperspectral datacube resulting from a 4×4
FPA. Each slice in the data is a unique array of values corresponding to

the absorbance at a particular wavenumber.

Most FPAs have either 64×64 or 128×128 elements. If an FTIR microscope with an

FoV of 1 mm2 came equipped with a 128×128 element FPA, the pixel size in the im-

age would be approximately 7.8 µm. There is a trade off between pixel size and SNR,

the smaller the pixel element, the more signal is required to achieve reasonable SNR,

hence a brighter source or longer acquisition times are required. Brighter sources such

as quantum cascade lasers (QCLs) and synchrotrons can be used to address this com-

promise. The resolution limit imposed by Eq. (3.19) should also be considered, as

there is little benefit in oversampling with pixels that have dimensions smaller than

the spatial resolution of the instrument.

The size of the FPA, spectral range and spectral resolution are the factors which de-

termine the size of the hypercube. For instance, an FTIR imaging instrument with

a 128×128 FPA detector, and a spectrometer able to record data between 1000 cm−1
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and 4000 cm−1 at a a spectral resolution of 2 cm−1 will yield a hypercube with dimen-

sions 128×128×1500, amounting to an array with in excess of 20 million elements.

This abundance of high dimensional data often necessitates the utilisation of sophis-

ticated visualisation tools and pattern recognition algorithms to reveal important fea-

tures within the data. This will be covered in much more detail in section 3.3.2.

3.2.4 Application to Cancer Diagnostics and Characterisation

It has long been realised that there is high potential for the application of vibrational

spectroscopic techniques in the biomedical paradigm. Of particular emphasis is the

exploitation of the high-throughput and objective nature of FTIR-MS in cancer diag-

nostics. Since as early as 1952 [69], infrared spectroscopy has been explored as a tool to

characterise tissue and cells that are in an altered, pathological state. There have been

numerous studies related to the characterisation of specific cancers, such as colorectal

[70], prostate [71], lung [72] and oral cancers [73].

Broadly speaking, biological specimens all have a very similar chemical structure at

the scale of the spatial resolution attainable with FTIR-MS. The infrared spectra asso-

ciated with different tissue and cells will therefore contain contributions from similar

regions of the spectrum. Figure 3.11 shows a typical biological spectrum, with impor-

tant peaks identified and categorised depending on the biomolecule with which they

are associated.

The two dominant peaks centered at 1650 cm−1 and 1550 cm−1 are called the amide I

and amide II bands respectively. These are both sum peaks of underlying contribu-

tions that arise from proteins exhibiting varying structural conformations. The amide

I peak predominantly consists of C=O and C-N stretching vibrations. The amide II

peak is built up of N-H bending, C-N stretching and C-C stretching vibrations. The

peak position is sensitive to the backbone conformation of the protein itself, with pro-

tein structures such as alpha (α) helices, beta (β) sheets and random-coils giving rise

to subtly different peak shapes. The presence of proteins in all biological tissue means

that these two dominant peaks are an important feature of the architecture of an IR

spectrum derived from biological material. Hydrocarbon groups such as the differ-

ent vibrating modes of CH2, are also commonplace in biological spectra due to the
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FIGURE 3.11: Typical biological spectrum and corresponding peak as-
signments. Type of vibrations signified by a v (stretching), δ (bending),
s (symmetric) and as (asymmetric). Extracted with permission from
[74]. Colour of peak label indicates group of biomolecules each spectral
biomarker is related to (lipid: blue, protein: red, nucleic acid: green,

carbohydrate: yellow.)

abundance of lipids in biological material. Peaks arising from the symmetric and

asymmetric stretching modes of phosphate groups indicate the presence of DNA, and

vibrations such as C-O-H bending are abundant in glycogen rich samples [75].

This abundance of chemical information is somewhat of a double edged sword. The

complexity of biological tissue translates to a complicated convoluted set of spectral

profiles that may differ only very subtly from one spectrum to the next. For this

reason, it is usually necessary to employ sophisticated analytical methods in order

to extract the useful biochemical information from a biological spectroscopic dataset

(section 3.3.2).

Despite the undeniable promise of what is termed by many as ‘clinical spectroscopy’,

there is still a long road to traverse before its introduction into a clinical setting, with

multiple bottlenecks. The abundance of instrumentation and analytical methods avail-

able has led to a significant lack of consensus and standardisation of techniques. For a
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tool to be implemented in the clinic, large scale, multi-centre validation studies must

be carried out in order to verify the performance and robustness of such an approach.

The application of FTIR-MS coupled with rigorous analytical pipelines to samples de-

rived from patients exhibiting OSCC and OED is the basis of this work. A more spe-

cific summary of the work surrounding clinical spectroscopy for oral cancer can be

found in the experimental chapters of this thesis.

3.3 Analytical Techniques

Various analytical steps required to extract meaningful information from raw spectral

data derived from biological samples. This workflow can be thought of as a pipeline,

or sequence of steps that are required to infer patterns and differences between spectra

originating from different types of cell or tissue. The workflow can be divided into two

distinct stages: pre-processing and model construction.

Pre-processing methods can be broadly defined as the steps are required to mitigate

for unwanted spectral artefacts and aberrations that may conceal or warp results fur-

ther down the line. They include the smoothing of noisy signals, correction for scat-

tering artefacts, and the careful selection of the features that contain the most relevant

information.

Model construction refers to the building of models using either labelled or unlabelled

data. These techniques belong to a wider subset of algorithms termed machine learning

(ML), a field which is experiencing monumental growth in a huge array of industries.

These data-driven approaches make efficient use of the vast processing power and

storage capabilities of modern computers in order to build complex functions without

being explicitly programmed to do so. Examples of ML applications in ordinary life

include spam filters, facial recognition, autonomous cars and targeted advertisement.

In a broad sense, ML can be defined as algorithms that enable computers to learn rules

from data so they can make predictions when they encounter new data.
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3.3.1 Pre-processing

Pre-processing methods for IR spectral data can be subdivided into a number of stages

that aim to mitigate a particular undesirable trait within the data. The stages most

commonly applied are smoothing, baseline correction, normalisation, scaling and feature

selection.

Denoising

Random, high frequency noise is not reflective of the true sample signal, therefore it

should be reduced. Various approaches are commonly employed in order to smooth

out the unwanted noise from a spectrum. Savitzky-Golay (SG) smoothing [76] is a

commonly utilised method whereby a polynomial is fitted to a small window of data

points. The polynomial is then evaluated at the centre of the window and the win-

dow is shifted to the next data point. This process is repeated until the window has

passed through all the data, yielding a much smoother signal. Figure 3.12 shows how

SG smoothing can be applied to denoise a sine wave with high frequency normally

distributed noise added to it.
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FIGURE 3.12: Basic depiction of SG smoothing. A linear polynomial is
fitted to a window of 21 points. The window is propagated through the

data to acquire a smoothed signal.

Another method frequently applied is principal components analysis (PCA) denoising

[77]. PCA is an important technique that seeks to project the data scatter matrix onto

a set of principal components (PCs) that maximise the variance within the dataset,

through a process called singular value decomposition (SVD). This can be achieved

with a small number of steps applying linear algebra to the data, summarised below.
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The data X is contained within an n × p matrix, where n is the number of columns

and p is the number of variables (wavenumbers). The first step is to mean centre this

matrix by subtracting the column mean from each value, so that the mean of each

column is zero. The covariance matrix C is given by Eq. (3.20):

C =
XTX
n− 1

= VLVT. (3.20)

Here, L is a diagonalised matrix of eigenvalues, and V contains the eigenvectors. SVD

can be applied to obtain L and VX as follows:

X = USVT, (3.21)

where U is a unitary matrix so that UTU =I, and S is a diagonal matrix containing

the singular values for the singular vectors V. Substitution of Eq. (3.21) into Eq. (3.20)

gives:

C =
VS

I︷︸︸︷
UTU SVT

n− 1
= V

S2

n− 1
VT. (3.22)

The diagonal matrix of singular values, S, therefore contains the eigenvalues of the

covariance matrix of X, divided by n − 1, where n is the number of variables. The

eigenvectors are also known as the principal components, which contain the relative

weight each untransformed variable contributes to the projection on the new axis.

The eigenvalues (given by US in Eq. (3.21)) are also known as the scores, where each

element (i, j) of the n× p matrix is the result of the linear transformation of row i of

X onto loading j. The original data matrix can be reconstructed simply by taking the

vector product X = TVT, where T contains the scores.

By considering that the principal components are sorted in descending order of ex-

plained variance, a set of components that don’t contribute significantly to the vari-

ance of the data can be removed in order to remove noise from the dataset. The factors
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that are retained will therefore describe the important variance within the data, and

the data can be reconstructed on the basis of these principal components.

High frequency noise contributes negligibly to the total variance of a large, complex

dataset. By applying PCA and discarding the PCs that have a negligible contribution

to the total variance of the dataset, one can reconstruct the dataset with less noise.

Baseline Correction

Background absorption interferences such as scattering often manifest in a non-zero

baseline for FTIR spectra. This baseline may lead to the misinterpretation of spectral

differences, as the relative peak heights and peak positions will be offset by an arbi-

trary amount. There are several ways in which this can be mitigated. Rubber-band

baseline correction fits and subtracts a convex polynomial (rubber-band) to the min-

ima of peaks, aligning the spectrum to a mutual baseline. Spectral derivatives are

also frequently used, as these intrinsically remove any non-wavenumber dependant

baseline aberrations.

The baseline induced by scattering interferences is not always quantifiable using a

simple approach such as rubber-band or spectral derivatives. The theory of Mie scat-

tering was developed by Gustav Mie in 1908 [78], and it refers to the scattering of light

by a homogeneous spherical particle. If the wavelength of the incident radiation is

orders of magnitude different to the dimensions of the scattering particle, there exists

accurate and simple approximations which describe the scattered light. However, for

radiation scattered by objects with dimensions similar to the wavelength, the effects

are more pronounced and require a more rigorous approach [79].

The dimensions of cells and other tissue components are of the same order of magni-

tude as the wavelengths used here (≈ 10−6 m - 10−5 m), which unfortunately leads

to an ideal scenario for Mie scattering. This is often manifest as a broad, sinusoidally

undulating baseline, with dispersive artefacts towards the higher wavenumber (lower

wavelength) end of the spectrum. Correction for the undulating baseline is achievable

using conventional approaches such as rubber-band, however this does not account

for the induced shift in peak position and shape artefacts.
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The scattering efficiency of a non-absorbing dielectric sphere illuminated by radiation

of wavelength λ can be approximated by:

Q = 2−
(

4
ρ

)
sin(ρ) +

(
4
ρ2

)
[1− cos(ρ)] , (3.23)

where ρ = 4πd(n− 1)/λ.

The first implementation of a Mie scatter correction was by Romeo and Diem [80],

who fitted a scattering efficiency curve Q(ν) to the IR profile of a single biological cell.

Kohler et al [81] integrated this approach into their extended multiplicative scattering

correction (EMSC) in order to account for a range of refractive indexes and scattering

diameters. Whilst the approach successfully mitigated for the undulating baseline, the

distortion in peak position was still pronounced.

In order to understand the scattering mechanisms in biological samples, Bassan et al

utilised polymethyl methacrylate (PMMA) micro-spheres of defined refractive index

and size to model the scattering caused by cells [82]. They found that isolated spheres

yield highly dispersed spectra which bear little resemblance to the spectra of the same

spheres in a bulk arrangement. They termed this phenomenon ‘resonant Mie scat-

tering’. The development of correction algorithms based on the newly acquired un-

derstanding followed, with a resonant term added to the EMSC model proposed by

Kohler [83], [84]. Figure 3.13 shows the effects of Mie scattering and the RMieSc scatter

correction applied to prostate tissue spectra.

Normalisation

The Beer-Lambert law (Eq. (3.10)) implies a linear relationship between the absorp-

tion and path length of the material. Theoretically, this means that the FTIR spectra of

thicker specimens will be scaled up compared to thinner samples. In chemical analy-

sis, where the chemical concentration of a particular moiety is of interest, the variation

in spectral intensity resulting from differing path lengths is of little interest. Normali-

sation is a group of approaches that intend to scale each spectrum to a common quan-

tity or range, in order to be able to directly compare spectra originating from areas

with different thicknesses.
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FIGURE 3.13: Example of raw (a) and Mie scattering corrected (b) spec-
tra of prostate tissue. There is a prominent undulating baseline in (a),
with peak shifts in the amide region. Reproduced with permission from

[85].

There exist a few different established normalisation methods. Vector normalisation,

for example, scales each spectrum by its Euclidean length. Min-max normalisation

scales and offsets each spectrum so that each variable xi ∈ 0, 1. Feature normalisation

scales each variable by the intensity or area of a particular spectral region.
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Feature Extraction

Identifying distinct spectral features extracted from FTIR spectra to indicate a charac-

teristic disease is very difficult, because human tissue is composed of widely different

molecular structures where overlapping of individual spectral peaks leads to forma-

tion of broader ones [6].

The selection of spectral features that characterise a particular tissue type is a difficult

task because of the intrinsic complexity of biological tissue. The ensemble of over-

lapping peaks leads to broad peaks with a shape common to most tissue types, thus

rendering the raw data difficult to interpret. Feature extraction methods serve as an

important step to isolate and extract the important information from the raw dataset

[86]. Feature extraction encapsulates both the selection of wavenumbers from the orig-

inal dataset, and the construction of new variables in new domains for visualisation

purposes. The reduction of the number of variables into a smaller subset decreases

the load on model construction, reducing the risk of overfitting and increasing train-

ing speed [87].

Feature selection may entail the truncation of each spectrum to the range (1000 cm−1,

1800 cm−1). This region contains the rich biochemical information that contains the

unique spectral ‘fingerprint’ of the sample, leading to it being termed the fingerprint

region. It also may include model based approaches that iteratively select the impor-

tant features from a classifier, such as forward feature selection (FFS) [88].

Feature construction often refers to linear methods that generate a new set of features

which are generated by a loadings matrix. Each feature is essentially a linear combi-

nation of the original input features, which in this case are the absorption at certain

wavenumbers. The manner of the linear transformation depends on the technique

used and whether the data is labelled or not.

PCA can be used as a powerful dimensionality reduction technique, as it can effi-

ciently determine a much smaller set of dimensions that still describes much of the

variance within the dataset. It does this without any knowledge of the origin of a spec-

trum (it is unlabelled), so has no inherent bias. Linear discriminant analysis (LDA) is
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a related technique that uses knowledge of class labels to determine a new set of di-

mensions, called linear discriminant vectors, onto which projected data has maximum

inter-class separation and minimum intra-class variation.

3.3.2 Machine Learning

There has been a rapid emergence of ML applications to biomedical FTIR-MS datasets.

The complex, multidimensional and similar nature of the data demand the deploy-

ment of sophisticated algorithms that can infer information about the data. This ide-

ally suits the problem to ML, which has been shown to learn rules in complex datasets

which would be very difficult to recognise without the mechanisms of ML.

The ML landscape is vast. Most ML algorithms can be categorised into one of two

types: supervised and unsupervised learning. There are two other categories that

blur the lines between the two, called semi-supervised and reinforcement learning,

but only the two major types will be discussed further.

In a general sense, a set of data can be thought of as a 2D matrix (X). Each column

of the matrix represents a feature or variable within the data, each row represents a

new observation, or feature vector. The size of the matrix is therefore given by i × j

where i is the number of observations, or examples, and j is the number of features,

or variables. In supervised learning, there is an additional variable (y), a vector cor-

responding to the output of each example so that the model can attempt to formulate

the function that predicts the outcome. Supervised learners can be further categorised

according to the nature of y. If y is a continuous variable, regression algorithms should

be used. If y is a set of discrete labels indicating the identity of a data point, classifica-

tion algorithms should be used. An example in the context of medical diagnostics of a

problem where regression would be well suited may be the life-expectancy after a di-

agnosis. Similarly, a classifier in this field may binarise this variable into survived/not

survived after 5 years.

In the context of FTIR-MS applied to cancer diagnostics, each row of X would cor-

respond to a spectrum, with each column representing the absorption at a particular
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resolution element. The class membership vector y may then encode whether a spec-

trum originates from a healthy (0) or abnormal (1) region of the image. The class mem-

bership vector may not be binary; most classifiers can deal with multi-class datasets,

which is especially advantageous for FTIR-MS as there may exist several different tis-

sue or cell types within the same image.

Unsupervised Learning

Unsupervised learners identify patterns in the data without prior knowledge of the

class distribution. Cluster analysis (CA) is a popular unsupervised learning algorithm,

and it serves to group data into a predefined number of clusters based solely on sim-

ilarities between the data. This can be especially useful for the initial visualisation of

hyper-spectral images, as the process essentially flattens the third spectral dimension,

giving a 2D map portraying the cluster identity at each pixel.

The k-means CA (KCA) is an algorithm which groups data together based on the Eu-

clidean distance metric. In KCA, the user defines the number of clusters, k, for the

data to be grouped in to. After this, k random feature vectors, termed centroids are

generated, and the Euclidean distance between each observation and each centroid

is computed. Observations are subsequently being grouped into the cluster with the

nearest centroid. The mean of each cluster is then calculated and redefined as the new

set of centroids for the next iteration. This process is repeated until cluster assignments

remain unchanged from one iteration to the next [89].

The main disadvantage with unsupervised learning is that the performance of such

an approach is difficult to assess. Since there is no ground truth, performance metrics

such as accuracy, sensitivity and specificity are inaccessible.

Supervised Classifiers

Supervised classifiers require a target outcome variable y associated with each exam-

ple in order to infer a function that can predict the outcome for unseen data. The

majority of algorithms are model-based, which means that a classifier can be repre-

sented by a set of model parameters which are determined in the training phase of the
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model. The specific model parameters and the way in which they are determined are

unique to the classifier that is being trained.

Take logistic regression as an example. A weighted sum of the input features (plus a

bias term) is used as the argument in a sigmoid function (Eq. (3.24)):

S(z) =
1

e−z + 1
, (3.24)

where z = ∑n
i=1 (wi · xi) + b. Equation (3.24) outputs a number between 0 and 1,

which is defined as the probability of the sample belonging to the positive class. Here

the model parameters are wi and bi, which are iteratively optimised during training.

Testing the resultant model parameters on the same data would return an overly-

optimistic representation of the performance. For this reason, the data should be at

the very least divided into a training set and testing set, so a more realistic evaluation

of the performance can be determined. The training and testing sets are subsets of

the initial dataset which should maintain a similar distribution of the data to mitigate

against any biases within the data.

In addition to the model parameters, there often exists a set of parameters that influ-

ence the way in which a model is trained. These parameters, termed hyperparameters,

differ from the model parameters in that they are not used in the final representation

of the trained model. The hyperparameters must be defined by the user pre-training,

but the optimal choice of hyperparameters is often ambiguous and ill-defined [9], and

may require tuning, either by exhaustively trialling every permutation of hyperpa-

rameters or by using a more efficient implementation such as random search or Bayes

search for higher dimensional problems [90].

The optimisation of hyperparameters should be performed on a dataset kept separate

from the testing data, to ensure that the selection of hyperparameters isn’t biasing the

training. For this reason, the training set is often further subdivided into a training

and validation set. This concept will be explained further in chapter 5.

A typical workflow for supervised ML experiments is shown in Fig. 3.14.
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Labelled
data 𝑋, 𝑦

Hyperparameters 
𝜃

Train Model
Test on 

validation set

Test on test set

Repeat process until stopping criteria
fulfilled

FIGURE 3.14: Typical workflow of supervised ML experiments. The
optimisation of hyperparameters is often an iterative process which
should be isolated from the test data to prevent bias leaking through

to evaluation.

Metric Analysis

Metric Analysis (MA) is a novel ML algorithm originally developed by James Ingham

within the SciaScan research group [91]. Further developments have been made by

myself in order to improve the efficiency and robustness of the method. In its cur-

rent phase, MA is written in MATLAB and is specifically designed for the analysis of

labelled spectral data.

MA can be considered as a simple yet thorough, highly interpretable tool for spectral

discrimination. At its core is the concept of a ‘metric’, which in this context refers to

the absorbance ratio at two different wavenumbers (µ, ν), denoted herein as δµ,ν. MA

firstly calculates δµ,ν for every combination of wavenumber variables in the training

data X. The data can now be reframed as having nλ features for each row of the

original set. This new transformed set will be denoted M.

As MA is a supervised classification algorithm, it requires access to a labels vector ~y,

which is the identity of each row (spectrum) in X. MA fits a statistical distribution

across each class for each metric, M. By default, this is a Gaussian distribution, so

each metric is parameterised using the mean (µ) and standard deviation (σ) for each

unique class in y.
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The analysis then uses this information to determine which metrics give the best dis-

crimination between the classes. Denoting the number of classes as nclass, there will be

nclass distributions for each metric. Each of these distributions is a probability density

function φ(M), that can be used to infer a probability that a given observation is a

member of the class. Through this process, each of the training spectra can be labelled

as the class with the highest probability. By doing this over all M, the predicted la-

bels (ŷ) can be directly compared with the true labels y in order to evaluate a set of

performance measures for each metric according to Eqs. (2.1) to (2.4).

𝜇1 𝜇2 𝜇3

A

B

AB

BA

Class A has a peak at 1600 cm-1

which is not present in class B. The
rest of the ‘spectrum’ is identical with

the exception of random noise.

When similar spectra are 
histogrammed, metric generates
two distributions that are very well

separated. This metric is a good
discriminant.

The metric is a poor discriminant
as the distributions have a large

degree of overlap, making it difficult
for the classifier to confidently

predict the class.

The identity of an unknown spectrum 
can be predicted by the metric by

calculating the ratio and determining
ofthe spectrum belonging to each 

class. The spectrum would be
predicted as class B (red).

FIGURE 3.15: Simple depiction of the formulation and assessment of a
metric.



Chapter 3. Theoretical Concepts 55

The metrics are subsequently ranked according to their ‘score’, which is calculated

according to a combination of performance measures defined at the initialisation of

the model. Each metric can now be considered as a standalone univariate classifier,

where the variable is the absorbance ratio.

The final stage combines the highest scoring metrics into a soft-voting classifier en-

semble [9]. With each addition of a metric, the probability each spectrum belongs to

each class can be calculated by combining the individual probabilities derived from

φ(M). The spectrum is assigned to the class with the highest probability across the

ensemble. The score as a function of number of metrics can be calculated, leading to

the determination of the optimal number of metrics. The optimally ordered and trun-

cated sequence of metrics is the trained model. In order to assess the performance of

the model, it is essential to to test it on hold-out data. Hold-out data is data which is

kept completely separate from the training and optimisation process.

There has been considerable development made to MA over the course of this work.

The algorithm was rewritten in a much more object-oriented (OO) manner, which im-

proved the efficiency and eased the extraction of results. Parameters that were not

originally accessible were reintroduced as hyperparameters which were easily modi-

fiable in the function call. MA will be discussed further in chapter 4.

3.4 Scanning Near Field Optical Microscopy (SNOM)

The limit imposed by the Rayleigh criterion on the lateral spatial resolution of far

field optics prevents the investigation of samples with a structure smaller than the

wavelength of the light used to interrogate it. As discussed in section 3.2.3, this limit

is a consequence of the diffraction observed when radiation propagates through an

aperture. In the case of infrared imaging, this imposes quite a significant limit on

the size of features that can be resolved. Imaging sub-micron detail with a conven-

tional infrared microscope is impossible, prohibiting the investigation of sub-cellular

organelles, nanoparticles, and many other interesting samples.

A mathematical description of the process which leads to image formation and the

diffraction limit can be achieved through an approach based on Fourier optics [92].
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An optical field from a monochromatic source can be described by Eq. (3.1), from

which the temporal and spatial components can be separated to yield Eq. (3.25):

E(x, y, z, t) = exp[i(kxx + kyy + kzz)] · exp(−iωt), (3.25)

where kx,y,z are the spatial components of the wavevector k. Considering a plane wave

incident on an object situated on a transverse plane (x, y, 0), the spatial frequency spec-

trum of the electric field E( fx, fy) in the plane of the object can be obtained by applying

a Fourier transform to the spatial component of Eq. (3.25). The electric field in the spa-

tial domain can therefore be obtained by applying an inverse Fourier transform to the

frequency spectrum (Eq. (3.26)):

E(x, y, 0) =
∫ +∞

−∞

∫ +∞

−∞
E( fx, fy) exp[2πi( fxx + fyy)] d fxd fy, (3.26)

where fx,y is the spatial frequency and is equal to kx,y/2π. The meaning of this rela-

tionship is that the electric field can be visualised as a superposition of plane waves

with unique wavevectors k = (kx, ky, kz). The component fz can be determined by

first considering | f | = 1/λ, which allows us to express fz as follows:

fz =

√
1

λ2 − f 2
x − f 2

y . (3.27)

In order to resolve the electric field at z > 0, a term accounting for the z direction

propagation must be added to Eq. (3.26) in order to yield Eq. (3.28):

E( fx, fy, z) = E( fx, fy) exp

[
2πiz

(√
1

λ2 − f 2
x − f 2

y

)]
(3.28)

In the case where f 2
x + f 2

y < 1/λ2, the exponential in Eq. (3.26) remains imaginary,

resulting in a propagating plane wave equation. This implies that low-frequency com-

ponents of the field corresponding to structures in the object that are large compared

to the wavelength are detectable in a distant image plane at z. On the other hand,

consider f 2
x + f 2

y > 1/λ2. Equation (3.27) would yield an imaginary number, which
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results in the exponential argument in Eq. (3.28) becoming real, corresponding to an

exponential decay of the high-frequency components of the field. This implies that the

fine structure cannot be observed at a finite distance z from the object.

These two conditions give rise to two distinct regions. The ‘far field’ is the term given

to the region where z > λ, where the propagating components from the lower spatial

frequency components of the field dominate. Resolution is limited by diffraction in

this region. The region where z << λ is termed the near field, and is characterised by

the dominance of an exponentially decaying field containing high spatial frequency

components. These are also known as evanescent waves, the confinement and detec-

tion of which can be achieved through a technique called scanning near-field optical

microscopy (SNOM).

3.4.1 History

The inception of the technique used to exploit the rich information encoded within the

near-field was a publication by Edward Synge in 1928 [93]. His proposal involved the

illumination of a thin opaque screen with a 100 nm aperture. He postulated that the

local illumination by the small aperture of a thin biological section situated at a dis-

tance similar to the diameter of the aperture would allow for the nano-scale imaging

of the section, as the near-field components of the field dominate over the far-field. A

basic schematic of such an instrument is shown in Fig. 3.16.

Unfortunately, Synge’s concepts were decades ahead of their time. Fundamental tech-

nological difficulties prevented the application of his ideas, including the control of

source-sample separation, generation of a strong signal, ability to raster scan in the

nanometer regime, and the fabrication of a sub-wavelength aperture. It wasn’t until

the latter 20th century that these difficulties began to be addressed by the development

of scanning probe microscopy techniques.

The validity of Synge’s concept was experimentally demonstrated by Ash and Nichols

in 1972 [94], who used radiation in the microwave regime to image a diffraction grat-

ing with a pitch of 0.5 mm. Achieving such a spatial resolution with microwaves of

wavelength 3 cm proved that the concept was realisable, and this work is often cited

as the birth of experimental near-field imaging.
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Near Field

Far Field

FIGURE 3.16: A sub-micron imaging system conceptualised by Edward
Synge. A small aperture in an opaque screen is used as a nano-source,

with a sample situated in the near field zone of the source.

Realisation of the technique with microwaves as compared to shorter wavelengths

was relatively easy, as the desired sub-wavelength resolution is of the order 10−3 m. In

order to create an image, either the aperture or sample must be incrementally scanned

in the lateral plane, with each step corresponding to a pixel in the image. In the case

of Ash and Nichols’ experiment, positional transducers attached to a vibrating x − y

stage were used to control the scanning. The extension of this technique to shorter

wavelengths was not realised until the invention of scanning tunneling microscopy in

1984 by Binning and Rohrer [95], who used a piezo-ceramic stage to scan the sample

with sub-nm precision.

Technological advances motivated two independent groups to build upon Synge’s

proposal to build the first SNOM instruments. The two groups, one led by D.Pohl [96],

the other by A.Lewis [97], independently developed apparatus capable of beating the

diffraction limit with visible light.

3.4.2 Principles

The purpose of SNOM is to isolate and detect the non-propagating evanascent waves

that exist within the near-field region. There exists two distinct modalities for this
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task: aperture SNOM and apertureless (scattering) SNOM. Aperture SNOM instru-

ments are based on the original conception of local illumination or collection of light

using a sub-wavelength aperture. Apertureless SNOM is a fundamentally different

approach, in which a sharp metal tip acts as a scattering centre, converting the evanes-

cent components of the EM field into propagating waves.

The general configuration of an aperture SNOM is to utilise an optical fiber tapered

with a small aperture as either an emitter or collector. The former is analogous to

Synge’s postulation, whereby the local illumination of a sample is achieved by prop-

agating far field light through a small aperture. In the latter method, the tip of the

fiber is brought into the near-field zone of an illuminated sample. As discussed in sec-

tion 3.4, the electric field in the plane of the sample is a superposition of waves with

unique spatial frequencies, with the high spatial frequencies decaying exponentially

with distance, rather than sinusoidally propagating into the far-field.

By bringing a limited object into the near field, the tip has access to those high spatial

frequencies corresponding to the fine, sub-wavelength detail in the sample. A limited

object is defined as an object with a sharp discontinuity leading to an infinite spatial

Fourier spectrum [98]. The submersion of a limited object such as a sharp tip into

the evanescent field of a high frequency object, will therefore lead to the production

of both evanescent and propagating fields, which can be directed towards a detector.

In theory, a limited object of any size will be able to convert evanescent waves into

propagating ones, but the integrative effects of a large interaction cross-section will

negate the super-resolution information one wishes to acquire.

The reciprocal process, illumination mode aperture SNOM, is theoretically equivalent

[99]. The confined evanescent waves at the surface of a nano-emitter are disturbed

by an extended object (the sample) with high frequency components. This distur-

bance leads to the production of evanescent and propagating components which can

be detected in the far-field. There exists a linear relationship between the Poynting

vector associated with the evanescent field and the intensity of the detected propagat-

ing wave, enabling the generation of an image which correlates with the fine spatial

detail of a sample.
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High frequency 
evanescent
components

𝝀

Plane wave

To detector

Limited object

Extended
surface

FIGURE 3.17: Depiction of aperture SNOM operating in collection
mode. A plane wave is incident on a sample. The high frequency com-
ponents in the diffracted light decay away rapidly with distance from
the surface. A limited object can be used to convert the evanescent field
into propagating waves which are directed towards a detector through

an optical fiber.

A crucial aspect of SNOM is the maintenance of a constant tip sample distance. It is

easy to understand why, the rapid decay of evanescent fields implies that the distance

between the tip and the sample must be controlled as much as possible. If a constant

distance is not maintained, intensity variations in the subsequent image will not be the

result of solely the varying fine structure in the evanescent field, but it will be domi-

nated by the varying tip-sample distance. To simply illustrate the notion of a decay-

ing evanescent field, the tip-sample system can be modelled as an oscillating dipole.

The field amplitudes at a point P(r) contains dependencies on |r|−1 , |r|−2 , |r|−3. The

intensity of the field, which is just the square of the field amplitude, is therefore pro-

portional to |r|−2 , |r|−4 , |r|−6. The first term is a result of the familiar inverse square

law of EM radiation, whereas the latter two illustrate the near field characteristics of

dipole radiation. In order to extend this approach to more complicated objects, one can

approximate the object as an ensemble of oscillating elementary dipoles. In this case,

the Fourier optics approach outlined at the beginning of the section can be deployed

[100].

Apertureless SNOM works on the principle that an EM field will be perturbed when

it interacts with a dielectric material, leading to the excitation of the tip apex. This

in turn leads to the elastic scattering of light, converting the evanescent wave into a

propagating one. The main advantage of apertureless SNOM is the fact that it does
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not rely on an optical fibre to transmit light, therefore the tip diameter is no longer

constrained. Modern technology allows for the manufacture of metal tips with atom-

ically sharp tips, theoretically enabling atomic scale resolution of optical information,

an enormous improvement on the diffraction limit imposed by far-field optics. The

modality does come with some drawbacks, one is that the signal from the source must

be isolated from the background. This can be achieved by modulating the light source

and using an instrument such as a lock-in amplifier to isolate the signal at a particular

temporal frequency. The superior popularity of the aperture compared with aperture-

less approach is probably due to the earlier realisation and adoption of the former

technique: Pohl’s and Lewis’ original instruments were aperture based.

SNOM is part of a wider family of techniques called scanning probe microscopy (SPM),

aptly named after the defining characteristic that images are formed by laterally dis-

placing a probe relative to a sample in order to form a 2D representation of a particular

quantity associated with the employed technique. For instance, atomic force microscopy

(AFM) is an established technique that is able to image the mechanical properties of a

sample (such as force, adhesion, viscosity) with an extremely high spatial resolution

(< 10−9 m) [101]. STM is a technique based on the quantum phenomenon of electron

tunnelling when a bias voltage is applied between two conductors, enabling the imag-

ing of the local electronic environment of a sample with a resolution similar to that of

AFM [95].

SNOM is not a technique constrained to the visible wavelengths of the EM spectrum.

In fact, Ash and Nicholls [94] used microwaves in their proof-of-concept paper in 1972.

As discussed in section 3.2.1, chemical information based on characteristic molecular

vibrations of different chemical species can be acquired using FTIR-MS. Unfortunately,

the spatial resolution of FTIR-MS is fundamentally limited as it is a far-field technique.

This is especially problematic as IR wavelengths are longer than visible wavelengths,

rendering it impossible to acquire chemical images with a similar resolution to a con-

ventional light-microscopy image.

The history and principles of SNOM imaging have been described in a broad, holistic

manner. The instrumentation and application of IR-SNOM in the context of this work

is discussed in more detail in section 4.4.2.
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Chapter 4

Oral Cancer Analysis

The work contained within this chapter can be subdivided into three key phases. The

first two phases apply FTIR-MS and MA to a cohort of oral cancer patients, and is

primarily for assessing the utility of MA as a multi-class classifier, and feature extrac-

tion tool that can be used to determine spectral biomarkers. In the third and final

phase, IR-SNOM is used to investigate the discriminatory features determined in the

previous phase using an IR-SNOM. The MA method for analysing FTIR data has only

previously been evaluated by applying it to cell lines derived from single patients [91].

4.1 Background

The motivation for developing more informative, objective and robust visualisation

tools for oral tissue samples is largely due to the current lack of molecular markers and

accurate clinical tests. Several studies applying FTIR spectroscopic techniques to oral

cancer and associated tissue have been published over the previous two decades, pre-

senting a variety of interesting findings which have helped to consolidate and progress

understanding of the chemical processes which underpin the disease.

In a study by Schutz et al in 1998 [102], FTIR-MS was applied to cancerous specimens

to investigate the abnormal biochemical changes in OSCC. The formation of keratin

rich morphological structures known as keratin pearls is a common manifestation of

OSCC. These form due to the loss of cohesion between abnormal squamous cells,

leading to their concentric arrangement. These cells are functionally differentiated,

symbolised by the production of keratin and loss of DNA content. Selected spectra
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indicated abnormal levels of protein in the keratin pearl, with the highest level con-

centrated in the centre. They also revealed the absence of DNA, which is in agreement

with the current understanding of the structure. They also showed that surrounding

collagen acts to contain and stabilise the keratin pearl structure. This study indicated

the potential exploratory utility of FTIR-MS in oral histopathological studies .

Another study carried out the following year by Fukuyama et al [103] aimed to find

the spectral markers that differentiate between OSCC and surrounding normal tis-

sue (normal gingival, normal sub-gingival). They used FTIR spectroscopy rather than

FTIR-MS to measure the bulk absorption of small sections extracted from the regions

of interest. By measuring differences between spectra, they found several spectral

markers that separate malignant from normal tissue. In particular, they found sig-

nificant differences in intensity of features between 1482 - 1431 cm−1, 1274 - 1183

cm−1 and 1368 cm−1. This study demonstrated the potential of FTIR spectroscopy

as a means to discriminate malignant from benign oral tissue.

Bruni et al [104] were able to attribute high DNA and high collagen content to prolif-

erative and regressive states of OSCC tumours respectively, on the basis of chemical

maps acquired by FTIR-MS. Spectral differences between normal and diseased tissue

were observed at 970 cm−1, 1026 −1, 1550 cm−1 and 1735 −1. These findings exemplify

how spectroscopic changes can be correlated with subtle pathological alterations that

may otherwise be overlooked.

Conti et al published two papers which extended the univariate analysis carried out

by Bruni et al to a more thorough multivariate approach. In the first paper [105], sam-

ples were selected from several different regions of the oral cavity and lymph nodes

presenting OSCC or OED of variable degree, and imaged using an FTIR microscope.

The data were clustered using hierarchical cluster analysis (HCA), with those clusters

labelled by a pathologist. They then compared spectral profiles of different clusters,

using pre-defined characteristic peak positions to inform their selections. PCA analy-

sis was also used on the data, which was able to separate the clusters determined by

HCA over three principal components. The same authors followed this up in a second

study, where HCA and PCA were again used to group and compare similar spectra,
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correlating the findings with pathological observation. They imaged normal and ma-

lignant cell lines, inoculated rat cancer tissue and human tongue tissue as samples.

These robust analyses demonstrated how unsupervised techniques were able to cate-

gorise spectra into pathologically different groups based entirely on spectral similarity

rather than any a priori knowledge of their origin. The spectral differences between

the clusters are therefore implied to be ‘fingerprints’ of the pathologies represented by

such clusters, which is supported by the comparable results from the PCA.

Sabbatini et al [106] built upon these results to attempt to ascertain the spectral charac-

teristics that define different grades of OSCC, healthy and dysplastic tissue. HCA and

PCA were again deployed as multivariate approaches to group, compare and contrast

spectra. They correlated spectral differences in more malignant tissue with known

molecular mechanisms, such as consumption of carbohydrates for proliferating cells

that require a surplus of energy.

Meanwhile, the same group employed multiple multivariate image analysis (MIA)

methods to analyse tissue specimens from multiple OSCC patients. The samples were

arranged in an array of small circular samples which have been extracted from an

FFPE tissue block (see section 2.1.2) called a tissue micro-array (TMA). The study, by

Pallua et al in 2012 [107], used both HCA and KCA on the hyperspectral images to

generate pseudo-colour images that correlated with the H&E stained counterparts of

the same sample (Fig. 4.1). This further shows that, with the aid of MIA techniques, the

high information content contained within hyperspectral images of oral cancer tissue

can be leveraged to rapidly and objectively cluster into groups that are reflective of the

pathology. In the same analysis, the group were able to obtain contrast in maps of peak

area corresponding to glycoproteins and nucleic acids, although more contrast was

acquired when using the MIA techniques. Demonstration of class separation on an

entirely spectral basis was also achieved using PCA on a number of selected spectra.

A different study by Banerjee et al [108] aimed to determine the spectral biomarkers

that distinguish between normal tissue, OL and OSCC. They realised that classifica-

tion using fewer features selected by FFS attained superior scores than that of the

entire feature space. For the OL vs OSCC classification, 81.3% sensitivity and 95.7%

specificity was achieved using linear and quadratic support vector machines (SVMs).
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FIGURE 4.1: Pallua et al [107], fig. 7. (a) HE stained sample from TMA,
regions of interest corresponding to cancer, hornification and desmo-
plastic stroma identified by histopathologist. (b) - (d) Peak area maps
for 3 different wavenumber ranges: 1385 cm−1 - 1380 cm−1 (glycopro-
teins), 1225 cm−1 - 1220 cm−1 (nucleic acids), 1085 cm−1 - 1080 cm−1

(nucleic acids). (e) HCA pseudo-colour image. (d) KMC pseudo-colour
image.

The features selected by FFS were attributed to glycogen and keratin content within

the two different tissues. The successful discrimination between OSCC and OL sug-

gests that FTIR spectroscopy could have utility in the risk management and stratifica-

tion of PPMOELs.

Raman spectroscopy has also seen a variety of applications to oral tissue related stud-

ies [109]. Raman spectroscopy is less well suited to high volume histopathological

studies than FTIR-MS because it takes longer to record an image (point spectroscopy

raster scanning vs FPA hyperspectral imaging) and attain high signal to noise from a

weak signal.

The survey of recent literature surrounding FTIR-MS applied to oral cancer reveals

that there has been a lack of supervised learning classification techniques applied to



Chapter 4. Oral Cancer Analysis 66

entire images of oral tissue. The papers described previously either make use of un-

supervised algorithms such as HCA, KMC and PCA to generate pseudo-colour im-

ages that can be correlated with histopathology. Whilst the results have shown high

degrees of correlation, it is difficult to infer a quantative measure of how well the

algorithm has performed, as there is no ground truth. Supervised techniques have

been used to classify powdered samples formed from dried tissue sections [108] with

good results, but the potential of the model as a labelling tool was not demonstrated.

Interpretation of results derived from supervised models are also more reliable than

that of unsupervised models, as the discrimination is guided by the identity of each

spectrum.

The work in this chapter will be split into three sections. The first will be the ap-

plication of multivariate techniques to images acquired by FTIR-MS, for the charac-

terisation of various tissue types that are typically found in normal and malignant

oral tissue specimens. The following two sections will be oriented around a recently

published paper by Ellis et al [110] which uses metric analysis to identify spectral

biomarkers that separate metastasis from lymphoid tissue, and subsequently using

those biomarkers for higher resolution study with an IR-SNOM. The author of this

thesis is the lead author of [110].

4.2 Methods

4.2.1 Sample Selection and Preparation

Specimens were selected from a cohort of patients displaying a mixture of primary

OSCC (n=4), nodal metastasised OSCC (n=2) and associated normal tissue. Two ad-

jacent ≈ 4 µm sections were obtained using a Beecher MTA-1 microtome. One of the

sections was floated onto a charged glass slide for conventional histopathological as-

sessment, whilst the other was floated onto a 2 mm calcium fluoride (CaF2) disk for

FTIR-MS experiments.

Preparation for histopathological assessment entailed the routine deparaffinisation

and HE staining of the thin section. The samples set on glass slides were initially

submerged in histology grade xylene for 5 minutes to dissolve the paraffin. Following
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this, the samples were sequentially immersed in 100%, 95% and 70% ethanol for one

minute each in order to gradually hydrate the sample. The slides were then rinsed in

running water for 30 seconds to remove any remaining paraffin or other solid contam-

inants. The first component of the dye to be added was haemotoxylin, which the slide

was fully submerged in for a total of 3 minutes, and subsequently rinsed with run-

ning water. The slide was then dipped into acid alcohol to prevent excess background

staining, which was followed by treatment with Scott’s tap water as a ‘blueing’ step.

As a precursor to eosin staining, which is alcohol based, the sample was again im-

mersed in 95% alcohol before submersion in eosin for 5 minutes. The samples were

transferred back through 95% then 100% ethanol to dehydrate the section, followed

by a final treatment with xylene for 1 minute. Stained samples were covered with a

cover-slip.

The samples set on CaF2 disks were not subject to the same deparaffinisation as the

histopathological slides, the sections were instead retained in their original FFPE form.

It was decided not to remove paraffin for a number of reasons, listed below [77]:

(i) The exhaustive process of paraffin removal may introduce unwanted sample

variability influenced by the environment.

(ii) There is sufficient information outside of paraffin dominated spectral regions,

so that these regions can be discarded. Important spectral biomarkers such as

those resulting from proteins, DNA and carbohydrate are still present. Signifi-

cant paraffin peaks exist within 3000 - 2800 cm−1 and 1490 - 1340 cm−1.

(iii) The problem of Mie scattering (section 3.3) is largely alleviated when the sample

is embedded in paraffin. This is because the refractive index of paraffin and

tissue are very similar, which decreases the scattering efficiency in Eq. (3.23).

(iv) The stability and structural integrity may be preserved by paraffin.

Light micrscopy (LM) images of the stained sections were acquired using an Aperio

CS2 scanner (Leica Biosystems). These images were used by an oral histopathologist

to identify specific regions of interest that should be targeted in subsequent FTIR ex-

periments.
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FIGURE 4.2: (a) HE of entire tissue section from OSCC patient, with re-
gions of interest (ROI) defined by histopathologist. (b) ROI 1: Invasive
OSCC with surrounding stroma tissue. (c) ROI 2: Normal epithelium

with adjacent stroma and skeletal muscle tissue.

Figure 4.2 is a set of LM images of a section taken from the tongue of patient P2 with

OSCC. The small holes located in the middle and bottom edge of the sample are where

punches have been used to extract smaller cores for TMAs. The region enclosed by

the blue square is shown at a higher magnification in Fig. 4.2b. The well-differentiated

cancer cells have accumulated in a series of islands, situated amongst stroma tissue.

Since well differentiated squamous cells produce keratin, there are areas that have

been stained red by the H&E dye. Stroma is the general name given to the supportive

framework of tissue which contains functional cells such as fibroblasts and immune

cells. Stroma tissue in the vicinity of a tumour is abundant in cancer associated fibrob-

lasts (CAFs), cells that stimulate the growth of tumours by the production of growth

factors, the presence of which has been shown to correlate with stage and prognosis

[111]–[113]. A list of patients and corresponding site is shown in table 4.1.
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TABLE 4.1: Patients selected for imaging.

Patient Site N(ROIs)

D18 Tongue 4
A12 Lymph Node 3
B12 Retromolar 3
D2 Buccal 1
A13 Alveolus 3

4.2.2 FTIR Experiments

FTIR-MS experiments were carried out in Peter Gardner’s laboratory, Manchester

institute of biotechnology, Manchester, United Kingdom. The apparatus, shown in

Fig. 4.3, consisted of a Varian 620 IR microscope coupled with an Agilent Cary (for-

merly Varian) 670 FTIR spectrometer. A schematic is also shown in Fig. 4.4 The sample

stage was contained within a sealed chamber which is purged with dry-air in order

to significantly reduce the presence of water vapour, which has strong presence in

the mid-IR spectral region. The lateral position and height of the microscope’s sam-

ple stage could be controlled by an external controller so that the chamber need not

be opened in order to adjust sample position. The integrated system was controlled

entirely by a PC operating the Agilent Resolutions Pro software.

The spectrometer previously described was also purged with the facility’s dry-air sup-

ply to effectively remove any water vapour from the optical path. The mirrors within

the interferometer were air bearing in order to reduce external vibrational noise and

increase speed and throughput. The humidity and temperature of the system were

monitored using a digital display humidity gauge and thermometer within the purge-

chamber.

Considering the time taken to purge the apparatus to acceptable levels (< 1% relative

humidity), opening the purge chamber to replace each sample after data acquisition

would be inefficient. Furthermore, any background atmospheric correction would be

inconsistent with current conditions, as the chamber will be purged to a lesser/higher

extent. For these reasons, a sample holder capable of housing three disks was designed

using CAD software and 3D printed. Two of the disks were to contain tissue, with a

third, blank disk reserved for calibration and background scans.
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FIGURE 4.3: Labelled photograph of apparatus used for FTIR-MS ex-
periments.

FIGURE 4.4: Schematic of the FTIR system. More detailed figures for
the optical system are in Fig. 3.9 and Fig. 3.7.

Contained within the IR microscope was a 128x128 element MCT-FPA detector, which

was able to simultaneously detect the IR light over a FoV governed by the microscope
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optics. For low magnification mode, a 15x objective was used, enabling a FoV of ap-

proximately 0.7× 0.7 mm2, corresponding to a 5.5 µm pixel size in the resultant hyper-

spectral image. The detector was situated next to a dewar which was filled with liquid

nitrogen (LN2) in order to reduce the thermal noise as explained in section 3.2.2. The

effective FoV of the microscope could be extended by using a built in ‘mosaic’ func-

tion, which programmed the microscope to sequentially record a defined arrangement

of hyperspectral images, which were concatenated together after data acquisition.

As depicted in Fig. 3.9, when the microscope is configured to transmission mode, the

IR light propagates through two optical systems: the condenser and the objective. The

condenser focusses the beam onto the sample, whereas the objective collects the trans-

mitted light, recollimating it for detection at the FPA. It is crucial that these two opti-

cal systems are brought into mutual focus to ensure high image quality. To bring the

objective into focus, the microscope was configured to image visible light using the

video camera situated on the same light path as the IR beam. The microscope was set

to transflection mode, whereby the optical path is configured to both illuminate the

sample and collect the reflected beam through the objective. The condenser beneath

the sample is therefore removed from the optical path, isolating the objective and en-

abling the focus to be found by adjusting the stage height. The operating mode was

switched to transmission in order to focus the condenser. Coarse adjustments were

made by adjusting the condenser height and monitoring the visible image quality.

Fine adjustments were made to the condenser height by monitoring the distribution of

light incident on the FPA. Since the FPA detects IR photons, the optics were switched

back from the visible path to the IR path. The condenser height was adjusted until a

uniform intensity was observed on the FPA image, shown in Fig. 4.5, whilst changes

to the intensity were made to ensure the detector was not saturated. The intensity at

the detector was modified by changing the integration time or positioning a 25%, 50%

or 75% attenuator in the light path. The FPA was calibrated by setting the intensity at

each pixel to zero.

When there is zero path difference (ZPD) between the moving and fixed mirror, all

constituent wavelengths of the recombined beam are in-phase with each other. This

property is reflected in the interferogram, where there is a dominant peak at ZPD, as
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all the wavelengths are constructively interfering with each other. Before any spectral

measurements are to be measured, the point of ZPD, termed the centerburst, should

be reset to zero as a calibration step. A rapid background hypercube was acquired as

a test to check the quality of the measured spectra. Spectra across the image should

be similar in shape and intensity. The spectra were inspected for detector saturation,

which manifests as sharp discontinuities at the top of the spectrum.

(a) (b)

FIGURE 4.5: Representations of the illumination distribution on the
FPA. The 2D intensity map is shown in (a), whilst the intensity as a
function of flattened position is shown in (b). A tight, uniform intensity
distribution is desired, represented by the compact, shallow curve in

(b)

The software was used to configure various settings of the instrument prior to data

acquisition. The Fourier transform applied to the interferogram (Eqs. (3.16) and (3.18))

has infinite limits, which implies that the mirrors move to an infinite distance. To

account for this impossibility, an apodisation function is applied to the FT. This may

take the form of a simple box car function, which is equal to 1 within the limits of

the interforemeter and zero otherwise. The issue with this is that the FT of a boxcar

function is a sine cardinal (sinc) function, which is characterised by a central peak with

much smaller peaks (ripples) either side, which manifest as spectral noise in the data.

Apodisation with a triangular function reduces this effect, but also broadens peak

width, effectively worsening the spectral resolution. The Happ-Genzel apodisation

function is frequently used in FTIR spectroscopy applied to solid samples as its FT

displays a desirable trade-off between spectral resolution, peak height and spectral

noise. For this reason, the Happ-Genzel function was selected for apodisation of the
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interferogram. Example apodization functions and their respective Fourier transforms

are shown in Fig. 4.6.
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FIGURE 4.6: Plots of different apodisation functions (a-c) and respective
Fourier transforms (d-f)

The spectral resolution is an important parameter which governs the minimum width

of spectral features that can be resolved in the FTIR spectrum. This was set at 4 cm−1

in order to capture the narrower spectral bands and shoulders that often appear on

the fringes of broader bands such as the amide I peak. The spectra were interpolated

to produce a smoother line shape by using a technique called zero-filling, whereby

N zeros are added to the end of the N point interferogram, which changes the data

spacing from 4 cm−1 to 2 cm−1. The spectral acquisition range was set as 900 - 3800

cm−1.

Real spectral data could be acquired only when the sealed purge chamber had reached

<1% humidity, and the detector had cooled to 78K. A background scan was first

recorded by co-adding 256 hyperspectral images of the blank disk. A higher number

of co-additions are required for the background scan than the sample scan to minimise

the introduction of noise from the background, which is more suscpetible to noise

artefacts due to the lack of absorbing media in comparison to the sample scans [64].
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The transmission spectra of subsequent sample scans are divided by the transmission

spectra of the background scan as, according to Eqs. (3.8) and (3.9), the absorption

is calculated by taking the base 10 logarithm of the ratio between the absorbed and

non-absorbed transmission spectrum. The background spectrum is a convolution of

the source emission spectrum, the transmission spectrum of the CaF2 disk and the

transmission spectrum of atmospheric contributions such as carbon dioxide and wa-

ter vapour. Figure 4.7 is the average spectrum taken from an example background

hyperspectral image. The uniformity of the beam and spectral characteristics are re-

flected in the red dotted lines representing the standard deviation of the spectra.
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FIGURE 4.7: Mean and standard deviation of an example background
transmission spectrum obtained from CaF2 housed in a purged cham-

ber.

Subsequent to the background scan, sample hyperspectral images were acquired. The

built-in visible light video camera was first used to find the specific ROI(s) within the

tissue section. Since the FoV of the video camera is very small compared to the H&E

images used for co-registration, finding the exact location for imaging was difficult. To

make this task easier, the mosaic function was used to concatenate multiple adjacent
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frames together to extend the FoV. The process is summarised in Fig. 4.8, whereby the

H&E microscopic image is used to locate the ROI on the large visible mosaic image.

(a)
(b)

(c)

FIGURE 4.8: Procedure for finding and selecting ROIs using the visible
mosaic function in the resolutions pro software. (a) is the large visible
mosaic, (b) is the cutout selected for IR imaging, informed by the H&E

counterpart in (c).

For the sample scans, all experimental parameters were kept the same other than the

number of co-additions, which was reduced to 128 to increase the throughput of the

experiments. The software automatically calculated the number of FPA images re-

quired to image the ROI defined according to Fig. 4.8. A background image was ac-

quired every time two samples were replaced on the 3D printed slide holder, so that

current atmospheric conditions were appropriately corrected for.

4.2.3 Data Labelling and Pre-processing

All data processing and analysis in this chapter was performed using MATLAB (Math-

Works), a versatile programming language and platform which facilitates tasks such

as image analysis, machine learning, matrix manipulation and graphical visualisation.

The ChiToolbox [114] and iRootLab [115] frameworks were used to import the data,

and apply various methods to process the data. A lot of the methods, however, were
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written by the author - including the revised MA algorithm, SNOM process methods

amongst others.

The imported hyperspectral images were stored as MATLAB 3D matrices, each with

128nx × 128ny × 1506 elements, where nx and ny are the number of tiles in the hori-

zontal and vertical direction respectively. Regions in the hyperspectral image which

originated from areas of no tissue or areas where the section is too thick were iden-

tified and excluded by applying a filter which required the absorbance at the amide

I peak (1650 cm−1) to lie between 0.1 and 2. After this, each image was subject to

the same pre-processing procedure which included spectral truncation, PCA denois-

ing (retaining 10 PCs), paraffin region removal, vector normalisation and rubber-band

correction. It was decided not to apply the Mie-scattering correction for reasons sum-

marised in sections 3.3.1 and 4.2.1.

Seventeen regions of interest (ROIs) were deemed suitable by a histopathologist to

be used for analysis. They were selected based on pathological criteria, such as typi-

cal presentation of disease and biological heterogeneity. Samples with more than one

pathology (e.g. OSCC and CS) were also preferred due. The archival samples are

from the University of Liverpool’s biobank. Amongst the seventeen ROIs, eight dif-

ferent tissue types were identified and labelled by a pathologist. These annotations

were used to specifically extract and label spectra that correspond to the different

tissue types. The identified tissue types are listed in table 4.2, accompanied by the

corresponding images used for labelling and total number of spectra. An equal num-

ber of spectra were randomly sampled from each individual image to prevent image

related bias from interfering with results. Representative LM images containing each

identified tissue type are shown in Fig. 4.9.

The pre-processed mean spectra for each tissue are shown in Fig. 4.10. Clearly, each

tissue type shares common spectral characteristics, such as the dominant amide bands

between 1700 cm−1 and 1500 cm−1. Despite the appearance of differences between

mean spectra, it is difficult to derive meaningful interpretation based on mean spectra

inspection. The inherent heterogeneity of biological tissue is portrayed in the standard

deviation of the spectral profiles (green and red dotted lines).
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TABLE 4.2: Identified tissue types and their respective ROIs and num-
ber of labelled spectra.

Tissue Abbreviation ROIs Nspectra

Oral squamous cell carci-
noma

OSCC D18(2), D18(3), D2(4) 33534

Maturation layer of nor-
mal epithelium

NE B12(1), B12(2), D18(1) 5691

Newly formed desmo-
plastic tumour stroma

CS A13(1) 1897

Pre-existing supporting
stroma

NS A13(1), B12(1), B12(2), D18(1) 21752

Metastasised tumour MT A12(1), A12(2) 2698
Lymphoid nodal Tissue LYM A12(1), A12(2) 4322
Submucosal elements SM A13(2), D18(1) 14790
Basal layer of normal ep-
ithelium

BL B12(1), B12(2) 2036

OSCC

SM

NE

BL

NS

MT

LYM

CS

(a) (b) (c)

(d) (e)

FIGURE 4.9: Representative LM images of H&E tissue containing the
eight identified tissue types.

Despite the difficulties of interpreting mean spectra quantitatively, an initial qualita-

tive impression can be obtained by comparing the spectral profiles in Fig. 4.10 and the

representative images in Fig. 4.9. Of particular note is the difference in spectral shape

in the nucleic acid region (1300 cm−1 - 1200 cm−1) between epithelial tissue (OSCC,
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIGURE 4.10: Mean spectra and standard deviation for (a) OSCC, (b)
NE, (c) CS, (d) NS, (e) MT, (f) LYM, (g) SM, (h) BL. (i) stack of the aver-

age spectrum from each tissue for comparison.

NE, MT, BL) and supporting tissue (NS, CS, LYM). There appears to an enhanced sig-

nal in supporting tissue compared with epithelial tissue, perhaps arising as a result of

the higher concentration of nuclei in Fig. 4.9a and b.

The MA method previously described in section 3.3.2 has been shown to be a power-

ful tool that both enables unbiased interpretation of spectral biomarkers that discrim-

inate between tissue types, and as a diagnostic tool which is able to efficiently and

accurately label data. For these reasons, MA was exploited in this work to determine

spectral differences between the labelled tissue types, as well to label hyperspectral

images to investigate whether the obtained information correlates with histopathol-

ogy. MA was deployed on the labelled dataset to build two distinct models, detailed

in subsequent sections.
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4.3 Phase I: Multi-tissue Primary Site Model

4.3.1 Parameter selection and Model Training

This section will be based on the construction and interpretation of an MA model

based on all primary site labelled tissue types. This includes all the tissue types in the

data except for MT, which has, by definition, spread away from the primary site.

Metric analysis version 4 (MA.v4) is an object oriented adaptation of the previous

iterations of MA. It also incorporates the hyperparameter tuning and hold out testing

functionality detailed in section 3.3.2, so that the optimal set of parameters can be

objectively determined. Table 4.3 lists and defines each tunable hyperparameter in

MA.v4.

TABLE 4.3: MA.v4 hyperparameters

Hyperparameter
(θ)

Description Possible Values

Data spacing The downsampling factor for the
horizontal (wavenumber) axis.
More downsampling increases
the speed of the analysis.

2, 4, 8

Optimising score The performance measure used to
optimise the number of metrics in
the model.

Youden’s J, F1

The F1 and Youden’s J scores both represent different combinations of the performance

measures detailed in Eqs. (2.1) to (2.4). The F1 score (Eq. (4.1)) is the harmonic mean

of the sensitivity and precision, whilst Youden’s J (J) is a sum of the sensitivity and

specificity Eq. (4.2). These scoring systems represent more balanced representations

of the performance of a test.

F1 = 2 ·
(

sensitivity× ppv
sensitivity + ppv

)
(4.1)

J = sensitivity + specificity− 1 (4.2)
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A separate hold-out test set comprising 75% of the total data was kept aside from any

model construction so that the optimised MA approach could be tested on unseen

data. The partition was stratified so that the class proportions were constant in the

train and test set. The training data was further divided into three equal sized class

stratified partitions, so that each partition contained 1/3 of the training data. The

model was then to be trained on two partitions, leaving the third out for testing of the

selected hyperparameters. This was repeated three times so that the scores on all ac-

cessible data can be evaluated. This process, known as k-fold cross validation (where

k = 3 in this instance), ensures the model has been evaluated on all data, address-

ing the risk of acquiring over/under-optimistic scores based on a single partition of

data. Performance measures such as area under receiver operator curve (AUC), sen-

sitivity and specificity can be expressed as a mean and standard deviation from the k

iterations.

The hyperparameters were optimised by trialling every permutation of the hyperpa-

rameters detailed in table 4.3 in an approach known as grid-search. The permutation

with the highest scores will be selected as the optimal model parameters. All the train-

ing data was then used to train the model which would be tested on the so-far unseen

hold-out data, in order to evaluate the general performance of the model given new

data. This approach reliably evaluates the diagnostic potential of the trained model.

Figure 4.11 shows the results of the hyperparameter optimisation. Three graphs de-

picting the distribution of scores for each tissue at the different hyperparameter selec-

tions are displayed in order to visualise the dependence of the scores on the different

selections. The area under (ROC) curve (AUC) is a popular measure of the perfor-

mance of a binary classifier, which is defined as the area under the ROC curve (de-

scribed in detail in Fig. 2.8). A perfect classifier will have 100% sensitivity and 100%

specificity, yielding an AUC of 1.00. Classifiers with an AUC between 0.8 and 1.0 are

regarded as skillful, whilst anything less than 0.5 resembles a classifier with no skill.

A trained MA model is a series of binary ’one vs all’ classifiers, therefore the AUC and

ROC curves are readily accessible.

From Fig. 4.11a, it is apparent that the submucosal elements (SM) classifier performs

relatively poorly, yet in absolute terms the AUC is still good (lowest is ≈ 0.84 AUC.
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(a) (b)

(c)

FIGURE 4.11: Plots of the mean (with error-bars) of the AUC (a), sen-
sitivity (b), specificity (c) for each of the tissues within each different
permutation of hyperparameters. The horizontal axis labels denote the
hyperparameter permutation in the order [down-sampling factor, op-

timising function].

Also clear are the higher variances when the F1 score is used as an optimisation func-

tion. This may be attributed to the fact that the F1 score is very sensitive to class im-

balances. F1 is dependent on the PPV, which is the ratio of correct positive predictions

to incorrect positive predictions (Eq. (2.3)). This means that if the number of spectra

belonging to the positive class is much less than the number of spectra remaining in

the negative class(es) (often the case for multi-class models), one would obtain a poor

PPV which is not reflective of the true performance of the model. On the other hand,

Youden’s J statistic is calculated from the sensitivity and specificity, which are both

insensitive to class imbalances.

The remaining classifiers for each of the tissue types all have consistently high per-

formances across the different permutations, with the AUC scores consistently higher

than 0.92. The permutation with a down-sampling factor of 2 and Youden’s J optimi-

sation function was selected for training of the final model, which was performed on
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the entire training set.

4.3.2 Results

The trained optimised model was used to predict the identity of every spectrum held

out for testing. The scores for each tissue are presented below in table 4.4.

TABLE 4.4: Results on hold-out test data

Tissue Sensitivity (%) Specificity (%)

OSCC 84.3 92.1
NE 71.8 99.2
CS 94.3 97.5
NS 57.2 97.9
LYM 91.0 93.2
SM 85.3 90.3
BL 71.1 96.7

The sensitivities reported in table 4.4 appear to be distributed across a greater range

(57.2% - 94.3%) than the specificity scores (90.3% - 99.2%). Importantly, the OSCC

model performs well, with a moderately high sensitivity of 84.3% and high specificity

of 92.1%. This means that there is a high degree of confidence that spectra labelled

as OSCC have been correctly labelled as such. The slightly lower sensitivity implies

lower, yet still good confidence that spectra not labelled as OSCC are truly not of

OSCC origin.

The metrics which form the optimum set for each tissue can interpreted to investi-

gate the wavenumber features that separate the different tissue types in the data. The

wavenumbers that appear in the optimum set of metrics can be histogrammed in an

importance plot, which indicates the relative strength each wavenumber feature in the

spectrum has in the discrimination. Figure 4.12 is the importance plot for this multi-

class study.

At this stage, an initial impression of the characteristic features of each tissue type

can be obtained. It appears that many of the important wavenumbers are situated

in the amide I and II regions, implying that protein content is a key discriminator.

There is also a cluster of important features emerging at ≈ 1080 cm−1, indicating the

importance of DNA content in characterisation of cancerous tissue. The importance of
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FIGURE 4.12: Importance plot for multi-class study. Tissue types from
top to bottom: OSCC, NE, CS, NS, LYM, SM, BL.

wavenumbers ranging from 1285 cm−1 - 1340 cm−1 in OSCC and BL may indicate the

importance of collagen in the discrimination of the two tissues from the rest of the set.

In order to gain further insight into the origin of importance for the top perform-

ing metrics, their distribution over the spectra for each tissue type can be plotted.

table 4.5 reports the best metric δµ,ν for each of the seven tissues. Interestingly, the

wavenumbers occuring in each metric are often from similar regions of the spectrum.

This implies the analysis is identifying localised changes in spectral line shape as key

discriminators. Figure 4.13 shows the distributions across the seven tissues for the

best metric for OSCC and LYM.

The distributions in Fig. 4.13 show a good degree of separation for the positive class

(OSCC in Fig. 4.13a and LYM in Fig. 4.13b) from the remaining six negative classes.
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TABLE 4.5: Best metric for each tissue type in the multi-class study.

Tissue Top Metric

OSCC δ1518,1566
NE δ1697,1703
CS δ1514,1570
NS δ1655,1658
LYM δ1555,1622
SM δ1591,1607
BL δ1329,1333

(b)(a)

FIGURE 4.13: Distributions of the best metric for OSCC (a) and LYM
(b). Positive class is circled in black.

Any spectrum that has a δ1518,1566 of greater than approximately 1.4 will be labelled

as OSCC by the model, with a small fraction of false positives from the other classes

(mainly NE). Similarly, LYM has a well separated distribution in Fig. 4.13b, whereby

a spectrum that has a δ1555,1622 of less than approximately 1 will be labelled as LYM,

again with a small number of false positives. It also appears that δ1518,1566 is a strong

discriminator for CS, supported by the fact that a similar metric (δ1514,1570) is the strongest

discriminator for CS. The distributions also help to explain why the specificity scores

are consistently very high. Since the model for each tissue is a one vs rest classifier,

the true negatives for metrics where the positive class is well separated will vastly

outweigh the false positives, as the negative class contains all the spectra from n− 1

classes.

The efficacy of the model can be demonstrated by using the trained model to label

a hyperspectral image, which is fundamentally a two dimensional arrangement of
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(d) (e) (f)

FIGURE 4.14: Backlabelled images. (a) and (b) were used to extract a
portion of spectra used for model construction, (c) was not used for
analysis. (d-f) are LM HE counterparts to (a-c) respectively for compar-

ison.

spectra, generating a pseudo-colour map (where each colour denotes a tissue type).

Shown below in Fig. 4.14 are a selection of pseudo colour images, two of which (a-b)

are from images used to extract training spectra from and the other one (c) is from

an image that was not used for training. H&E counterparts are shown in the second

panel (d-f). The intensity of the colour indicates confidence of class assignment, found

by dividing the probability the spectrum belongs to the assigned class by the sum of

the probabilities of all other classes. The interpretation of spectral biomarkers and

pseudo-colour images will be discussed in more detail in the subsequent section.

4.3.3 Discussion

The multi-tissue analysis has demonstrated that MA can attain good scores (table 4.4)

when tasked with discriminating between different types of tissue. The pseudo-colour

images also make evident the inherent skill of the trained MA model at identifying

tissue types on the basis of the information used to build it. The highly interpretable

nature of MA enables spectral biomarkers to be identified and further investigated, al-

lowing for the postulation of chemical differences that give rise to the various features

that drive the discrimination.
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The scores associated with OSCC were high, with a sensitivity and specificity of 84.3%

and 92.1% respectively. The optimum metrics, histogrammed in Fig. 4.12, show that

the discrimination is primarily due to differences within the amide region, with addi-

tional contributions arising from regions further towards the lower wavenumber end

of the spectrum at approximately 1080 cm−1. The pseudo-colour image in Fig. 4.14a

correlates with the morphology and pathology portrayed in its H&E counterpart shown

in Fig. 4.14d, which consists of invasive OSCC arranged in large clusters, some of

which have highly keratinised cores as a product of highly differentiated keratin pro-

ducing OSCC. A minority of spectra within the invasive cluster are being labelled as

other tissue types, mainly maturation layer (NE). This is not surprising considering

both the small sample set and the similarities between ‘normal’ epithelial tissue and

squamous cell carcinoma, given that they are both epithelial tissue. Due to the fact

that samples reserved for FTIR imaging were from an adjacent, rather than identical,

slice of the FFPE tissue block, the images produced by LM and FTIR-MS will never

identically match each other, so it’s impossible to make exact comparisons. It does ap-

pear, however, that the regions of NE labelling (blue) correlate with regions of higher

keratinisation, where the H&E stains the tissue red. This may be because the normal

epithelial cells within the maturation layer become increasingly keratinised as they

migrate towards the superficial layer [116]. The false positive labelling of NE as OSCC

is also evident in Fig. 4.13, where the distribution of NE spectra overlaps with the

OSCC spectra in the region where the OSCC distribution dominates.

As previously stated, the collective term given to the supportive network of tissue

is stroma, which contains functional cells such as lymphocytes and fibroblasts. Fig-

ure 4.14a indicates the presence of a mixture of predominantly CS (rich in fibroblast),

LYM (rich in immune cells) and normal stroma (the underlying general supportive

network). This is also true for the other two pairs of images. Figure 4.14b and e are

FTIR and H&E images of non-malignant epithelium adjacent to normal stroma sup-

portive tissue. The majority of the epithelial thickness has been labelled as NE, which

is in agreement with the histopathology in Fig. 4.14b. Spectra from the deepest layer

of the epithelium have been correctly labelled as BL, before transitioning to LYM fol-

lowed by NS. Broadly, this agrees with the histopathology (Fig. 4.14e), where the basal
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layer of the normal epithelium protrudes into the normal stroma in structures known

as rete ridges, with a higher density of immune cells (LYM) surrounding the epithelial

border. On the other hand, the borders of the progenitor (BL) and keratinised matu-

ration (NE) compartment of the normal epithelium differed between Fig. 4.14a and d.

This can be attributed to the reduction in spatial resolution, potential mismatches in

serial section content and small number of training images available for training.

Figure 4.14c and f are the pseudo-colour and H&E images of an ROI which was not

used to extract spectra for model construction. The H&E image displays invasive

carcinoma underneath the tear in the specimen near the centre of the image. This his-

tology is not exactly reflected in the pseudo-colour image, where there is pronounced

confusion between maturation layer, OSCC and basal layer. These tissue elements are

all epithelial in origin, and given the relatively small sample set and heterogeneity of

tissue it is not surprising that there is confusion between the tissue types. A more ro-

bust labelling may be achieved if a higher number of patients and images were used

for training, with much more selective labelling. Selective labelling is very difficult

when using a high resolution LM image of tissue morphology to co-register precise

regions of the hyperspectral image, as there is a significant drop in spatial resolution

due to the diffraction limit of longer wavelength IR radiation. Furthermore, the use of

serial sections for image registration is challenging due to the lack of certainty that ab-

normalities in one image will be present in the other. One solution to this would be to

image exactly the same section with LM and FTIR, but this would introduce new chal-

lenges associated with sample preparation. As detailed in section 4.2.1, H&E staining

requires that the specimen is dewaxed, whereas preserving the tissue in wax alleviates

issues related to the sample longevity and scattering efficiency in FTIR imaging. Stan-

dard glass slides used in histopathology have a positive charge to aid sample adhesion

and prevent risk of ‘float’ of tissue, so the transfer of the specimen from the FTIR imag-

ing disk to the slide is necessary, especially as the staining process involves several

steps which may disturb the structural integrity of the sample. A study by Pilling et al

[117] in 2016 showed that high scores can be achieved when discriminating between

different tissue components that have been imaged using FTIR-MS on stained glass

samples, a promising finding which elevates the feasibility of FTIR-MS as a clinical
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augmentation, due to the improvements in throughput, cost and image registration.

The main drawback with utilising this approach is the fact that glass is opaque in the

information rich fingerprint region, therefore scope for spectral biomarker interpreta-

tion is significantly diminished.

The origin of the best OSCC metric (δ1518,1566) may be the presence of shoulders on

either side of the amide II peak, which would indicate the shifts of smaller underlying

peaks . The absence of a shoulder either side of the amide I peak for CS (Fig. 4.15) is

unique relative to the other tissues, which explains why the distribution of CS is so

well separated from the remaining tissue distributions. There is a degree of ambiguity

with respect to whether the shoulders present in the mean spectra arise as a result of

tissue heterogeneity in the labelled regions. The metric histograms shown in Fig. 4.13

indicate that when the metric is the best distribution for a certain tissue type, then the

distribution tends more towards a Gaussian shape, which indicates similarity between

labelled spectra at high performing wavenumbers.

FIGURE 4.15: Tissue mean spectra in the region 1500 - 1700 cm−1. Best
metric for OSCC has been drawn with two dotted lines.

Interpretation of spectral biomarkers from a multi-class study is believed by some to

be somewhat ambiguous [118]. The subtle differences between classes, convoluted

nature of the IR spectrum and the ensemble of metrics required to achieve good scores
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renders the task of directly correlating results with spectral biomarkers challenging.

With this in mind, it should be re-iterated that interpretation of multi-class models

such as these is rather speculative, with more definitive information available when

interpreting models with fewer classes. Nevertheless, the utility of MA as a so-called

‘black-box’ labelling tool has been demonstrated, and shows promise for the visuali-

sation of tissue structure as a function of IR absorption.

4.4 Phase II & III: Binary Metastasis in Lymph Node Analysis

For reasons outlined in the previous section, interpreting multi-class model results is

somewhat challenging and ambiguous. This section will focus on a more directed ap-

proach, whereby a new MA model will be trained on a small set of spectra originating

from two distinct classes in the dataset. These two classes were chosen to be OSCC

that has metastasised to the lymph nodes (MT) and lymphoid nodal tissue (LYM), due

to their close proximity and sharp delineation between the two tissues in H&E images.

Given that MT and LYM tissue can be easily distinguished using histopathology, any

results will bear little clinical significance. The main motive behind this study is to

obtain a set of defining wavenumbers for translation to discrete frequency IR-SNOM

imaging, which will be described in much more detail later in this section. The ma-

terial covered will therefore provide insight into two novel techniques in MA and

aperture IR-SNOM.

4.4.1 Spectral Biomarker Extraction

The experimental procedure leading up to the training of the MA model was identical

to that of phase I of this work. For the model training, a modified approach to the

one used previously in section 4.3.1 was used, whereby no hyperparameters were

optimised as every accessible resolution element in the data was to be used to search

for the optimal metric.

Data from both images (detailed in table 4.2) were used to train a single MA model.

As shown in (table 4.6), the resultant model could discriminate between MT and LYM

with near perfect scores by using only one metric, specifically δ1252,1285. Similar to
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the multi-class study, the discriminatory power of the resultant metric can be visu-

ally demonstrated by plotting the distributions of δ1252,1285 for each of the two tissues

(Fig. 4.16c). Immediately evident is the high degree of separation between MT and

LYM, which is manifest in the scores contained within table 4.6. Also interesting is

the additional discriminating power acquired when calculating a ratio between two

wavenumbers, compared with solely the absorbance at each of the two wavenumbers

(Fig. 4.16a,b).

TABLE 4.6: Results for MT vs LYM binary model

Highest ranked
metric

δ1252,1285

Sensitivity 98.7%
Specificity 99.9%
AUC 0.99

(a) (b)

(c)

FIGURE 4.16: Distributions of absorbance at (a) 1252 cm−1 and (b) 1252
cm−1, which both form the best metric δ1252,1285, the distribution of

which is shown in (c).

Instead of using the metric δ1252,1285 as a component in an ensemble classifier, it is

possible to measure the performance of univariate classifiers based solely on the ab-

sorbance of the component wavenumbers A1252 and A1285. This can be achieved by

treating their distributions (shown in Fig. 4.16a and b) as probability density functions.
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The sensitivity and specificity for A1252 would be 89.3% and 73.3% respectively, and

for the A1285 the same measures would yield 90.4% and 54.4% respectively.

4.4.2 IR-SNOM Instrument

The aperture IR-SNOM (herein referred to as SNOM) instrument at the University of

Liverpool, UK was used to exploit the characteristics of the near-field as described in

section 3.4. The SNOM in its current configuration is a bespoke amalgamation of a

benchtop quantum cascade laser (QCL) IR light source, an SPM system loosely based

on constant distance AFM to control the lateral and vertical positioning of the probe,

and an integrated IR detection system. The current section will detail each aspect of

the instrument, which can be subdivided into different systems:

(i) SNOM head system: Components which control the height of the tip as it scans

the sample.

(ii) QCL IR source: Production of IR light and propagation towards sample and de-

tector.

(iii) Optical fibre and detector: Detection of light and conversion into a signal that

can be recorded in an image.

(iv) Stage and microscope: The piezoelectric stage that controls and monitors the

precise positioning of the sample beneath the probe. The light microscope is also

used to spatially locate regions of interest on the sample.

(i) SNOM Head System

Contained within the SNOM head system are the components that detect and control

the probe-sample separation. The probe is the primary detector in the SNOM, and

if a tapered optical fibre is used, both the topography and the near-field can be de-

tected. The probe is adhered with glue to a driving bimorph and sensing bimorph.

A bimorph contains piezoceramic materials, which either oscillates when an AC volt-

age is applied, or produces an AC voltage during oscillation. Each bimorph contains

two piezoceramics separated by a nonactive layer of titanium. One side of the driv-

ing bimorph has an AC voltage applied to it, whilst the other side has the inverse
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FIGURE 4.17: Labelled photographs of the SNOM instrument used in
this work. (b) is a photograph of the oscilloscope unit that is used to
monitor multiple signals from the QCL, MCT and lock-in; and the lock-
in amplifier which is used to isolate a periodic signal from noise with a
continuous frequency spectrum. (c) is a zoomed in view of the SNOM

head/stage and microscope system.

(anti-phase) of the AC signal applied, so that when one side contracts the other ex-

pands, forcing the bimorph to oscillate. The amplitude and frequency of the system is

detected by the sensing bimorph, and can be monitored by the SNOM software.

The tip-bimorph system has a resonance frequency dependant on the distribution of

mass throughout the system. The resonance frequency can be found by adjusting the

driving frequency until the amplitude of the signal produced by the sensing bimorph

is a maximum. When the tip is brought close to a surface, the amplitude is dampened



Chapter 4. Oral Cancer Analysis 93

FIGURE 4.18: a) Schematic diagram of the driving and sensing bimorph
which are driven into oscillation by an external voltage. Extracted with
permission from James Ingham’s PhD thesis [119]. (b) Shows how the
contraction and expansion of either side of the driving bimorph results

in oscillation.

by shear forces that exist very close to the sample [120], this drop in amplitude can be

registered on the SNOM software. In order to implement a constant distance feedback

system, a reference amplitude can be set so that the vertical position of the SNOM head

system (controlled by the z-piezo) can be adjusted to maintain the reference amplitude

of the sensing bimorph signal. The response speed of the z-piezo to the changes in

amplitude of the bimorph can be controlled by adjusting the gain. For samples with

large variations in height at high spatial frequencies, the gain should be set high so

that the tip responds quickly to sudden changes in topography, reducing the risk of

collision with the surface. For flatter samples it is advisable to keep the gain low so

that small variations in height aren’t over corrected for, which would introduce more

noise into the image.

(ii) QCL IR Source

QCLs are a relatively recent technology which are able to lase mid-IR photons over a

broad, tuneable range. First demonstrated by Faist et al at the AT&T Bell laboratories

in 1994 [121], based on a principle first proposed by Kazarinov and Suris in 1971 [122].

They are fundamentally different to semiconductor diode lasers, which emit photons
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when high energy conduction band electrons and low energy valance band holes re-

combine in a p-n doped semiconductor. The recombined electron occupies a lower

energy state and this excess energy is emitted in the form of a photon. This sponta-

neous emission of a photon will drive the recombination of electron hole pairs in close

proximity, causing the stimulated emission of another photon with the same phase,

frequency and polarisation, hence ‘lasing’ coherent light. The energy (and therefore

wavelength) of the photon is solely dependant on the energy gap of the semiconduc-

tor, therefore are not instantly tunable.

The aforementioned diode lasers operate through interband transitions which are re-

sponsible for the emission of a photon. QCLs, on the other hand, are instead driven

by intersubband transitions. Rather than using a single bulk semiconductor as the las-

ing medium, QCLs consist of a periodic arrangement of thin layers of materials which

have different composition, known as a superlattice. The superlattice imposes a non-

uniform electric potential, which results in the probability of an electron occupying a

certain position to vary along the length of the device. This multiple quantum well

confinement has the effect of splitting of the band into discrete subbands. When an

electron traverses across the medium, it transitions into a lower subband, resulting in

the emission of a photon. This electron can then tunnel into the next layer, where the

above process is repeated. This process is where the terminology ‘quantum cascade’

originates. The wavelength of the emitted photon depends on the layer thickness,

rather than the material bandgap as for diode lasers. This property enables the broad

tuning of QCLs.

The QCL source used for SNOM experiments is a MIRCat-QTTM equipped with four

modules that enables selective tunability across a wide spectral range. The laser comes

equipped with three modules which span a unique spectral range, with an effective

tunable range of approximately 1150 cm−1 - 2000 cm−1. The power output spectrum

of the QCL is shown in Fig. 4.19. The QCL was operated in pulsed mode, whereby the

device would lase at a certain pulse rate (frequency, not to be confused with frequency

of emitted light). The laser would be triggered by either an external or internal square

wave trigger which instructs the laser to begin lasing for a defined time, known as

the pulse-width. The ratio of the pulse width of the laser to the period of the square
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wave trigger is called the duty-cycle, which should be kept as low as 5% to prevent

overheating and preserve the QCL.

FIGURE 4.19: QCL emission spectrum.

The beam emerging from the QCL was directed towards the sample compartment by

using a single Au mirror with an SiO2 protective layer positioned directly beneath the

sample. The mirror has an IR reflectance of > 96%, making it an ideal canditate to

direct the IR beam towards the sample in an efficient manner. The angle of the mirror

was configured to be 45◦ so as to reflect a ray that is perpendicular to the incident ray.

The lateral position of the mirror can be manipulated with coarse and fine control in

order to adjust the position of the beam. Figure 4.20 is a schematic diagram of the

SNOM.

(iii) Optical Fibre and Detection

The use of optical fibres for the transmission of visible wavelengths in sectors such as

telecommunications has been realised for some time, however only until recently have

optical fibres that are transmissible in IR wavelengths become commercially available.

The fibre used in this work (Coractive, USA) has a 100 µm inner core fabricated from

selenide glass, which is surrounded by a 170 µm layer of cladding which protects the
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FIGURE 4.20: Optical path taken by the IR beam from the QCL to the
optical fibre tip.

inner core and increases transmission efficiency. The inner core and cladding are en-

circled by an acrylate layer and a plastic sheath which act to stengthen and protect the

fragile fibre from outside interferences.

The optical fibres direct the light towards the detector using the principle of total in-

ternal reflection. Snell’s law (Eq. (3.7)) can be rearranged to account for the condition

that the transmitted ray is refracted by an angle of at least 90◦, so that it is effectively

reflected back into the medium with refractive index n1.

n1 sin(θi) = n2 sin(90◦) (4.3)

By considering that sin(90◦) is 1, and terming the incident angle for total internal

reflection as the critical angle θc, Eq. (4.3) can be rearranged for θc in Eq. (4.4), setting

up the condition that the refractive index of the second medium must be greater than

that of the first medium in order for total internal reflection to become a possibility.

θc = sin−1
(

n2

n1

)
(4.4)

In order for the near field to be detected, the fibre was etched to create a nano-antenna
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as described in section 3.4. The outer plastic layer and fibrous layer were first stripped

to expose approximately 5 cm of the acrylate clad fibre. The fibre was subsequently

mounted onto a fixture prior to submersion in dichloromethane for 10 minutes until

the acrylate swells and softens. The acrylate was then removed with wire strippers to

expose the inner two layers (inner core and cladding). 4200 µl of sulphuric acid was

then mixed with 1800 µl of hydrogen peroxide to form so called ‘piranha solution’, a

strong corrosive substance used to dissolve a variety of materials. 600 µl of tetram-

ethylpentadecane (TPMD) was then added to form a thin suspension on top of the

piranha. 2 mm of the exposed fibre was immersed in the solution to commence the

chemical etching of the fibre. The boundary between the piranha and the TPMD layer

create convection currents which force the acid to erode the fibre near the boundary,

so that a regular, sharp apex can be formed.

The output of the optical fibre was attached to an MCT detector, which is described

in more detail in section 3.2.2. The MCT detector is housed within a vacuum sealed

dewar filled with liquid nitrogen, to noise induced by thermal excitations in the semi-

conductor detector. A bias current of 7.5 mA was applied to the MCT so that a measur-

able electric current could be detected after the generation of electron hole pairs after

photon interaction. Weak signals travelling through coaxial wires are prone to low

signal to noise ratios, so the signal was amplified immediately after the output of the

MCT. The pulsed signal from the MCT was fed into a lock-in amplifier, which isolated

components of the signal with the same frequency as the reference (the same square

wave used to trigger the QCL). The sensitivity of the amplifier could be adjusted to

reflect the magnitude of the input signal from the MCT, which was heavily dependant

on the wavelength (see Fig. 4.19) and pulse-width of the QCL.

The alignment of the QCL beam with the optical fibre is an essential step to ensure

maximum efficiency in coupling the fibre with the optical field. The QCL is equipped

with an auxiliary helium-neon (HeNe) red laser which is mutually aligned with the IR

optical path. This is used to guide the coarse adjustments required to bring the beam

into coincidence with the apex of the tip. Once this has been achieved, the optics were

switched back to IR in order to maximise the throughput of the light up the fibre.

Through close monitoring of both the output of the MCT and the output of the lock
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in amplifier, fine adjustments to the lateral position of the mirror were made until the

signals were maximised, indicating the maximum throughput up the optical fibre.

(iv) Stage and Microscope

The sample housing is mounted upon an inverted optical microscope equipped with

four objectives (4×, 8×, 16× and 32×) and a manual mechanical stage. The micro-

scope was important so that the end of the tip could be visually aligned with the

region of the sample that is to be scanned, as well as to locate the specific region of

interest within the sample.

The mechanised sample stage was manual and with poor spatial precision, making

it unsuitable for SPM measurements, where reliable and precise knowledge of the

sample location relative to the tip is crucial. Instead, the fine lateral position of the

sample is monitored and controlled by a piezoelectric actuator, a device which is has

been significantly responsible for the emergence of SPM due to its high displacement

resolution, rapid response and large actuating force [123]. The device, herein called the

’lateral piezo stage’ has a range of motion of 500 µm, and is bi-directional, meaning it

is able to scan both forwards and backwards at the same rate, enabling the acquisition

of two sets of images. The relative motion of the tip relative to the sample is depicted

in Fig. 4.21. It is important to note that the lateral position of the probe is fixed relative

to the observer, it is the lateral piezo stage that moves.

Despite the high spatial resolution, the positional accuracy of the device is severely

hampered by the existence of hysteresis, where there is a non-linear relationship be-

tween the driving voltage (and hence perceived position) and the true position of the

stage. In the context of SPM, where the size, shape and position of structures within

an image is of interest, it is important that these distortions induced by hysteresis are

corrected for. Since the piezo stage is moving in opposite directions for each pair of

scans, an independent correction for both forwards and backward scans is required.

In order to calibrate the response of the lateral piezo stage in both directions, a cali-

bration sample containing features with known dimensions (Fig. 4.22) was used. Reg-

ularly spaced gold rectangles of well defined size were placed atop a silicon base so

that a calibration curve of real position to measured position could be measured. Since
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Probe
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FIGURE 4.21: Path taken by probe relative to the sample surface. For
the forward scan (green), the position of the sample is stepped to the
right until the end of the line, at which point it is stepped all the way
back to the left for the backwards scan (purple). At each point (red
dot), the signal is recorded so that an image can be formed. At the end

of each line, the stage steps up so the line beneath can be obtained.

only the topography was to be measured, a small offcut of sharp metal wire rather than

an etched optical fibre was used as the probe. Figure 4.23 shows the forward (a) and

backward (b) topography scans of the calibration grid.

43 µm

135 µm

40 µm
49 µm

43 µm

43 µm

129 µm

43 µm

FIGURE 4.22: Size of the features of the hysteresis calibration grid.



Chapter 4. Oral Cancer Analysis 100

(a) (b)

FIGURE 4.23: Forwards (a) and backward (b) topography scans of the
calibration grid.

Inspection of Fig. 4.23 reveals glaring vertical and horizontal distortions in both di-

rections. The sample also appears to have been scanned at a slight rotational offset,

which should be taken into account when calculating relative positions on the image.

Three lines intersecting each row and column of the calibration grid were used to plot

the observed positions as a function of the true positions, which are shown for the

horizontal and vertical directions in Fig. 4.24. From Figs. 4.23 and 4.24, it is noticeable

that the extent of hysteresis depends on the direction of the scan. In the forward scan,

where the probe scans from left to right (relative to the images), the distortions are

much more pronounced towards the left of the image, whereas the opposite is true for

the backwards directed scan. The vertical distortion is virtually identical for both for-

ward and backwards as the probe steps vertically in the same direction (top to bottom

relative to the image) at the end of each line.

A third order polynomial was fitted to build a regression model for each of the curves.

The model was used to transform the original images into a new set of images that had

been corrected for hysteresis, shown in Fig. 4.25. The result is that the feature sizes are

consistent across the image, indicating that the calibration has effectively corrected

hysteresis in the images.

4.4.3 Experimental

The key spectral biomarkers determined from the MA model in phase II were used

to guide the experiments on the IR-SNOM instrument in phase III. The instrument in
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(a) (b)

FIGURE 4.24: Curves of observed position as a function of true position
for horizontal (a) and vertical (b) orientations.

(a) (b)

FIGURE 4.25: Corrected forward (a) and backward (b) scans.

its current configuration operates in discrete-frequency (DF) mode, but future studies

with the instrument may utilise the integrated spectroscopic capabilities of the QCL.

In addition to the pair of spectral biomarkers (1252 cm−1 and 1285 cm−1), wavenum-

bers associated with strong contributions from key biomolecules were also selected

for study, shown in table 4.7.

TABLE 4.7: Wavenumbers selected for SNOM study

Wavenumber (cm−1) Associated Biomolecule

1252 MA
1285 MA
1650 Protein [124]
1369 Nucleic Acids [124]
1751 Lipids [124]
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Sample Preparation and Model Validation

The large tissue specimens imaged in the FTIR experiments were sub-optimal targets

for imaging with SNOM. This is due to the much smaller FOV of the SNOM, which

is directly related to the range of motion of the lateral piezo, which is fixed at 500

µm. The FTIR microscope utilised in these experiments came equipped with tools

that aided the co-registration of IR image with the H&E image, such as the mosaic

function and integrated visible microscope. As such, small 1 mm diameter cores were

extracted from the same tissue sample that was imaged with the FTIR microscope

using a Beecher MTA-1 tissue microarrayer, so that features can be compared across

images with a heightened degree of confidence. Serial sections were extracted from

the constructed tissue microarray (TMA) block, consisting of two sections on CaF2

disks for FTIR IR-SNOM experiments, sandwiched between two pairs of sections on

glass slides stained with H&E and IHC for pan-cytokeratins using the AE1AE3 anti-

body (Agilent DAKO, Stockport, UK) and a Bond RXTM autostainer (Leica Biosystems,

Milton Keynes, UK). The histopathology and IHC slides were scanned using the same

apparatus as for the H&E images in phase I.

A bespoke dewaxing methodology [125] was implemented in order to remove the

paraffin from the section prepared for SNOM experiments, where it was important

that the wax is thoroughly removed from the sample for a number of reasons. One

of the target wavenumbers, 1369 cm−1, is obfuscated by contributions from paraffin

spectra, therefore for valid interpretation of images at this wavenumber there should

be no paraffin present. The surface of paraffin embedded sections are smooth and flat

as a result of the wax filling the spaces between structures within the tissue. This is

problematic for an SPM instrument that operates in constant distance mode such as

the SNOM described here, as the true topography of the tissue will not be followed so

the strength of signal from the real sample will vary across the image.

Dewaxing an FFPE sample with a hydrocarbon solvent such as xylene will inevitably

remove some of the native hydrocarbons from the tissue itself. Free, unbound lipids

will be removed by the process, whilst solvent resistant lipids remain in the sample as

they are effectively locked into protein-lipid complex matrices. The residual lipids are

detectable by spectroscopy and may therefore still be of diagnostic use [126].
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The LM images (H&E and IHC) of the sample chosen for SNOM imaging are shown in

Fig. 4.26. The images reveal specific loci of tumour in both cores, stained dark brown

for IHC and red for H&E. A positive (brown) stain in (b) indicates the presence of ep-

ithelial tissue due to the well differentiated and heightened expression of cytokeratins

in the epithelium [127]. The areas contained within the green squares were chosen for

SNOM imaging as they consisted of well defined regions of lymphoid tissue, epithe-

lial metastasised tumour and a highly keratinised core, and it is hypothesised that con-

trast at spectral biomarkers associated with proteins and DNA should be observed in

subsequenct SNOM images. The metric δ1252,1285 has also been trained to distinguish

between metastasised tumour and lymphoid tissue, so it is instructive to investigate

the contrast using a different imaging modality using this representative region.

In order to visualise the discriminatory power of the derived spectral biomarkers on

regions not used in training, an FTIR image of the core shown in Fig. 4.26a and b

was obtained using the same methodology as described in section 4.2.2. The corre-

sponding absorbance and ratio maps at the discriminatory wavenumbers is shown in

Fig. 4.27, which reveals a high degree of correspondence between the ratio image and

IHC image in Fig. 4.26.

SNOM Experiments

The light microscope was used to align the upper right corner of the region of inter-

est with the apex of the probe, so that it is covered by the range of motion detailed

in Fig. 4.21. The bimorph-probe system was driven into resonance frequency, which

was found to be 4.688 kHz with a non-dampened amplitude of 0.020 V. The reference

amplitude was defined as 95% of the original amplitude (0.018 V), so that the vertical

piezo in the SNOM head will act to restore this amplitude by adjusting the vertical

position of the probe relative to the sample. In order for the feedback to activate, the

SNOM head was lowered with a fine adjustment screw until the dampened amplitude

was equal to the reference amplitude, at which point the tip was described as being

‘in contact’ with the surface of the sample. During the tip lowering, it was important

that the gain was high to facilitate the rapid response between the bimorph and lateral
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(a) (b)

(c) (d)

FIGURE 4.26: H&E (a,c) and IHC (b,d) images of the cores extracted for
study. Black arrows indicate periphery of tumour, white arrow indi-
cates keratin pearl within tumour. The green boxes indicate the region

of interest (ROI) that will be targeted.

piezo, however the gain was lowered to a level where the voltage applied to the verti-

cal piezo did not diverge far from equilibrium. The nature of the sample surface (flat,

homogeneous tissue) justified the choice of low gain, as rapid corrections in height are

not necessary.

The sample-probe alignment was again checked by ensuring MCT output when the

QCL was active. After this, the QCL was tuned to the wavenumber of interest (see ta-

ble 4.7), with the QCL and detector parameters for the specific wavenumber adjusted

to optimise signal. The pulse width of the QCL was adjusted in conjuction with the

sensitivity of the lock-in amplifier to acquire a stable output from the lock-in amplifier
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FIGURE 4.27: Core 1 absorbance images at (a) 1252 cm−1 and (b)
1285 cm−1. The ratio between the two images is shown in (c), corre-
sponding the optimum metric emerging from section 4.4.1. Black and
white arrows used to indicate the same features as in Fig. 4.26b and d.
Each FTIR image is plotted with a colour table covering the 5th to 95th

percentiles of the image intensity range.

that is well below the limit of the analogue to digital converter of ≈10 V. Table 4.8

shows the parameters selected for each wavenumber. For all wavenumbers, the QCL

was configured to pulse at a frequency of 80 kHz, corresponding to a period of 1.25 µs.

The time constant of the lock in amplifier was also an important consideration, as it

represents the integration time over which the signal is determined. If the time con-

stant is too small, the signal varies too sharply and rapidly so an accurate reading

cannot be acquired. On the other hand, large time constants result in a poor response

time between changes in the MCT signal and the output of the lock-in amplifier. The

time constant was chosen to be 10 ms as this offered stable readings with sufficient

response speed. The lateral piezo was configured to scan a 300 µm × 300 µm area at a
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scan rate of 20 Hz and step size of 2 µm.

TABLE 4.8: Wavenumber specific experimental parameters.

Wavenumber QCL pulse width Lock-in sensitivity

1252 cm−1 200 ns 20 mV
1285 cm−1 200 ns 50 mV
1650 cm−1 500 ns 20 mV
1369 cm−1 200 ns 20 mV
1751 cm−1 200 ns 10 mV

Image Processing

The raw images acquired from the instrument were not immediately comparable to

one another due to differences in power, tip artefacts and differences in registry be-

tween different scans. Simlar to FTIR spectroscopic analysis, normalisation can be

used to scale the image to common range for each wavenumber so that the relative

absorption patterns can be readily compared. This accounts for the marked differ-

ences in emmissivity from the QCL and fibre transmission at different wavenumbers

in the spectrum. The images were min-max normalised so that the minimum value

was subtracted from each pixel before being divided by the maximum value in the

transformed array. This has the effect of scaling the image between 0 and 1. Streak re-

moval and a Gaussian filter (FWHM = 2 pixels) were applied to the images to reduce

spatial noise and remove image artefacts. The Gaussian filter replaces each pixel value

with a convolution of the central pixel and a two-dimensional Gaussian distribution

of defined width to the neighbourhood of pixels surrounding it.

Small lateral drifts in the piezo stage were observed between scans that should be

accounted for before direct image comparison. A set of reference images that should

be the same for each scan should be used to crop the set to a common area. The actual

SNOM images from each wavenumber will have different features, so these mustn’t

be used as a co-registration reference. However, the topographic images recorded

for each scan should have a very similar features, suiting them ideally as a guide for

co-registration. The two dimensional cross-correlation is a mathematical operation

which effectively translates one image (matrix) relative to a reference, then calculates



Chapter 4. Oral Cancer Analysis 107

the total product of both images (I1, I2) at various shifts (u, v) relative to each other.

The cross-correlation (γ) between two matrices is defined in Eq. (4.5):

γ(u, v) =
nx−1

∑
x=0

ny−1

∑
y=0

I1(x, y) · I2(x− u, y− v). (4.5)

The point of registry is indicated by a maximum in the resultant cross correlation

matrix (γ). The relative shift of every image in the set was determined by calculating

the cross correlation of its topographic scan with the topography of the first image in

the set as a template. The shifted images were subsequently cropped to a common

area for direct comparison.

4.4.4 Results

The LM images, topography and processed SNOM images are shown in Fig. 4.28.

The ratio of images of 1252 cm−1and 1285 cm−1 is also shown in (i) to investigate

the contrast at the optimum metric δ1252,1285 determined in phase II. Unfortunately,

the SNOM imaging of the core presented in Fig. 4.26a and b was destroyed during

SNOM imaging, as the feedback was sub-optimally configured which led to the probe

touching the sample, scraping away the delicate thin layer of tissue. Nevertheless,

the ROI in the second core (Fig. 4.26c and d) contains well defined metastasis and

lymphoid features, so the SNOM images obtained on this area will be the focus of

discussion.

The images from the SNOM depict a distinct region in the bottom right corner of the

ROI, indicating correspondence with the tumour mass found in the same region of

the LM images (a,b). Another striking feature is the heterogeneity of the SNOM im-

ages, which supports the notion that spatial resolution is enhanced with this imaging

modality, potentially offering a tool to invesitigate additional information not previ-

ously accessible with conventional FTIR-MS techniques.

To reveal the information contained within the images in more focussed detail, line

profiles taken through the tumour in the SNOM images were extracted, and are plot-

ted in Fig. 4.29. The profile from each image was 1 pixel wide, and traverses the width

of the metastasis in the bottom right corner of the images shown in Fig. 4.28. Despite
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FIGURE 4.28: (a) H&E stained image, (b) IHC image stained for pan-
cytokeratins (dark brown), (c) topography, IR SNOM images at (d) 1751
cm1, (e) 1650 cm1, (f ) 1369 cm1, (g) 1285 cm1, (h) 1252 cm1 and (i) ratio
of 1252 cm1/1285 cm1 [i.e. (h)/(g)]. All images are 300 µm × 300 µm.
Each SNOM IR image is plotted with a colour table covering the 5th to
95th percentiles of the image intensity range. Image (a) was obtained
from a section adjacent to that used to obtain image (b), which was in

turn adjacent to that used to obtain images (c) to (i).

the success of the hysteresis correction demonstrated in Fig. 4.25, it was difficult to ob-

tain an exact co-registration for forwards and backwards directed scans for the same

wavenumber with smaller sized scans. For this reason it was not suitable to calcu-

late noise levels on the basis of differences between the two directions. Rather, noise

was calculated by finding the difference between the smoothed images and raw im-

ages, then calculating the root-mean-squared (RMS) of the deviations. Comparing this

value with the mean intensity of the raw image approximates the noise as < 5% for

all wavenumbers.
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Since each pixel in a raw SNOM image is directly related to the detected signal, they

are essentially transmission maps. In order to present data that can be easily com-

pared with FTIR images, which are a series of absorption maps for each wavenumber,

the line profiles have been inverted so that peaks correspond to more absorption. The

profiles are presented on vertical scales that have been corrected for image acquisition

parameters such as detector sensitivity. Since the fibre and QCL characteristics vary

between images, direct comparison between profiles does not indicate relative mole-

cualar concentration differences. Instead, the spatial arrangement of each wavenum-

ber should be discussed on an intra-image basis.

(a)Topo

(c) 1650 cm-1

(d) 1369 cm-1

(f) 1252 cm-1

(e) 1285 cm-1

(b) 1751 cm-1

(g) Ratio
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FIGURE 4.29: H&E stained image of region enclosed by green square
in Fig. 4.28a (left) and line profiles (right) taken through the core at the
white line showing (a) topography, (b) 1751 cm−1, (c) 1650 cm−1, (d)
1369 cm−1, (e) 1285 cm−1, (f) 1252 cm−1 and (g) ratio of 1252 cm−1/1285
cm−1 [i.e. (f )/(e)]. H&E image (left) was obtained from a section ad-
jacent to that used to obtain SNOM line profiles. Each line profile has

been normalised to its min/max values.

The topographic image depicted in Fig. 4.28c indicates an increase in height in the

centre of the tumour, where it is noticeable higher than the surrounding tissue. The

increase in height appears to correspond with an increase in absorption in the 1650

cm−1 image (Fig. 4.28e). Comparison of SNOM line profiles to the topography profile
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in Fig. 4.29 reveals more marked differences in signal across shorter distances, imply-

ing the presence of subtle chemical differences in the metastasis that are not correlated

with the topography.

4.4.5 Discussion

The presented results have shown the capability of MA to discriminate between FTIR

spectra of metastatic cancer origin and that of lymphoid tissue origin using the metric

δ1252,1285. The relatively weak correspondence between the LM images in Fig. 4.26a,b

and the absorbance maps in Fig. 4.27a,b compared with Fig. 4.27c supports the notion

that the metric provides stronger discrimination, which is clearly demonstrated in

the distributions of absorbances and ratio in Fig. 4.16. These results imply that, with

sufficient spatial resolution and control of the SNR, delineation of the two tissues can

be achieved simply by directly inspecting the spectra in the region between 1250 cm−1

and 1289 cm−1. Despite this interesting finding, which does carry academic merit, the

robustness must be further tested in larger scale studies incorporating a multi-patient

cohort. Unfortunately, at the time of study there was no access to more than a single

patient harbouring nodal metastases, and the author of this thesis acknowledges the

imposed limitations on the study.

It is very unlikely at present that the described methodology would replace standard

histopathological protocol, as clinical adoption would require large scale clinical trials

to test the efficacy of such a methodology. Further investigation as to whether the

methodology assists in resolving histopathological diagnosic dilemmas such as the

identification of isolated tumour cells or atypical micrometastases with conventional

techniques like routine histology and immunohistochemistry. It is also important to

iterate that the discrimination presented here may not necessarily generalise well to

other cancers.

The lower absorption levels of 1252 cm−1, which is highly absorbed by nucleic acids, in

the tumour metastasis relative to surrounding lymphoid tissue was somewhat surpris-

ing, since increases in DNA ploidy is a common phenotype of OSCC and other solid

tumours [128]. The increase in absorption in the surrounding tissue may be explained
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by the higher concentration of nuclei, as the quantity is directly proportional to the ab-

sorption according to Eq. (3.10). Despite the strong correspondence between the large

structures in the LM images (Fig. 4.26a,b) and the ratio image (Fig. 4.27c), there is little

to no contrast within the tumour itself, which is in itself non-homogeneous, with the

metric inable to distinguish between components such as the highly keratinised core

and periphery highly differentiated squamous cells.

The superior intrinsic spatial resolution of the SNOM images at important wavenum-

bers may provide some additional insight into the chemistry of individual tissues. The

wavenumbers selected for study all have common attributions to important biomolecules,

shown in table 4.7. 1252 cm−1 is strongly associated with the PO−2 nucleic acid signal

[129], whilst 1285 cm−1 is a characteristic spectral biomarker of collagen [124]. They

have also been the subject of previous SNOM studies [125], [130], [131]. Variations in

absorption depicted in Fig. 4.28 are on a much finer length scale than the FTIR images

of a similar region, with a feature size of ≈ 4µm. The ratio image shown in Fig. 4.28i

indicates higher contrast between different areas of the tissue compared with that of

the individual wavenumbers (Fig. 4.28g,h). Of particular note is that the centre of

the tumour is bound between two broad arcs of tissue, highlighting the capability of

SNOM to differentiate between the core and periphery of the metastasis.

The line profiles (Fig. 4.29) provide further insight into the chemical variations in the

image. The topographic signal indicates that the keratinised core is higher than the

periphery by approximately 1 µm, determined by considering the range of motion

of the vertical piezo. Precise quantification of the height is difficult due to the non-

linearity of the vertical piezo and dependance on tip geometry. The increase in height

coincides with an increase in protein signal in the keratinised core (Fig. 4.28c), which

is also reflected in the amide I line profile, which is attributed to the secondary struc-

ture (specifically α-helical) of cytokeratins [132], [133]. Alterations to the spatial dis-

tribution of cytokeratins and molecules associated with their production are expected

between the often highly keratinised core and the less keratinised tissue surrounding

it, which corresponds to the advancing front of the tumour, supported by the decrease

in 1650 cm−1 absorbance on the edges of the inner core.

The smooth topographic and protein signals are in stark contrast to the more marked
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variations observed in the line profiles at other wavenumbers. This indicates that

there may be subtler differences in the abundance of chemical species absorbing these

wavenumbers. There are similarities between the lines for 1252 cm−1 and 1369 cm−1,

which is not surprising considering that they are both strongly associated with nucleic

acids. The 1285 cm−1 is attributable to collagen, which shows less pronounced vari-

ation in the line through the core. This relative lack of contrast is supported by the

1285 cm−1 cross-section of the hyperspectral image taken of the first core (Fig. 4.27b),

which shows much less contrast than that of the 1252 cm−1. This finding, as well as

the scores derived from the distributions in Fig. 4.16 implies that the discrimination

between metastatic and lymphoid tissue in this case is dominated by nucleic acids.

Designating the peak of the topography as the reference point for the centre of the

tumour, the 1252 cm−1 line shows a reduction in intensity in the centre, surrounded

by two peaks ≈ 25 µm either side, which is consistent with heightened levels of ker-

atin in the core of the tumour. Further reductions are observed ≈ 50 µm either side of

the centre, approximately 25 µm in width, which corresponds to roughly 2-3 layers of

cancer cells. This particular finding seems counter-intuitive as one would expect ker-

atinised, highly differentiated tissue to contain fewer nuclei relative to the periphery

[134]. However, attribution of 1252 cm−1 to phosphate groups means all nucleic acids

[135], [136] and phospholipids [137] will show enhanced absorption at that wavenum-

ber. This leads to the hypothesis that the increase in absorption may reflect a change

in RNA signature or increase in endoplasmic reticulum corresponding with increased

proteinosynthetic events in the advancing front.

The line profile from the 1285 cm−1 image represents quite a complex signal across the

whole section, particularly immediately to the right of the keratinised core. Collagen

attributes such as density, alignment and straightness vary between cancer types, and

specific tumour sub-sites [138], and effect key processes such as invasion, metastasis

and apoptosis. The concentration of collagen is also influenced by the tumour mi-

croenvironment, and affects the immune response [139]. The differences observed in

the 1285 cm−1 line profile may therefore arise from subtle changes in collagen fibre

structure, which could be further investigated in future studies.
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4.5 Conclusion

This chapter has demonstrated the utility of IR imaging modalities and an adapted

MA technique to the study of oral cancer histopathological specimens. Phase I indi-

cated there is potential for using trained MA models to label hyperspectral images,

however the author acknowledges that expansion of the patient cohort is essential

before any conclusive remarks can be validly claimed. Future studies should focus

on reinforcing the model with data from more patients that have been specifically se-

lected for factors such as gender, age and lifestyle risk factors. Due to the paucity

of histopathological specimens that are available for this style of study, multi-centre

studies would probably be necessary to obtain the data in a reasonable time-frame.

This would require more rigorous pre-processing and calibration to mitigate for the

experimental variability introduced by different individuals performing experiments

using different instruments [140].

Phase II III detailed the employment of MA in discriminating between OSCC nodal

metastasis and surrounding lymphoid tissue. This was achieved using a single metric

(δ1252,1285), which was determined without any prior assumptions about the impor-

tant features within the data, emphasising the methods capabilities as a feature ex-

traction technique in addition to supervised classification. Near perfect classification

was achieved, with a sensitivity and specificity of 98.7% and 99.9% respectively. The

author acknowledges that the very small sample size and homogeneous data are the

main contributing factors to such high scores, but the task of discriminating between

nodal metastases and lymphoid tissue is not a clinical problem. In fact, there is clear

delineation between the LM images as shown in Fig. 4.26. Instead, phase II should be

regarded as a proof of concept study for utilising MA as an interpretable tool that can

guide further studies.

Phase III implements the results from phase II in more focussed discrete frequency

IR-SNOM experiments. The results of these gave additional insight into the chemistry

of OSCC metastasis, whereby the keratinised core, advancing front and surrounding

lymph tissue were all discernible in the ratio image corresponding to δ1252,1285. The

findings were in agreement with current biological understanding of the biochemical

mechanisms at play, but additional questions such as the role of collagen should be
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explored in further studies. These questions will be addressed in future work but are

not the subject of the remainder of this thesis. In the subsequent chapters, focus will

shift from using FTIR-MS as an oral tissue labelling tool, to its pairing with a novel

framework as a prognostic predictor for malignant transformation.



115

Chapter 5

Pipeline Optimisation Framework

5.1 Introduction

This chapter is based around a framework which objectively optimises the selection

of pre-processing and classification methods and hyperparameters (HPs) for a given

task. The program, which is a collaborative effort between myself and fellow PhD

student Conor Whitley, was written in Python with the vision of making it open source

in the future. A paper based on the framework is currently in review.

5.1.1 Background and Motives

Despite the undeniable promise of applying vibrational spectroscopic techniques and

machine learning to the analysis of biomedical datasets, it is hampered by the lack of

consensus regarding the choice of pre-processing and machine learning techniques.

Pre-processing is a vital step in the analysis workflow, as it has been shown to gener-

ally increase performance of classification models [8], as well as to increase the validity

and interpretability of results. As detailed in section 3.3, the process of applying mul-

tiple steps in order to transform a raw labelled dataset (X, y) into a set of predictions

ŷ can be considered a supervised ‘pipeline’.

Interestingly, despite the potentially significant influence the choice of pre-processing

methods imposes on results [141], robust selection of an optimised pipeline is not

routinely implemented [142]. This is surprising since the optimal method has been

shown to depend on the characteristics of the specific dataset, as well as the purpose

of the analysis (binary classification, regression, multi-class classification, calibration).
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A study by Engel et al [142] revealed that there was a 20% difference between the

worst and best combination of pre-processing methods (out of ≈ 5000 theoretically

reasonable combinations) applied to an FTIR dataset. This highlights the necessity in

realising the optimal protocol if high scores are to be achieved, but it also exposes how

an arbitrary approach based on intuition are flawed.

Jarvis and Goodacre [143] detailed an approach whereby a genetic algorithm (GA)

was used to optimise a pre-processing pipeline. In this method, generations of pre-

processing sequences were allowed to ‘evolve’ in a manner analogous to Darwinian

evolution. The ‘fittest’ pipelines were allowed to cross-over with each other to pro-

duce ‘off-spring’ which can mutate and cross-over to produce more generations. The

optimised pipeline resulted in 16% reduction in the model error compared with the

raw data model. GA does not scale well with complexity as each generation is depen-

dent on the previous, therefore improvements in run time by means of parallelisation

is not possible.

In a more recent study by Butler et al [144], a trial and error approach was used on

an attenuated total reflectance (ATR) FTIR biofluid dataset from brain cancer patients.

Each permutation was tested using either a random forest (RF) classifier or a support

vector machine with features selected by RF or GA. They concluded that there is a

small fraction of permutations which are highly favourable compared to the rest of

the dataset, which further highlights the need for optimisation.

Each stage within the pipeline may have several available methods to choose from.

Normalisation, for instance, may refer to vector, min-max or feature normalisation, all

of which are well suited to some tasks more than others. The choice of classifier is

another aspect that should be optimised, as some classifiers perform better depending

on the nature of the data. There may also exist a set of HPs associated with the method,

which must also be carefully selected based on the chosen data and model. This multi-

step, multi-method problem makes the task of optimising the pipeline extremely dif-

ficult to achieve in a trial-and-error approach. The total number of permutations (N)

can be determined using Eq. (5.1).
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N =
ns−1

∏
s=0

nm(s)−1

∑
m=0

nθ(m)

 (5.1)

where ns is the number of steps in the pipeline, nm(s) is the number of methods asso-

ciated with step s, and nθ(m) is the size of the HP search space for method m. Consider

a simple case where there are 5 steps, each with 3 methods, with each method having

2 HPs taking 3 possible values. Firstly, the size of the HP search space will be 32 = 9

for each method, summing to 45 for each step. Finding the product of this grid across

the five steps gives 455 ∼ 2 × 108 total permutations. Furthermore, the evaluation of

one single pipeline can be quite computationally expensive in itself, depending on the

size of the data and complexity of each applied method. Sequentially processing this

many pipelines would take an enormous amount of time, which is a major limitation

if vibrational spectroscopy and ML are to be considered a feasible clinical adjunct.

As discussed in section 3.3, validating the optimal HPs should be implemented using

a routine such as k-fold cross validation, so that HPs are not overfitted to a subset of

data. Because an independent model is being trained for each cross validation itera-

tion, this effectively scales up the runtime of the already computationally heavy opti-

misation by a factor of k. A framework that searches for the best pipeline with the best

set of HPs using cross validation would execute many independent processes before

combining and comparing the results to obtain the optimal pipeline. This makes the

framework an ideal candidate for parallel computing, which processes independent

tasks simultaneously, so the runtime can be dramatically reduced.

The work presented in this chapter proposes a novel method for objectively optimis-

ing an analytical pipeline for vibrational spectroscopy. It combines a trial-and-error

approach with parallel computing and Bayesian optimisation (BO), a concept which

will be discussed in the following section. The desired outcome is a robust frame-

work that can efficiently search across a large optimisation space in order to maximise

the performance of the pipeline. Despite being designed and developed with spectro-

scopic data in mind, it can be adoptable by other fields which have a large parameter

space associated with multi-step pipelines.
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5.1.2 Bayesian Hyperparameter Search

HP searches seek to determine the optimal HP vector θ∗ so that an objective func-

tion f (θ) is either minimised or maximised. For the optimisation of classification

pipelines, a performance measure should be maximised, this is summarised in Eq. (5.2):

θ∗ = argmax
θ

[ f (θ)] (5.2)

Section 3.3.2 outlines some of the ways in which the optimal set of HPs can be selected

in a machine learning algorithm. A set of HPs in a pipeline θp can be though of in

a similar way, whereby each method contributes its own set of HPs θm to θp. For

instance, consider a pipeline consisting of PCA denoising and vector normalisation as

pre-processing steps, followed by a logistic regression classifier. The extent to which

the data is denoised is determined by the number of retained PCs, so this is passed

into θp, along with the regularisation strength in logistic regression which reduces

overfitting to training data in model construction. The optimal set of HPs θ∗p exists at

a point within the 2-dimensional space (each dimension represents a HP), and can be

determined or estimated with the aid of search algorithms. The familiar grid search

method searches every combination of discrete values associated with each HP. Whilst

this is thorough, it is not ideal as it may transform what could be a continuous domain

(regularisation strength) into a discrete, user defined set of possible values. Random

searches differ from this in that they randomly sample a defined number of points

from the original space in which the possible HP combinations exist.

Figure 5.1 is a basic comparison between HP optimisation using grid search or random

search. The different colour stars represent the optimal solution in two scenarios as an

example. The grid search is superior at converging on the first solution (yellow) than

the random search, but inferior to converging on the second solution (green). This

demonstrates the weaknesses associated with either technique. Grid searches across

continuous domains carry the risk that too few points are specified to find the true

optimum solution, whereas random searches require that enough points are sampled

in order to be effective and to minimise the risk of missing the optimal solution. This

implies (unsurprisingly) that more points are required to increase the likelihood that
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Grid search with 9 pre-defined points Random search with 9 iterations

FIGURE 5.1: Comparison between a grid search and random search for
HP optimisation. The two methods are used on the same problem, for
which two different optimal combinations are depicted by the green
and yellow stars. The grid search is configured to search over 9 user-
defined positions in the space, whereas the random search is configured

to randomly sample combinations from the space.

the best combination of HPs is converged upon. This dependence scales poorly as the

number of dimensions in θp increases, which suits the methods poorly to pipelines

which typically have a large number of HPs.

Another limitation of the aforementioned approaches is that they are completely un-

guided by information from previous evaluations. This can lead to repeatedly trialling

bad HPs, which decreases the efficiency of the process. Consider for example, the 2D

function f (θ1, θ2) shown in Fig. 5.2. Since the objective of a HP search is to find a global

maximum of a function such as classification accuracy, the positions where f (θ1, θ2)

are low are of no interest. It would be very inefficient if a grid search was imple-

mented to find this function’s optimum value since there is only a small region within

the 2D matrix that corresponds to high values. If random search was utilised, the iter-

ation number would need to be high in order to increase the likelihood of locating the

maximum.

A much more efficient way to locate the maximum of this function would be to use the

information acquired over the course of the search to make informed decisions as to

where to select the next set of HPs. This is the essence of Bayesian optimisation (BO), a
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FIGURE 5.2: 2D function f (θ1, θ2). Implementing random or grid search
to find the maximum to this function would be inefficient.

term generally attributed to work by Jonas Mockus in the 1970s and 1980s [145], [146].

Bayesian optimisation carries utility in the following conditions:

(i) Only the global optimum is of interest. Knowledge of local optima is not re-

quired. True for HP optimisation in ML.

(ii) The function f is expensive to calculate. True for cross validation evaluations of

pipelines.

(iii) No knowledge about the behaviour of f , i.e. it is a ‘black-box’.

(iv) The number of dimensions is typically ≤ 20 [147]. True for analytical pipelines.

The mechanism by which BO builds up a knowledge base of the unknown function

f whilst using that knowledge to guide future decisions is by fitting a probability

surrogate model to f . The surrogate model is usually a Gaussian process (GP), which

is a probabilistic model mapping inputs (in this case the HP vector θ) to the objective

function f . A GP can be regarded as a distribution of functions, which has a mean

function m(θ) and a covariance function k(θ), where each point in HP space has an

associated mean µ and standard deviation σ. The mean function is the approximation

of the relationship between the choice of HPs and the objective function, whereas the
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covariance function encapsulates the relationship between the points in the space. The

Matern kernel is frequently used as a covariance function due to its ability to cope

with a noisy objective function [147], which is likely to be the case when evaluating

pipelines using average cross validation statistics. The equation for the Matern kernel

is:

k
(
θ, θ′

)
= σ2

(
1 +

√
3r
l

)
· exp

(
−
√

3r
l

)
(5.3)

where r = |θ′ − θ| is the euclidean distance between two points, σ2 is the variance, and

l is the length scale parameter. All combinations of points constructs the covariance

matrix which governs the relationship between points in the model.

The Gaussian process is used in the determination of the next best point to evaluate in

the optimisation. Given an initial set of n evaluations at f (θ1, . . . , θn), the GP posterior

can be updated to incorporate the new evaluations. The updated GP, which has a µ

and σ for every θ, can be used to inform some acquisition function which determines

which point next to evaluate. This acquisition function may take various forms, but

the most widely implemented is perhaps the expected improvement algorithm (EI),

which determines the next best point by considering both the mean and standard

deviation functions of the posterior through Eq. (5.4).

EI(θ) =


(µ (θ)− f (θ∗))Φ(Z) + σ (θ) φ(Z) if σ (θ) > 0

0 if σ (θ) = 0
(5.4)

Where µ (θ) and σ (θ) are the mean and standard deviation of the Gaussian at θ, f (θ∗)

is the current maximum evaluation, and Φ(Z) and φ(Z) are the standard cumula-

tive density function (CDF) and probability density function (PDF) at Z respectively,

where:

Z =
µ (θ)− f (θ∗)

σ (θ)
(5.5)
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The set of HPs with the maximum EI is selected and the function is evaluated at the

new value. The GP model is subsequently updated with the new value. It is worth

mentioning that the standard deviation at points where the function has been evalu-

ated goes to zero, as there is no longer any uncertainty in the value of the objective at

that point. The expression for EI in Eq. (5.4) gives two conditions where the EI will

be high. First consider that the mean function at a point is high, i.e. the current GP

model predicts the value of the objective function will be high. Sampling more points

in this space will be beneficial, since the global optimum may exist in this region. This

gives weight to the first term in Eq. (5.4), which is high if the mean function is larger

than the best evaluation so far. If this were the sole factor in the acquisition func-

tion, there is a high probability of converging on a local optimum, since there is no

incentive to evaluate any points that are distant from a small region of HP space. This

‘exploitation’ factor should instead be balanced with an ‘exploration factor’, which is

what the second term in Eq. (5.4) addresses. Regions of space where relatively few

evaluations have been made will have a relatively large standard deviation function,

since the standard deviation goes to zero at points which have been evaluated, and

will be similar at neighbouring points due to the covariance of the GP.

To demonstrate its effectiveness and reinforce intuition, BO can be used to attempt

to find the optimum of the 2D function shown in Fig. 5.2. Each horizontal panel of

Fig. 5.3 contains the surface plot representations of the true function (a), the mean

function as predicted by the GP (b), the standard deviation function as predicted by

the GP (c), and the EI acquisition function (d).

To intialise the optimiser, a GP is fit to 10 random points which have been evaluated

using the function. The mean and standard deviation are updated accordingly. The

first panel indicates that the model is already beginning to represent the overall trend

in the data. The GP posterior is then used to calculate the expected improvement using

Eq. (5.4), which then determines the next sampled point, shown using a red point in

figure (d) of each panel. The true optimum of the data is shown with a red point in

figure (a) and (b) of each panel. The regions of low standard deviation (dark blue)

in figure (c) of each panel indicate points that have been evaluated, as the standard

deviation reduces to zero in these cases. It can be seen in (c) and (d) of each panel that
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FIGURE 5.3: Finding the optimum of a 2D function using BO over 20
iterations. 1st, 10th and 20th iteration shown for brevity. Each panel
shows the true function (a), mean function (b), standard deviation (c)

and expected improvement (d).

the model is sequentially guided to sample points which are near the maximum of the

function. After 20 iterations, the global maximum has been accurately determined,

demonstrating the efficiency and efficacy of utilising such an approach. If a grid search

was used over the same domain (0 ≤ x ≤ 100, step 1), to get the same precision would

require 1002 = 104 evaluations, indicating an efficiency markup of 500. Of course, it’s

not quite so simple to make such a direct comparison, as there are advantages and

drawbacks to both approaches. A lot of HPs for pipelines are categorical/integer, for

instance the window size in SG smoothing is constrained to be an odd number, and the

number of trees in a random forest is constrained to be an integer. Gaussian processes

can work with discrete domains such as these [148], however they are most definitely

designed and optimised for continuous domains [147].



Chapter 5. Pipeline Optimisation Framework 124

5.2 Framework Components

There were three main goals in mind when designing and developing the framework,

which will be referred to herein as pipeline optimiser or simply ‘PipeOpt’. The first

is to incorporate a hierarchical search across different methods and respective HPs in

order to thoroughly optimise the protocol. The second is to utilise high throughput

tools such as parallel processing in order to increase the efficiency of optimising over a

large space. The other is to make PipeOpt as modular as possible, in order to maximise

the versatility of said framework, so that methods and HPs can be easily added by

either myself or other users. PipeOpt uses the object oriented (OO) programming

paradigm to increase the modularity of the framework and to enable the monitoring

of intrinsic processes and variables within.

5.2.1 Steps and Methods

To begin with, modules for each step within the framework were created. Each mod-

ule contains a number of classes which apply a particular method to the data. The

classes ‘inherit’ from the scikit-learn application programming interface (API) [149],

a very popular python library containing tools for machine learning oriented tasks.

Pre-processing steps are defined as Transformer classes, with the ultimate classifi-

cation step defined as an Estimator class. Transformers take the data matrix X and

apply some transformation (such as PCA denoising) to output a transformed data

matrix X′. Sometimes the label vector y is used in the transformation, but for most

protocols (such as pre-processing of FTIR data) the transformers are unsupervised

and y is passed through as a redundant variable. On the other hand, estimator classes

take X and the labels y as an input, and learn rules that either map X to y (for super-

vised learning) or recognise patterns that clusters the data into distinct groups without

knowledge of y (unsupervised learning). The estimator is then able to predict the la-

bels (ŷ) and associated probability (p̂) of each row of X. An estimator class may also

involve a transformation, such as LDA and logistic regression, which both rely on a

linear transformation of variables in order to obtain a prediction. A summary of both

base classes is shown in Fig. 5.4. In addition to the data inputs (X, y), there may be

a set of HPs θ associated with the method, which can either be declared as default
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variables or require that they are explicitly passed with the function call.

TRANSFORMER

Purpose: Apply
transformation to data.

Inputs: X, y, θ

Methods: fit, transform

Output: X’

ESTIMATOR

Purpose: Learn rules and
use to predict identity of
each row of X.

Inputs:

Methods: fit, transform,
predict, predict probability

Outputs:

FIGURE 5.4: Summaries of the transformer and estimator
scikit-learn base classes.

Although the design of PipeOpt enables steps and methods to be defined with ease

depending on the application, the version demonstrated here contains standard pre-

processing and classification methods commonly used in FTIR data analysis. Below is

a list of modules and respective classes which were integrated into the framework.

(i) Denoising: PCA, SG-Smoothing

(ii) Baseline: rubber-band

(iii) Normalisation: vector, min-max, amide I

(iv) Scaling: standardisation, robust, min-max

(v) Decomposition: PCA

(vi) Classification: logistic regression, random forest, xgboost

Most of the pre-processing methods listed above have been previously described in

section 3.3.1. One set of routines not discussed is scaling, a step which scales each

variable (wavenumber) to a common domain. This is a very important step for many

classifiers, especially those based on a linear transformation such as logistic regression,

LDA and neural networks [9]. The three methods defined above are standardisation,
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robust and min-max. For standardisation, the mean absorbance of each wavenumber

is subtracted from each spectrum, prior to division by its standard deviation, so that

the distribution over the data for each wavenumber has zero mean and unit variance.

Robust scaling is similar to standardisation, but the median is subtracted rather than

the mean, and it is scaled by the interquartile range rather than the standard deviation.

This approach is less sensitive to outliers, which skew the mean and standard devi-

ation in a negative way. Min-max scaling simply scales each wavenumber variable

to range from 0 to -1, however this approach is very sensitive to outliers which may

compress or stretch the distribution based on anomalously high or low absorption.

The methods contained within the final classification step have not yet been intro-

duced. Logistic regression, random forest and XGBoost, the former two of which are

available as packages in scikit-learn, whilst XGBoost is written independently, but

inherits from the estimator base class from the scikit-learn API. The three classifiers

were chosen due to their differences in complexity, with the number of searchable HPs

in excess of 20 for XGBoost. The training of the classifier involves the optimisation of

the weights w and bias term b that lead to the highest performance. RF and XGBoost

are both based on decision trees, a type of supervised classifier which seek to deter-

mine a set of conditional statements which lead to a decision of what class the data

belongs to. Figure 5.5 shows a rudimentary example of what a decision tree in the

context of FTIR spectroscopy may look like.

The parent node at depth = 0 (top of Fig. 5.5) splits the data based on the condition

that it has an aborbance at 1650 cm−1 greater than 0.8. The subset that does not fulfil

this condition then steps to the left (false direction), where it is classified as cancer. If

the condition is met, it steps down to the right, where it meets another conditional

statement which queries if the absorbance at 1242 cm−1 is less than 0.8. If this is true,

the spectrum is classified as dysplasia, if false it’s labelled as healthy. Each node in the

tree has an associated quantity known as the Gini impurity, which is calculated using

Eq. (5.6).

Gi = 1−
n

∑
k=1

p2
i,k (5.6)
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A(1650) > 0.8
gini = 0.67

samples = 150
values = [50 50 50]

gini = 0.32
samples = 50

values = [40 10 0]
class = cancer

A(1242) < 0.1
gini = 0.58

samples = 100
values = [10 40 50]

gini = 0.038
samples = 52

values = [51 1 0]
class = dysplasia

gini = 0.27
samples = 48

values = [8 40 0]
class = healthy

False True

FIGURE 5.5: Example of a simple decision tree with two root nodes and
three leaf nodes for a three class classifier.

where pi,k represents the ratio of the number of time the class k occurs in the ith

node. For instance, in the parent node at depth = 0, the number of instances for

each of the three classes is 50, therefore the Gini impurity would be calculated by

1− (1/3)2 − (1/3)2 − (1/3)2 = 2/3. This quantity is used in the training of the de-

cision tree, which seeks to determine the features and thresholds which produce the

purest nodes (those that produce nodes with a low Gini impurity). RF is essentially an

ensemble of decision trees trained on a random subset taken from the training data,

using a random selection of available features. Each of these independent classifiers

votes for an overall classification. RF has been used on FTIR-MS biomedical datasets

on numerous occasions [117], [150]–[152]. XGBoost [153], which stands for extreme

gradient boosting, is another variation of decision tree ensemble, where classifiers are

added sequentially to correct the mistakes made by the previous iteration.
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5.2.2 Pipeline Construction

The next component of PipeOpt to be integrated was the mechanism by which the

pipelines are constructed. Each pipeline was to be a unique combination of a defined

set of methods, which utilised a Bayesian HP search to determine the optimal set of

HPs. The steps and methods were defined in a python data structure known as a

dictionary, which are associative collections that map values to identifiers known as

keys. They are a very effective way of storing data in such a way that values can be

accessed with something more intuitive or convenient than a numerical indexer.

In the case of PipeOpt, the keys are the steps that will make up each pipeline, and the

corresponding values are a list of methods that are to be trialled for each step. Each

element of the list (method) also contains another dictionary which specifies each HP

and its respective search domain as key-value pairs. This structure can be visualised

as a hierarchy, shown in Fig. 5.6. Every permutation of methods (taking one from

each step) is then generated and can be passed as an argument to a pipeline object. A

pipeline object is a scikit-learn estimator (Fig. 5.4), which executes all the transfor-

mations associated with the previous steps before training the estimator in the final

step. In the example shown in Fig. 5.6, there are two steps each containing two meth-

ods, this would yield 2× 2 = 4 pipeline objects. The HP search domains associated

with each method in the pipeline are combined, and will be the subject of BO in sub-

sequent stages.

5.2.3 Job Dispatching and Execution

As previously stated, the throughput of trialling many different pipelines can be dra-

matically increased by utilising parallel processing. The initial release of PipeOpt

makes use of the popular open source high throughput computing software frame-

work HTCondor [154], herein referred to as ‘condor’. Condor utilises a pool of idle

computers in a local network to process parallelisable, computationally expensive

tasks, or ‘jobs’, and can be controlled with ease from a server. The University of Liv-

erpool condor framework consists of a pool of 1900 computers situated in teaching

centres, laboratories and libraries. They are only accessible when they are idle, and as

soon as interaction is made with the computers input hardware (keyboard or mouse),
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Each step has 
method(s) that

must be optimized

GRID SEARCH

Each method has
hyperparameter

vector that needs 
to be optimised

BAYES SEARCH
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FIGURE 5.6: Structure of the pipeline search dictionary. All combina-
tions of methods (taking one from each step) are generated, combining
all HPs from the selected methods into one domain. The combined HP

vector is subject to BO.

the computer is removed from the available pool. Each computer is equipped with

an Intel core i3 (quad-core) processor runnning at 3.3 GHz, 8GB RAM and 120 GB

storage.

The framework is configured to dispatch individual pipeline objects to a job. Accom-

panying the pipeline object are several mutual inputs that are required for job execu-

tion; these consist of the execution script, labelled train and test data, the parameters

for BO, a python distribution containing all the required packages, and any other de-

pendencies. The process is illustrated in Fig. 5.7.

Each job now contains all the required inputs to run the optimisation. The execution

script is a python file which controls the processes within the job, such as the load-

ing of the pipeline, running of the BO, and saving of results. For the running of BO,

the function BayesSearchCV from the package scikit-optimize was utilised, which

enabled the specification of parameters such as the objective function, number of iter-

ations, and number of initial points to sample to intialise the optimiser. Furthermore,

it allows for validation routines such as k-fold cross validation to be implemented,

in order to robustly determine the optimum based on all the accessible training data.

The choice of objective function to be optimised should be selected to suit the spe-

cific problem. For instance, a classification problem would be suited to performance

measures such as the AUC, sensitivity or specificity.
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FIGURE 5.7: Process of dispatching n pipelines and a set of mutual in-
puts to each job in the condor framework.

Following HP optimisation using BO, the HPs with the best mean performance from

the search are selected and the pipeline is retrained on all the training data, before

testing on the independent hold-out data. The results for each specific job are saved to

a file and returned to the directory, wherein the optimised pipelines can be recombined

and compared.
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5.3 Testing

5.3.1 Methods

For testing the functionality of PipeOpt, the framework was deployed in the analy-

sis of a multi-patient real FTIR dataset. The dataset comprises of spectra taken from

primary tumour sites of 28 patients. All samples were FFPE tissue biopsies collated

into 1mm diameter core TMAs. Tissue annotation was performed by a maxillofa-

cial pathologist using adjacent H&E stained sections to ensure accurate labelling. The

dataset had previously been used to investigate the prognostic ability of other biomark-

ers [155]. The objective was to obtain the optimised pipeline with the best mean per-

formance across a number of train-test splits. The task was to predict the prognosis of

a patient as surviving beyond, or less than one year of the most recent review date. It

is important to state that the purpose of this exercise is solely to test that PipeOpt func-

tions as expected, rather than to derive any biological conclusions, since the data was

not collected by myself. Chapter 6 will detail the analysis of a multi-patient dataset of

dysplasia samples using PipeOpt, and will include discussion of biological and clinical

implications.

The total number of pipelines generated can be easily calculated as the cumulative

product of the number of methods in each step. An option to bypass the step com-

pletely was also included to investigate the effect this has on model performance. In

the case of this demonstration, referring to the list in section 5.2.1 gives (including by-

pass option): 3 smoothing methods; 2 baseline methods; 4 normalisation methods; 4

scaling methods; 2 decomposition methods and 3 classifier methods, which yields 576

unique pipelines. Spectra from approximately 2/3 of the patients were sampled for

model optimisation and training, with the remaining 1/3 of patients left out to test the

model. In order to boost speed and reduce bias towards patients, the number of spec-

tra sampled from each patient was set equal at 200. This whole process was repeated

50 times for different train-test splits, in order to acquire a general picture of the per-

formance of the optimised pipelines. Figure 5.8 details the end-to-end optimisation

process.
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FIGURE 5.8: Flowchart of overall optimisation process

5.3.2 Results

The framework generated a total of npipe · nsample = 574 · 50 = 28700 independent

tasks to be executed using the HTCondor service. All processes took no longer than

48 hours to complete, and the results of each were subsequently recombined in order

to compare performances. The pipelines were ranked by mean AUC to determine the

optimum. Figure 5.9 shows various performance measures attributed to each of the

576 ranked pipelines.
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FIGURE 5.9: Mean scores of pipelines for various metrics [(a): AUC, (b):
MCC, (c): sensitivity, (b): specificity] , ranked by AUC. Red circle in (a)
marks pipeline which applies no pre-processing and logistic regression.

Table 5.1 summarises the various methods associated with each step in the top five

pipelines. The number of HPs (nθ) corresponding to each permutation is also shown.

The mean performance of the best two pipelines over the 50 samples is portrayed in a

confusion matrix (Fig. 5.10a,c) and ROC curve (Fig. 5.10b,d).
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TABLE 5.1: Top ranking pipelines.

Smooth Baseline Norm Scaling FE Classifier nθ AUC

- - Amide I Robust - LogReg 1 0.63 ±
0.02

SG - Min-
Max

Standard PCA LogReg 3 0.62 ±
0.02

- - Vector Robust - LogReg 1 0.61 ±
0.02

- - Amide I Robust - LogReg 1 0.61 ±
0.02

- Rubber Vector Standard PCA LogReg 2 0.61 ±
0.02

Survived Died
Predicted Label

Survived
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ue
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0.43 ± 0.03 0.57 ± 0.03
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FIGURE 5.10: Mean confusion matrix and ROC curve shown with stan-
dard errors for best (a,b) and second best (c,d) pipelines as shown in

table 5.1.
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Figure 5.11 shows the value of the objective function at different points in HP space

according to the GP model. As the HP space is 2-dimensional for this pipeline, the

function can be displayed as a ‘loss surface’, which in this case is equal to −AUC

(mean AUC score). The loss surface is apparently dependent on the number of com-

ponents used in the feature extraction (PCA decomposition) step of the pipeline. On

the other hand, the C parameter associated with the logistic regression classifier ap-

pears to have little influence over model performance. This is likely due to the fact

that both parameters play a regularising role in the inference procedure so as to avoid

overfitting. If both steps were to have parameters indicated a high regularisation ef-

fect, this would likely be detrimental to the classification accuracy and so the score for

that pipeline would be low.

Feature Extraction n

0.80
0.85

0.90
0.95

Log
ist

ic R
eg

res
sio

n C

0
20

40
60

80
100

GP
 M

ea
n

0.56
0.55
0.54
0.53
0.52
0.51

(a)

Feature Extraction n

0.80
0.85

0.90
0.95

Log
ist

ic R
eg

res
sio

n C
0

20
40

60
80

100

GP
 S

ta
nd

ar
d 

De
vi

at
io

n

0.005
0.010
0.015
0.020
0.025

(b)

FIGURE 5.11: GP hyperparameter surfaces showing mean function in
red and standard deviations in blue averaged across 50 sample itera-

tions.

Each of the 50 samples have a unique set of optimised HPs, confirming that the choice

of training and validation data has a significant impact on optimal selection. His-

tograms of the chosen HPs over the 50 samples of the best 2 pipelines is shown in

Fig. 5.12.
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FIGURE 5.12: Histograms of optimum hyperparameters over the 50
train-test splits.

The strategy of randomly sampling 200 spectra from each patient was chosen so that

patient related biases did not influence the choice of methods and HPs in the opti-

mised model. To acquire a more complete measure of performance, the optimised

pipelines were trained again with all spectra from each patient. The modal value

from each of the parameters in Fig. 5.12 were used as the model parameters in this

stage. The new results for the full dataset are shown in Fig. 5.13, where each of the

sub-figures describes the same as in Fig. 5.10.
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FIGURE 5.13: Mean confusion matrix and ROC curve shown with stan-
dard errors for best (a,b) and second best (c,d) pipelines trained and

tested on full dataset.

Figure 5.13 shows a significant increase in both sensitivity and specificity when the

optimised pipelines and HPs are deployed on the full dataset.

5.3.3 Discussion

The performance measures associated with each of the trialed pipelines show marked

variation in when they are used to analyse this particular dataset, which is clearly

demonstrated in Fig. 5.9. AUC and MCC are performance measures which take both

sensitivity and specificity into account, which explains the similar trend shown in
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Fig. 5.9a and b. the relatively noisy sensitivity and specificity traces imply that there

is often a trade off between the two metrics, where high sensitivity often leads to

low specificity. Ranking metrics by AUC or MCC favours pipelines with balanced

sensitivity and specificity.

The trace in Fig. 5.9a begins with a small number of relatively high scoring pipelines,

before levelling off towards a mid region of scores which are distributed about an AUC

of 0.5 and an MCC of 0.0. This implies that the pipelines in this central region and

beyond have little to no classification skill whatsoever. This draws attention to high

ranking side of Fig. 5.9, with the highest scoring pipelines summarised in table 5.1.

Table 5.1 makes it clear that the optimal classifier for this dataset is logistic regression,

with various choices of pre-processing options preceding this step. Normalisation

and scaling are never bypassed, suggesting this is an essential step if any subsequent

classification is going to achieve decent scores. Two instances in the top five classifiers

utilise PCA to transform the high dimensional data in to a smaller space, suggesting

that this step is not important for this dataset paired with logistic regression. Similarly,

spectral smoothing by Savitzy-Golay filtering appears in the second pipeline, but is

absent for the top ranking and remaining pipelines in the top 5.

In order to gain more insight into the effects of different methods on the performance

of the pipeline, the frequency that a certain method either enhances or diminishes

performances relative to a reference can be plotted. Here, the reference score is the

median score of all pipelines in the analysis.
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FIGURE 5.14: Frequency each method either enhances (green) or di-
minishes (red) relative to the median score (AUC = 0.48). Steps are
(a) smoothing, (b) baseline, (c) normalisation, (d) scaling, (e) feature-

extraction, (f) classifier.

Figure 5.14 shows some interesting insights into the effects of various methods to the

performance of an analysis pipeline. The choice of smoothing method evidently has a

significant effect, the majority of pipelines which utilise PCA denoising perform worse

than the median, whilst Savitzy-Golay smoothing predominantly increases scores. It

could be argued that baseline correction has an insignificant effect, perhaps slightly

detrimental; this could be attributed to the data already subject to scatter correction

prior to the analysis, negating the requirement to perform a baseline correction. Nor-

malisation is evidently a step that can not be bypassed, a reasonable result as spectra

originate from different samples, each with dissimilarities in sample thickness. It ap-

pears that min-max normalisation occurs most frequently in the higher performing

pipelines. Scaling of the data appears to have a significant effect on the performance

of the pipeline, but the choice of scaling does not seem to be important. This is an

interesting finding, and it indicates that the normalisation of each feature might be

beneficial for logistic regression for this task. This conclusion is in fact in agreement
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with much of the consensus around algorithms which utilise a sequential optimiser,

such as gradient descent, to converge on a solution. Gradient descent is an algorithm

intimately related to the training of deep learning models, and governs the degree to

which feature weightings are adjusted on each training iteration. For this reason it is

often advantageous for the features to be scaled to within the same range.

It would also appear that application of PCA to decompose the data prior to clas-

sification is slightly more beneficial than not. As previously stated, logistic regres-

sion emerges as a favourable classifier to the tree-based random forest and gradient

boosted classifiers, implying that a simpler, linear based model is preferred to com-

plexity, perhaps as complex models are more prone to overfitting and have a much

larger hyperparamater space to optimise. In fact, the dramatic drop off at approxi-

mately AUC = 0.40 is the result of pipelines with an XGBoost classifier, which has a

large hyperparameter space that requires fine tuning. It may be the case that more it-

erations within the Bayesian hyperparameter search would produce more favourable

results for the tree-based models such as RF and XGBoost, but this would increase the

time taken for the optimisation to execute.

The histograms in Fig. 5.12 show the frequency of values of the pipeline specific hyper-

parameters for each of the two top performing pipelines. Interestingly, it reveals that

the logistic regression C value in pipeline 1 (Fig. 5.12a) converges to a much lower

value (≈ 0.01) than for pipeline 2, where it appears to converge towards 100. The

lower the C value, the more regularisation, or less overfitting, there is to the training

data. Pipeline 2 applies smoothing and feature extraction in addition to normalisa-

tion and scaling, which themselves have a regularisation effect on the subsequently

fitted models. This may be the reason as to why the ultimate C parameter of logistic

regression needn’t be as low as 0.01 for pipeline 2, as it is already being deployed on a

dataset which is difficult to overfit to.

Taking the modal hyperparameter selections from Fig. 5.12 and training and testing on

all available data (using the same patients for each of the 50 train-test splits) enhances

the scores significantly, exemplified in the mean confusion matrices and ROC curves in

Fig. 5.13. For pipeline 1, there is a 14% increase in mean specificity, and a 3% increase

in mean sensitivity. Pipeline 2 exhibits an 11% increase in specificity and 9% increase



Chapter 5. Pipeline Optimisation Framework 141

in sensitivity. This would suggest that the strategy of sampling equally small subsets

of data from each patient for the purposes of efficiency and stratification is sound,

and translates well to a more realistic scenario where the all the available data from

different patients should be used.

5.4 Conclusion

The work presented here demonstrates a versatile framework capable of determining

a near optimal data pre-processing and classification pipeline in a holistic way. This

optimisation framework has been employed on a real inference problem and has suc-

cessfully demonstrated that this process can be performed objectively and without

specific prior knowledge of optimal parameters.

This framework could be utilised by other researchers to perform a similar process

for a given problem and set of pre-processing steps. It is by no means limited to

FTIR spectroscopy and could be extended to other inference problems with minimal

adjustment.
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Chapter 6

Dysplasia Transformation Analysis

The work presented in this chapter is based on a project funded by cancer research UK

(CRUK), which set out to investigate how IR techniques can be exploited to predict the

transformation of oral epithelial dysplastic lesions into oral squamous cell carcinoma.

I personally have been responsible for the sample preparation, data acquisition and

data analysis in the project. At the time of submitting this thesis, a paper based on this

work is in press for publication [156].

6.1 Background

As discussed in chapter 2, the risk stratification and management of patients with OED

is primarily guided by histopathological grading of extracted tissue. The high subjec-

tivity and inter/intra-observer variability of histopathological grading influences the

accuracy of malignant transformation prediction. Furthermore, there is ambiguity and

conflicting opinion as to whether much significance can be attributed to grading with

respect to malignant transformation of OED [38], [50]–[53]. Given the clinical sig-

nificance of OED, improvements to current diagnostic and prognostic pathways are

desirable, and studies into potential biomarkers are widespread [62], [157]–[159].

Chapter 4 demonstrates the utility of combining vibrational spectroscopic techniques

with machine learning algorithms as a tool to predict the histopathological identity of

spectra derived from oral cancer tissue. There have been a limited number of studies

applying this alternative methodology - predominantly Raman - to datasets involving

OED. A study by Ibrahim et al demonstrated that high sensitivities and specificities
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could be achieved using Raman microscopy to discriminate between mild, moderate

and severe dysplasia using discriminant analysis. Despite their exciting findings, the

size of the patient cohort (n=4) was small, which implicates a lack of sufficient bio-

logical variability needed for any conclusive results. The follow-up study expanded

the size of this cohort (n=57), but there was a marked reduction in sensitivity and

specificity [160], which may be limited by the heterogeneity and size of the cohort.

The same study used patient metadata such as smoking status, site of lesion, gender

and alcohol status to subdivide the spectra. They found that spectra originating from

patients with different alcohol consumption or different genders could be achieved.

Discrimination between epithelial tissue from patients with different smoking status

led to sound discrimination (AUC = 0.76), which indicates that smoking has an in-

fluence on the spectra in this cohort. Excellent discrimination was achieved when

discriminating connective tissue with a high degree of inflammation, with increased

nucleic acid and decreased collagen signals emerging as prominent predictors.

A study by Behl et al [161] set out to investigate whether Raman spectroscopy of ex-

foliated cells from dysplastic lesions could be differentiated from normal donor cells

using partial least squares discriminant analysis (PLS-DA). They found that the spec-

tra taken from the cell nuclei could be discriminated with a sensitivity of 86% and

specificity of 85%, whilst models built from spectra derived from the cytoplasm of the

cells increased the sensitivity to 96%. The discrimination was predominantly driven

by lipidic contributions in the cytoplasm, which they attributed to the upregulation of

the lipid metabolism within the cell to provide energy to the abnormal cells. Extrac-

tion of cytology specimens with brush cytology offers a minimally invasive method

compared with repeated tissue biopsy extraction for monitoring PPOELs. Character-

istics such as the nuclear area, cytoplasmic area and nuclear to cytoplasmic ratio form

part of a routine cytopathological examination, however it is understood that various

patient factors, such as age, gender and lifestyle habits influence morphological fea-

tures and are not exclusively tied to the presence of dysplasia [162]–[164]. This study

by Behl et al found that no discrimination could be achieved based on these patient

factors, indicating there is some value in using vibrational spectroscopic techniques

that objectively probe the chemical composition rather than subjective evaluation of
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morphological characteristics to diagnose dysplasia. This demonstrates a promising

step in the right direction for early detection of OED.

Ghosh et al combined Raman and FTIR spectra of normal, dysplastic and malignant

oral exfoliated cells in a novel integrated method for the complimentary techniques.

The study recruited non-smokers and smokers to form two control groups, in addi-

tion to two patholigical groups consisting of patients with histopathologically defined

OED and OSCC. They found that increase in DNA, protein and lipid content was

correlated with malignancy, with corresponding features in the two sets of spectra

emerging as important variables in a PCA-LDA model. Use of FTIR and Raman spec-

tra independently led to classification accuracies of 85% and 82% respectively, whereas

the integrated method yielded significantly enhanced scores of 98%, which elucidates

the complimentary nature of the two techniques.

The inter- and intra-observer variability in grading OED discussed in chapter 2 im-

poses a significant limitation on studies which aim to discriminate between grades

with alternate methodologies to the gold standard. The labels used to guide model

training (dysplasia grade) exist within a subjective domain, so there is an inherent de-

gree of uncertainty that propagates through model training and testing. Consensus

labelling by independent specialists is desirable in order to reduce the mislabelling

risk. A different approach would be to use soft classification where the uncertainty of

each class label is incorporated into the model [165]. Furthermore, in addition to the

imperfection in the grading system, there is ambiguity in whether histopathological

grading is a strong predictor for malignant transformation risk [38], [50]–[53].

Instead of using ML to attempt to diagnose and grade dysplasia, there have been

numerous studies into using clinical end-point as labels, effectively removing the

several layers of ambiguity relating dysplasia grading to OSCC transformation. For

pre-malignant conditions such as OED, the clinical end-point is a binary variable

which simply states whether the patient has developed cancer in a defined timeframe.

Models which can successfully delineate transforming and non-transforming lesions

would not only offer a promising contribution to early diagnostics, they may also

stimulate discussion around the reasons why the discrimination arises, especially if

the choice of algorithm has a degree of interpretability. Saintigny et al [166] performed
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a study on 86 patients with PPOELs, attempting to use a combination of univariate

and multivariate algorithms to predict the transformation on the basis of genetic se-

quencing data. The model which incorporated the genetic data outperformed one

based solely on clinical and histopathological factors, indicating that additional pre-

dictive value can be acquired from techniques that are not currently part of the gold

standard. The authors also derived important individual predictors from the analysis,

attributing proteasome machinery and ribosomal components as the gene sets which

contribute significantly to the prediction.

Liu et al [167] used exfoliative cytology from patients with oral leukoplakia to obtain a

DNA index, which reflected the number of cells with an abnormal number of chromo-

somes, a phenotype which has been correlated with malignant transformation [168].

The authors combined this data with clinical factors and statistical modelling to pro-

duce a quantitative measure of transformation risk that could risk stratify the lesions

that had potential to transform with very good specificity.

Given that vibrational spectroscopy objectively probes the chemistry of a sample, it is

possible that the genetic expression and molecular pathways that are related to malig-

nant transformation of OED can be determined and used in a similar statistical model

as the studies described previously. Despite this, there has only been a small number

of studies which leverage this rich information source as a tool to predict disease. In

fact, to the author’s knowledge, there has been no published work on the prediction

of OED to OSCC transformation using either FTIR or Raman spectroscopy.

The work within this chapter presents a retrospective pilot study carried out on a small

cohort of patients presenting with PPOELs with histopathologically defined OED. The

primary objective of the study is to assess the feasibility of utilising FTIR-MS as an

early diagnostic adjunct.

6.2 Experimental

6.2.1 Sample Selection & Preparation

Thirty patients with OED that had been diagnosed by a pathologist were included for

the study. The patients were seeded from a larger cohort used in a study to determine
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the clinical risk factors associated with malignant transformation [49]. The patients

in the study had all given written informed consent to an NHS Research Ethics Com-

mittee. The selection of patients was limited by an inclusion criteria which required

absence of previous OSCC, follow-up data without lesion excision, and the availability

of FFPE tissue in the biobank at the University of Liverpool.

For each of the selected patients which transformed (T), a single archival FFPE tissue

block was obtained at the closest timepoint to transformation, which ranged from 2

to 43 months prior to transformation. Patients who had not transformed from 43-108

months were defined in this study as non-transformers (NT), as they had not devel-

oped cancer from lesion that had not been excised.

Four 5 µm serial sections from the FFPE block were obtained using a manual micro-

tome, and in a similar protocol to the one detailed in the previous study (chapter 4), the

first and second were reserved for routine H&E staining and histopathological exam-

ination. The remaining two sections were mounted onto two CaF2 disks for FTIR-MS

experiments. LM images of each H&E stained section were acquired using an Aperio

CS2 scanner (Leica Biosystems), and were examined by a histopathologist to define

regions and grade of dysplasia. Regions which were representative examples of the

different dysplastic grades were identified and marked as target ROIs for subsequent

FTIR-MS experiments.

6.2.2 FTIR Experiments

FTIR-MS experiments were conducted in a very similar way as described previously

in section 4.2.2. The only difference in protocol was halving the number of background

and sample scans from 256 to 128 and 128 to 64 respectively. This decision was made

after considering the much larger cohort of patients and limited time using the instru-

ment.

6.2.3 Labelling & Quality Checks

The raw hyperspectral image (HSIs) contained multiple different tissue types aside

from OED. In order to build valid models that exclusively use spectra derived from

OED, a much more specific labelling than the one used in chapter 4 was required. A
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hybridised approach which utilised both histopathological opinion and unsupervised

analysis was designed and employed, so that specific labelling of similar spectra could

be achieved.

The unsupervised analysis branch of the method involved applying a two-tiered k-

means cluster analysis (KCA) to each image. Each image was first pre-processed using

a standard protocol of a 2nd order SG differentiation (window = 5, order = 2), spectral

truncation removing the paraffin region before vector normalisation. The number of

clusters was initially set to 5, then under the guidance of a histopathologist the number

of clusters was adjusted until the borders of the surface epithelium could be delineated

from the surrounding tissue.

The spectra contained within the cluster(s) identified as epithelium were subject to

another round of KCA in order to identify the dysplastic layers within. The origin

of squamous cells is in the basal layer of the epithelium, and all grades of dysplasia

are defined as having abnormalities in at least this layer [169]. For this reason, only

spectra from that layer were to be extracted and used in subsequent modelling. The

process is outlined below in Fig. 6.1.

The H&E image was examined to determine the histopathological grade of the OED

lesion. Given the continuum of dysplastic changes and the preferences of the histopathol-

ogist, 5 grades of OED were used to group the spectra: mild (G1), mild-moderate (G2),

moderate (G3), moderate-severe (G4) and severe (G5). A binary labelling system was also

used, which defined G1 and G2 lesions as low-grade (L) and G3-G5 as high-grade (H).

The labelled spectra from each individual HSI were subject to a statistical quality

check. This entailed the mean centering and decomposition of the spectra into five

principal components using PCA, followed by using Hotelling’s T2 test to determine

whether each spectrum agrees with the general covariance within the data. It is the

multivariate generalisation of the univariate Student’s t-test, which is used to de-

termine statistical differences between sample means. The scores t and correspond-

ing standard deviation σ of the PCA model are used in the determination of the

Hotelling’s T2 statistic, described by Eq. (6.1).
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FIGURE 6.1: Workflow for the labelling protocol. Pre-processed image
(a) is subject to two tiers of KCA (b-c), with the epithelial and dysplastic
regions guided and confirmed by histopathologist informed by H&E
image (d). The dysplastic layer in this image were defined as the brown

cluster.

T2 =
ncomponents

∑
i=1

t2
i

σ2
i

(6.1)

Spectra which yielded a statistic that lay outside of the 95% confidence bounds of the

distribution were discarded. This is a popular choice of pre-processing in the vibra-

tional spectroscopic field due to it’s automation and suitability to multivariate data

[140], [170].

The projection of each spectrum onto the first three PCs in Fig. 6.2a shows a central

red cluster that resembles normally distributed variables. This is to be expected, as

the labelled spectra are from the same distinct pathology from within the same image,

so systematic influences arising from biological and instrumental variations are not

present. The outlier spectra are marked as black crosses, and are found on the periph-

ery of the 3D scatter. The origin of the outliers are marked as red dots in Fig. 6.2b,

which show that outlier spectra originate from localised clusters rather than a random
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(a) (b)

FIGURE 6.2: Example of a quality control test for data from a single
image. Black crosses in (a) and red pixels in (b) indicate data points
which are deemed outliers by the test. (b) IR image at 1650 cm−1. Green

dots indicate non-outliers. Scale bar = 200 µm.

scattering. These localised clusters may be regions of sample that lead to high scatter-

ing, mis-labellings, or even debris on the bottom of the CaF2 disk. Regardless of the

origin, these points were discarded from the data, as extreme points can significantly

skew pre-processing and classification [140].

6.2.4 Pre-processing

The data was split in a number of ways to build different models to discriminate

between transforming and non-transforming spectra for different groups of patients,

which will be described in more detail in the relevant sections. The PipeOpt frame-

work described in chapter 5 was used to rigorously optimise the analytical pipeline

for each independent model. Prior to model optimisation, the data was copied and

subsequently run through an extended multiplicative signal correction (EMSC) Mie

correction algorithm described by Kohler et al [81]. This particular algorithm was

preferred due to relatively high throughput compared to Bassan’s RMieSC-EMSC al-

gorithm. The resonant component which leads to dispersive artefacts is also far less

pronounced for non-isolated cells and tissue [82], especially if the latter is embedded

in paraffin wax [85].
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The EMSC approach utilised in the Mie correction algorithm first calculates the scat-

tering efficiency curves (Eq. (3.23) for a range of particle sizes across the defined

wavenumber range. The simulated curves are decomposed using PCA into a pre-

defined number of PCs. The algorithm then optimises the parameters for an EMSC

model which minimises the differences between each apparent spectrum and the ref-

erence spectrum offset and scaled by the scattering efficiency model. These optimised

parameters are then used to correct the apparent spectrum. This approach was chosen

to account for the different sizes of scattering objects that may be present in heteroge-

neous tissue.

The computational cost of correcting each spectrum leads to prohibitively long run-

times for large numbers of spectra. To circumvent this issue, the HTCondor service

described in chapter 5 was used to dispatch smaller numbers of spectra to run in par-

allel, as the correction of each spectrum is independent of the dataset as a whole. The

reference spectrum used in the correction for each HSI was defined as its mean spec-

trum.

The method and HP search spaces used in the PipeOpt optimisation phase are the

same for each model described in this chapter. Figure 6.3 depicts the different trialled

steps and methods.

The Mie correction step precedes PipeOpt since the algorithm relies on HTCondor to

efficiently process the spectra, so it is not possible to integrate into the framework in

its current form. Each pre-processing step (including Mie correction) has a bypass

option, yielding a total number of 2 · 3 · 3 · 4 · 3 · 2 · 3 = 1296 possible pipelines. The

HPs within each pipeline are optimised over a maximum number of 30 iterations, with

the mean AUC acting as the objective function to be optimised.

6.3 Results

6.3.1 All Patients Model

The primary objective of this project is to build a model which is able to predict the

outcome of patients with histopathologically defined OED based solely on spectral

information, disregarding clinical and histopathological factors. In order to approach
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this problem, the model described in this section will include data acquired from all

patients in the study. A table of patients and all associated metadata can be found

in the appendix. A total of 30 patients (14 non-transformers, 16 transformers) were

selected for model training, based on the inclusion criteria detailed previously.

Figure 6.4 shows the mean spectra for different groupings of data. It reveals very sim-

ilar spectral line shapes, which is to be expected considering all are from the same

pathological origin. Furthermore, even if there were clear differences in the mean

spectra, the variance within the dataset (indicated by the shaded regions) would sug-

gest it implausible to identify any statistically significant differences between the spec-

tra from each group. The spectral variance may be attributed to the fact that no pre-

processing has yet been applied to the data, therefore physical effects such as differ-

ing sample thicknesses and scattering interferences have not been mitigated for and

significantly influence the appearance of spectra. It also reflects the biological hetero-

geneity in the dataset.

In order to acquire a robust measure of model performance, the optimisation process

was repeated for every combination of one non-transforming and one transforming

patient forming the hold-out test set. The data from the remaining patients in each
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FIGURE 6.4: Mean spectra when the data is grouped by (a) outcome
and (b) grade.

split was used in the Bayesian HP optimisation and model training. This approach

essentially mimics the clinical scenario where the test would be on one single patient,

but instead a patient from each group is used in order to attain both sensitivity and

specificity scores. The total number of patient pairings can be easily determined by

considering that each combination pT, pNT is an element in an N(pNT), N(pT) matrix,

where N(pNT) amd N(pT) are 14 and 16 respectively, leading to a total of 224 patient

pairings. This leads to a total number of pipelines to be optimised of 224 · 1269 =

284296, each of which was dispatched as an independent job to PipeOpt. An equal

number of spectra from each biopsy were sampled to prevent patient or image bias

from influencing optimisation results.

FIGURE 6.5: A matrix depicting the patient pairings from the two out-
come groups.

Figure 6.6 shows the mean MCC (a), AUC (b), sensitivity (c) and specificity (d) for

each pipeline, ranked in order of decreasing MCC score. The red circle in (a) marks

the pipeline which applies no pre-processing and a logistic regression classifier, which
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in this case has a low score compared to the majority of pipelines, demonstrating the

detrimental impact not pre-processing data has on results. The trace for AUC in (b)

shows a much similar trend to MCC, as these are both similar performance measures

which aim to quantify the overall efficacy of a test, considering both sensitivity and

specificity. On the other hand, the sensitivity and specificity plots show a much more

noisy trend, reflecting the dependence on the pipeline used and the trade-off between

the two measures.

0 200 400 600 800 1000 1200
Rank

0.6

0.4

0.2

0.0

0.2

M
CC

(a)
No PP, LR

0 200 400 600 800 1000 1200
Rank

0.2

0.3

0.4

0.5

0.6

0.7

AU
C

(b)

0 200 400 600 800 1000 1200
Rank

0

20

40

60

80

Se
ns

it
iv

it
y 

(%
)

(c)

0 200 400 600 800 1000 1200
Rank

0

20

40

60

80

Sp
ec

ifi
ci

ty
 (

%
)

(d)

FIGURE 6.6: Mean MCC (a), AUC (b), sensitivity (c) and specificity (d)
for pipelines (sorted in order of decreasing mean MCC). All patients

incorporated into study.

Table 6.1 lists the top 5 pipelines (ranked by MCC) returned by PipeOpt. The classifier

option in each of the five cases is random forest (RF), which implies that this classifier
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is the best choice for this particular dataset. The normalisation option is not bypassed

in any of the best pipelines, which is in agreement with the conclusion made from

Fig. 5.14, confirming that normalisation is a vital step to mitigate for differences in

sample thicknesses in a heterogeneous multi-sample dataset.

TABLE 6.1: Top ranking pipelines for all dysplasia patients model.

Mie Smooth Baseline Norm Scaling FE Classifier

Yes SG N/A Vector N/A N/A RF
Yes N/A N/A Vector N/A N/A RF
Yes N/A SG diff Feature N/A N/A RF
No N/A SG diff Feature N/A N/A RF
Yes PCA N/A Vector N/A PCA RF

Figure 6.6 suggests that modest scores may be attainable when using an optimised

pipeline to predict transformation of any grade of dysplasia, but it does not convey

the variance of results over the different patient splits. Figure 6.7 shows the mean

(green) and median (blue) ROC curves, as well as the individual ROC curves for all

224 splits of the data shown in paler colours. There is a marked difference between the

mean curve and median curve, which is reflective of the fact that the curves from each

split are not normally distributed, there are clearly more models that are concentrated

in the upper left half of the plot, indicating that the model has moderate to excellent

skill in predicting the outcome of the patients in those particular splits. There is clearly

a significant variation in results depending on the choice of patients used for training

and testing.

If this methodology were to be adopted in the clinic, patients and practitioners would

require an outcome prediction on a patient basis, rather than each spectrum. Two

approaches are proposed to use spectral predictions to determine a patient score: hard

voting and soft voting. For every spectral prediction, there is an associated probability

of it belonging to either class (NT or T). The class with the maximum probability is

assigned as the predicted class. In the hard voting method, all spectral predictions

for each patient are counted, with the class with the most votes NNT, NT assigned as

the patient outcome prediction. Soft voting, which is also described in section 3.3.2,

calculates the sum of the probabilities ŷT, ŷNT over all the predictions for each patient

to determine the outcome. Equations (6.2) and (6.3) summarises the two methods.
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FIGURE 6.7: Mean and median ROC curves over the 224 individual
splits, which are shown in paler colours.

yhard = argmax
NT,T

{NNT, NT} (6.2)

yso f t = argmax
NT,T

{
nspectra

∑
i=1

ŷi(NT),
nspectra

∑
i=1

ŷi(T)

}
(6.3)

The advantage of using the soft voting method is that predictions with a high prob-

ability carry much higher weight than the more ambiguous ones. Consider a patient

with 21 spectra, 10 of which are labelled as transforming each with an 80% probabil-

ity, the remaining 11 are labelled as non-transforming each with a 55% probability,

The hard voting scheme would predict the patient outcome as non-transforming as

this is the class with the most votes, whereas the soft voting scheme would predict a

transforming outcome, as the sum of probabilities is 0.8 · 10 = 8, versus 0.2 · 10 = 2

for non-transforming. Figure 6.8 shows the number of times patient outcomes were
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correctly predicted over the 224 splits for both voting strategies.
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FIGURE 6.8: Number of times patients were correctly labelled as ei-
ther transforming (true positive) or non-transforming (true negative)

for both voting strategies.

The results shown in Fig. 6.8 indicate that there is very little difference between the

results acquired using either hard or soft voting, and can be used to estimate the ex-

pected sensitivity and specificity of the model when used to predict the outcome of a

new patient. The likelihood of correctly identifying a patient who will transform based

on these results is 56-57%, whilst the likelihood of correctly identifying a patient who

won’t transform is 74-75%.

These findings would suggest, according to this limited dataset, that there is little fea-

sibility in using this method as a means to predict patient outcome, regardless of their

histopathological grade. This is perhaps unsurprising, considering the OED grading

system measures architectural and cytological alterations that are manifestations of

underlying biochemical changes. Combining patients with different grades of OED

into one model may lead to overfitting to features characteristic of the grade, rather
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than achieve the goal of discriminating based on features that reflect propensity to

malignant transformation.

For this reason, it was decided to investigate whether stratifying the dataset accord-

ing to the binary grading system applied (high grade, low grade), would improve

results. The rationale for this study is that one of the sources of biochemical variation

would be controlled for, forming a more homogeneous set, allowing for the model

to discriminate on the basis of features that drive transformation. The binary system

also reduces the ambiguity and granularity of the 5-tiered grading system intially em-

ployed to grade each lesion, and such an approach has been shown in other studies to

improve inter- and intra-observer variability [171].

6.3.2 Low Grade Patients Model

The process of optimisation and model training was repeated for patients with a

histopathological grading of G1 and G2, who were defined as low-grade (L) in the

binary grade system used in this study. Consequently, the size of the patient dataset

was dramatically reduced from 30 (14 NT, 16 T) to 13 (7 NT, 6 T). The same splitting

method was used to generate all pairings of patients from both groups, resulting in

7 · 6 = 42 iterations to evaluate. The same PipeOpt search spaces and settings were

used to determine the optimum analytical pipeline. Figure 6.9 are the score traces for

this particular task, showing the same metrics as Fig. 6.6.

Figure 6.9 clearly shows a significant improvement in model performance when train-

ing on patients with similar histopathological characteristics. The five pipelines with

the highest MCC are further detailed in table 6.2.

TABLE 6.2: Top ranking pipelines for low grade dysplasia patients
model.

Mie Smooth Baseline Norm Scaling FE Classifier

Yes SG SG diff N/A Standard PCA LR
Yes N/A SG diff N/A Standard N/A LR
Yes N/A SG diff N/A N/A PCA LR
Yes SG SG diff N/A Standard N/A LR
Yes N/A SG diff N/A Standard PCA LDA
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FIGURE 6.9: Mean MCC (a), AUC (b), sensitivity (c) and specificity (d)
for pipelines (sorted in order of decreasing mean MCC). Low grade

patients study.

Interestingly, spectral normalisation is a step that has been bypassed in each of the

top performing pipelines. This may be explained by the fact that the data is being

standardised in four out of five pipelines, which scales each wavenumber variable in

the data to have a mean of zero and standard deviation of 1. This effectively trans-

forms the data to exist within a common domain, which could be accounting for the

differences in scale observed in uncorrected spectra from samples of different thick-

ness. The importance of standardisation in these results is supported by the choice of

classifier, which is either logistic regression or LDA. Both of these models apply a lin-

ear operation to transform a spectrum into a new domain, generally by determining a
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set of co-efficients which minimises a loss function in model training. Standardisation

equalises the potential of the weight each wavenumber has in the model [142]. RF

models, on the other hand, evidently do not benefit from standardised variables as

they do not use linear transformations to make decisions, rather they make decisions

based on an ensemble of rules.
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FIGURE 6.10: Mean and median ROC curves over the 42 individual
splits (shown in paler colours) for low grade patients.

The mean, median and individual ROC curves are all shown in Fig. 6.14. The plots

show a marked improvement in both the variation and performance of the model

over the 42 patient pairings. The individual ROC curves also show that seven mod-

els (16.7%) have no classification skill, with some splits resulting in an AUC of much

less than 0.5, which indicates that test spectra are being labelled incorrectly more often

than not. In order to investigate the potential sources of the low scoring models, the

mislabelling rate for both groups of patients is shown in Fig. 6.11. Five out of six who

did go on to develop OSCC were incorrectly predicted in less than 30% of the models,

with one patient (12092) achieving a 100% success rate in transformation prediction.
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There is one patient who did not transform (12182) with very poor outcome predic-

tion accuracy, whilst three out of four of the non-transforming patients were correctly

predicted as such 100% of the time.

12
09

2

12
11

0

12
11

9

12
19

4

12
25

8

12
26

2

0

20

40

60

80

100

M
isl

ab
el

 R
at

e 
(%

)

(a)
T

12
09

0

12
18

2

12
22

0

12
22

1

12
22

6

12
33

4

12
36

6

0

20

40

60

80

100

M
isl

ab
el

 R
at

e 
(%

)

(b)
NT

FIGURE 6.11: (a) Mislabelling rates for each transforming (a) and non-
transforming (b) patient.

The overall sensitivity and specificity associated with the hard-voting and soft-voting

strategies are shown in Fig. 6.12. The results from either approach appear to be iden-

tical, which reiterates that the predictions made by each model have a high degree of

confidence. Based on these results, the likelihood of correctly predicting the outcome

of a patient with low-grade dysplasia as transforming is 80-81%, whilst the likelihood

of correctly predicting the outcome as non-transforming is 78-79%.

6.3.3 High Grade Patients Model

The final group of patients to be investigated were ones presenting with histopatho-

logically defined OED of moderate (G3) to severe (G5) severity. Similar to the low-

grade cohort, this sub-grouping was constructed to better control for the biochemical

variance attributed to different grades of dysplasia. The same PipeOpt configuration

was used to optimise the pipeline methods and HPs for predicting transformation of

spectra extracted from the lesion. There are 70 patients in the high grade cohort, 10 of

whom transformed to OSCC and 7 of whom had not. Using the same data splitting
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FIGURE 6.12: Number of times low-grade patients patients were
correctly labelled as either transforming (true positive) or non-

transforming (true negative) for both voting strategies.

strategy as in the other models would generate 10 · 7 = 70 combinations of T and NT

patients.

Figure 6.13 shows the various performance measures of each pipeline ranked by MCC

score. The general trend of the MCC trace is similar to Figs. 6.6 and 6.9, where there is a

small region of relatively high performing pipelines followed by a steep drop-off into

much more mediocre scores, before another steep drop off into pipelines with very

poor performance. This variance again emphasises the importance of optimising the

analytical pipeline, whilst also drawing attention to the fact that some combinations

are not suitable for analysis of this dataset, which will be discussed in section 6.4

Figure 6.13 again shows a marked improvement in performance compared to the

model which incorporated all patients regardless of OED grade. There is a slight drop
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FIGURE 6.13: Mean MCC (a), AUC (b), sensitivity (c) and specificity
(d) for pipelines (sorted in order of decreasing mean MCC). High grade

patients.

in scores relative to the low grade model, implying that with this cohort transforma-

tion prediction is generally easier in patients presenting less severe OED. Table 6.3

summarises the methods associated with each of the top 5 best pipelines.

The methods selected by PipeOpt show noticable differences to those selected by the

low grade model. Firstly, the best pipeline in the set does not apply a Mie correction

to the data as an initial step. On the other hand, the four remaining pipelines do

apply a Mie correction, which implies that a scatter correction may be important for

models which apply a logistic regression classifier to the data, but not LDA. The ROC

curves from the best pipeline for each pairing of patients is shown in Fig. 6.14. Again,
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TABLE 6.3: Top ranking pipelines for high grade dysplasia patients
model.

Mie Smooth Baseline Norm Scaling FE Classifier

No SG SG diff Vector N/A PCA LDA
Yes PCA SG diff Vector N/A PCA LR
Yes N/A RB Vector N/A PCA LR
Yes N/A RB N/A N/A PCA LR
Yes N/A RB Amide I N/A N/A LR

the individual ROC curves indicate that there is a lot of variation in the results when

holding out different sets of patients. The shape and position of the median curve does

indicate that the majority of trained classifiers can accurately predict the outcome of

spectra. 12/70 (17%) of the curves have an AUC of less than 0.5, indicating models

which have no skill in predicting the identity of data within the test set.
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FIGURE 6.14: Mean and median ROC curves over the 70 individual
splits (shown in paler colours) for high grade patients.

Figure 6.15 shows the fraction of instances a patient from either group was incorrectly
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labelled as the opposite outcome. Half of the transforming patients who were correctly

labelled 100% of the time, whilst only two of the patients were incorrectly labelled

over half of the time. This implies that the technique has some potential utility in

the transformation prediction of high risk lesions. Furthermore, all patients who did

not transform were correctly labelled as such over 50% of the time, emphasising that

this technique not only identifies patients with a propensity to transform, but can also

predict a negative outcome the majority of the time.
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FIGURE 6.15: Mislabelling rates for each transforming (a) and non-
transforming (b) patient.

The overall results for both hard and soft voting strategies for high grade patients

is shown in Fig. 6.16. Out of the 70 models, transformers were correctly labelled as

such 55 times (79%), whilst non-transformers were correctly labelled 53 times (77%),

demonstrating that this model can predict OED outcome with moderately good accu-

racy.

6.4 Discussion

The study described in this chapter aims to provide a contribution to the clinical

dilemma of accurately predicting the risk of OED lesions, which currently relies on

histopathological grading as the primary indicator. The results presented have shown

that there is potential predictive value attributed to vibrational spectroscopic data of

lesions that are processed and analysed in an appropriate manner. Caution has been
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FIGURE 6.16: Number of times high-grade patients patients were
correctly labelled as either transforming (true positive) or non-

transforming (true negative) for both voting strategies.

taken to emphasise that the significance of these findings is significantly hampered by

the fact that the patient cohort is far below the levels required to be recognised as a

feasible alternative methodology. However, it’s the author’s view that the results pre-

sented here are noteworthy, as they provide scope and focus for future related studies.

6.4.1 All Patients Model

The first model, described in section 6.3.1, draws stark attention to the difficulty in

using the proposed methodology to predict the outcome of any grade of dysplasia.

From Fig. 6.6 it is clear that the vast majority of pipelines trialled in PipeOpt have

no skill, indicated by a classifier with an MCC of ≤ 0, or an AUC of ≤ 0.5. It also

appears that applying no pre-processing to the data has a negative impact on results.

The optimum pipelines, summarised in table 6.1, indicate that random forest (RF)

perform better than LDA and LR for this particular dataset. Many of the ROC curves
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shown in Fig. 6.7 show sub-optimal performance, with the mean curve re-iterating

this interpretation. The unfamiliar shape of each ROC curve, characterised by sharp

edges rather than a smooth curve, is a result of both the non-linear decision boundary

formed by RF classifiers and the heterogeneous nature of the train and test data.

The sensitivity and specificity across every patient iteration, shown in Fig. 6.8, shows

that only poor-moderate skill can be expected when using this approach to predict ma-

lignant transformation. The sensitivity, which is not much larger than 50%, suggests

that this model will not be able to confidently rule out transformation if the patient has

been labelled as a ‘non-transformer’. This immediately raises concern with respect to

the credibility of using this test as an adjunctive test. If a patient’s outcome is predicted

as no malignant transformation, but ultimately does develop OSCC≈ 50% of the time,

then the test is unsuitable for clinical adoption and further considerations should be

taken to either expand the dataset or use a different approach. On the other hand, the

overall specificity (≈ 75%) does show a marked improvement relative to sensitivity.

This means that patients who are predicted to develop OSCC by the model are incor-

rectly predicted 1/4 of the time. This confidence in disease prediction has economic

benefit, as costs will be correctly allocated to follow up and treat the correct cases. Fur-

thermore, higher specificities will reduce the detrimental impact false negatives have

on patient wellbeing and mental health, due to the unnecessary anxiety induced by

positive result.

Despite the ethical and ecomonic importance of a highly specific test, there is an abun-

dance of tests with poor specificity that are already commonplace within the clinic,

especially in early diagnostics. For instance, 50-61% of women who undergo annual

mammography to screen for breast cancer can expect to have a false positive result

[172], [173]. Here, a false positive result is one which flagged a positive result but had

no positive gold-standard (histopathological) diagnosis after one year. False positives

in this context may lead to biopsy, which is an expensive and invasive procedure, caus-

ing unnecessary discomfort and anxiety. Prostate-specific antigen (PSA) tests, which

are screening tools for prostate cancer, also tend have a high false positive rate [174].

The threshold for a patient to be predicted as transforming can be altered to vary the

specificity or sensitivity of the test, based upon its desired outcome. Screening tests,
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such as mammography and PSA, are weighted towards high sensitivity so that a neg-

ative decision can be made with the degree of certainty required. Not following up a

positive patient may result in devastating human cost, such as severe injury or death.

Figure 6.17 shows the effect of varying the threshold in this cohort of patients. For

hard voting, the threshold is the fraction of T predictions to the total number of pre-

dictions, whilst for soft voting it’s the sum of p(T) across all folds. By default, and as

shown in Fig. 6.8, these are both set to 0.5. Decreasing the threshold should increase

the sensitivity, as the condition for being labelled as the positive class (transforming) is

artificially relaxed to include more patients. The opposite is true when the threshold is

increased, as the condition becomes a lot more stringent. This is reflected in Fig. 6.17,

where a threshold of 25% (a) leads to an increase in sensitivity and decrease in speci-

ficity for both voting regimes, whilst increasing the threshold to 75% in (c) leads to an

increase in specificity and decrease in sensitivity.
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FIGURE 6.17: Number of times patients were correctly labelled as ei-
ther transforming (true positive) or non-transforming (true negative)

for both voting strategies, shown for different thresholds.

Despite the enhanced sensitivity shown in (a), there is a marked drop in specificity,

which for soft voting decreases the score from 168/224 to 71/224 correctly predicted

healthy patients. Operating at this threshold, the test would capture a lot more pos-

itive cases, but with a specificity less than 50%, the majority of patients with good

outcomes will be unnecessarily followed up.

An interesting feature of Fig. 6.17 is that there is little change in the scores at differ-

ent thresholds when using hard voting as the ensemble mode. Soft voting, on the

other hand, yields the expected pattern (reducing the threshold reduces the number
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of true negatives, whilst increasing the number of true positives, and vice-versa for

increasing the threshold). The nuances of how each protocol works can explain this.

Hard voting will treat every classification with the same weight, regardless of how

‘confident’ the classification is. This can lead to cases where barely confident wrong

spectrum-wise classifications can outweigh highly confident spectrum-wise classifi-

cations, which will in turn lead to an overall incorrect lesion classification. By imple-

menting a soft-voting regime, the relative certainty of a classification is accounted for,

which will provide higher weight to the spectra with high confidence.

6.4.2 Low Grade Patients Model

Stratifying the patients according to the severity of OED has a positive impact for both

low and high grade patients. For low grade patients, the mean sensitivity over the 42

independent patient splits is ≈ 81%, a significant increase from the 56% observed

using the entire cohort. The specificity also increases from 75% to 79%, showing a

more incremental increase in the models’ ability to correctly identify a patient who

will not transform. Figure 6.9 shows that pipelines can achieve an AUC > 0.8 or MCC

> 0.5, depending on the sequence of pre-processing methods applied to the data and

classifier used. The top 5 pipelines, shown in table 6.2, apply similar methods to the

data, suggesting that optimal performance can only be achieved with a small range

of pipelines. All pipelines fist apply a Mie correction to the raw data, differentiate the

spectra, and use a linear technique (LR or LDA) to discriminate between the two out-

comes. Since the pipeline is optimised for each of the patient splits, each trained model

has a unique optimised hyperparameter vector. Figure 6.18 contains histograms for

the optimal value for each of the hyperparameters in the best pipeline from table 6.2.

There appears to be an almost unanimous decision on each of the HPs, except for the

smoothing window, which influences to what extent each spectrum is smoothed. A

high regularisation strength of 100 would suggest that the logistic regression model

performs better on hold-out data when the model is better regularised, which reduces

overfitting to the training data. This is a logical finding, as the small training set and

patient variability means that that overfitting may lead to features unique to certain
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FIGURE 6.18: Number of times high-grade patients patients were
correctly labelled as either transforming (true positive) or non-
transforming (true negative) for both voting strategies, shown for dif-

ferent thresholds.

patients, therefore do not generalise well when tested on hold-out data from new pa-

tients. The choice of smoothing window length - an odd number where higher num-

bers indicate a higher level of smoothing - seems to be more evenly distributed. In-

triguingly, the window lengths with the most occurrences are 5 and 15, implying that

some models favour less smoothing, whilst others favour more, which again may re-

flect the inhomogeneity of the sample set, with patient images containing spectra with

different signal-to-noise ratio. It appears that this step accounts for much of the sam-

ple inhomogeneity, manifest in the much sharper distributions seen for the other HPs.

The spectra are differentiated to first order in 41/42 of the models, strongly indicating

that this is the best approach for this particular dataset.

There is a notable difference between the median and mean ROC curves for each of the

patient splits using the top pipeline (Fig. 6.14), which suggests that the distribution of

ROC curves is skewed towards the top left corner of the plot, which represent skilful

models. The position of the median curve also indicates that > 50% of the indepen-

dent models have very good skill, whereas the performance is much more varied for
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the lower half of models. Figure 6.11 suggests that the poor performance associated

with some models can be attributed to the presence of a particular patient in the test

set. For instance, patient 12092 from the transformation group was never incorrectly

predicted as non-transforming, whilst three other transforming patients were incor-

rectly predicted in ≈ 30% of the models in which they formed part of the test set.

On the other hand, one non-transforming patient (12182) was incorrectly predicted

as transforming in the majority of models, with three patients enjoying 100% success

rates.

To further investigate potential sources of patient mislabelling, the spatial arrange-

ment of spectral predictions for a sample can be shown. An image from each outcome

group were selected for poorest performance (T: 12194; NT: 12182) as a demonstra-

tion. Each non-transforming patient in the cohort appears in 10 models (paired with 6

transformers), whilst each transformer is paired with 7 non-transformers.

FIGURE 6.19: The spatial arrangement of test spectra super-imposed on
the absorbance map at 1650 cm−1, for each of the models where 12194
(T) appears in test set, of which there are 7 (a-g). The color encodes
the transformation probability for each spectrum. Hard and soft voting
probabilities are also shown to inform the patient outcome decision.

Scale bar in (a) = 200 µm.

The sample shown in Fig. 6.19 was incorrectly predicted as non-transforming twice
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(b, g) out of the seven iterations it appeared as part of test set. For the two iterations

in which the lesion was predicted incorrectly, the associated probabilities of transfor-

mation p(T) were borderline relative to the 50% threshold, whereas iterations where

the lesion was predicted as transforming had a much higher confidence. This is sup-

ported by the presence of a well defined region in each image where there may exist

spectra being labelled as non-transforming. This is marked clearly in the correspond-

ing histology image shown in Fig. 6.19, where regions with a low p(T) are marked

with a white arrow.

FIGURE 6.20: H&E stained sample of ROI shown in Fig. 6.19. White
arrows are pointing the basal layer of the epithelium, which contains

regions found confusing by the model.

The arrow on the right of Fig. 6.20 points to a region which appears to present subtle

changes in morphology with respect to the rest of the basal layer, especially in terms of

the shape and density of nuclei. Since FTIR spectra reflect the relative concentrations

of various moieties (such as DNA, glycogen, proteins), it would not be surprising if

these changes are manifesting as subtle shifts in absorption at certain wavenumbers,

which would in turn adjust the probability of transformation depending on the model

parameters for that particular iteration.

Various factors may be contributing to the apparent mislabelling in some of the mod-

els. Given that the number of patients within the training set is small, each patient has

a significant influence on the respective model, so it is not surprising that the scores

are so dependent on the patient train-test split.
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A possible explanation for the specific clusters of high transformation potential in

some of the images is that dysplastic cells in these regions of the epithelium may gen-

uinely be undergoing different biochemical alterations, resulting in spectral changes,

than cells located in the low transformation probability areas. Genetic and epigenetic

mutations may not be uniform throughout the macroscopic vicinity of the lesion. In

future studies, imposing stricter inclusion criteria on the size and features of the la-

belled area may lead to a lower variance in results.

Figure 6.21 shows the spatial arrangement of predictions for the lowest scorer in the

NT outcome group (12182) which, as shown in Fig. 6.11, has a mislabelling rate greater

than 60%. Apart from the model predictions shown in Fig. 6.21a, the mislabellings

consistently occur in the same region of the image. This can be compared with the

corresponding H&E image (Fig. 6.22).

FIGURE 6.21: The spatial arrangement of test spectra super-imposed on
the absorbance map at 1650 cm−1, for each of the models where 12182
(T) appears in test set, of which there are 6 (a-f). The color encodes
the transformation probability for each spectrum. Hard and soft voting

probabilities are also shown to inform the patient outcome decision.

Inspection of the H&E image shown in Fig. 6.22 does reveal that sub-optimal image

registration may be the source of the relatively poor scores for this particular lesion.
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FIGURE 6.22: H&E stained sample of ROI shown in Fig. 6.21. The white
arrows are pointing toward the rete ridges of the basal layer, which

contains regions which the model finds confusing.

There are artefacts in the FTIR images shown in Fig. 6.21 which are not present in

Fig. 6.22, making it difficult to precisely compare the two images. However, the mis-

labelling region appears to roughly coincide with the edges of the rete ridge shaped

features (marked by white arrows). Morphologically, the cells that line the edge of

the rete ridges appear to be similar with those that form the main epithelial-stroma

interface, however the edges may be somewhat ill-defined as a result of the spatial

resolution. Specific labelling is more difficult when there is a lack of a sharp interface

between dissimilar substrates (such as epithelia to stroma, or tissue to blank slide).

The threshold used to predict malignancy in a lesion can be varied as in Fig. 6.17 to

artificially decrease or increase the sensitivity and specificity. Given that lower grade

lesions will not be as closely followed up as those with higher grades, there should

be more emphasis placed on ruling out low grade lesions with a low propensity to

transform, so that these patients can either be excluded from follow-up, or assigned

a lower priority and managed as such. This will not only improve patient experience

but streamline the clinical workflow, which has the potential to impact positively both

economically and indirectly to other aspects of healthcare. As such, the transformation

potential should be set low (25% in Fig. 6.23).

Alternatively, a ‘rule in’ test may be instead desired, where low-grade lesions with a
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high propensity to transform are risk stratified into the high risk groups, which often

leads to excision/ablation of the lesion [175]. Rule in tests require a high specificity,

consequently the threshold for transformation prediction should be set high. In this

case, a threshold of 75% would lead to only two false positives.
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FIGURE 6.23: Number of times low grade patients were correctly la-
belled as either transforming (true positive) or non-transforming (true

negative) for both voting strategies, shown for different thresholds.

6.4.3 High Grade Patients Model

Similar to the low grade patients, prediction of outcome for high grade patients has

marked increase of sensitivity (57% to 79%) and marginal increase in specificity (75

to 77%) when compared with the baseline model incorporating all the samples. Fig-

ure 6.13 shows that similarly high scores to the low grade model can be achieved by

carefully choosing an optimal sequence of pre-processing and classification steps to

apply to the dataset. Table 6.3 goes further to highlight that an objective optimisation

tailored to a particular dataset is important, given that the pipelines with the highest

MCC score are different to the models described in sections 6.3.1 and 6.3.2.

Of particular note is the fact that, in contrast to the low grade model, each of the top

five pipelines summarised in table 6.3 applies normalisation rather than scaling. This

represents a return to the widespread consensus that normalisation of FTIR spectra

is necessary to mitigate for those unwanted physical distortions to the absorbance

of each spectrum. The position of the ‘baseline’ pipeline (marked with a red circle

in Fig. 6.13a) indicates that the marked drop-off in both MCC and AUC results from

pipelines with steps that are not compatible with each other, inferred from the fact that
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no pre-processing has less of a detrimental impact on performance. Table 6.4 shows

the 5 pipelines with the poorest MCC in the high grade model.

TABLE 6.4: Worst pipelines for high grade dysplasia patients model.

Mie Smooth Baseline Norm Scaling FE Classifier

Yes PCA SG diff - Standard PCA LR
Yes PCA RB - Standard PCA LR
Yes PCA RB - Min-

Max
PCA LR

No PCA RB - Standard - LR
Yes PCA SG diff - Standard - LR

Table 6.4 reinforces that normalisation is crucial to this subset of the data, given that

the five worst performers all bypass the normalisation step. A PCA denoising step

is also present in each of the worst pipelines, implying that usage of this method is

not suitable, especially when normalisation is bypassed. Interestingly, there are strik-

ing simililarities between the worst performing high grade pipelines shown here and

the best low grade pipelines shown in table 6.2, which further reiterates the impor-

tance of optimisation for a given dataset. The significance of normalisation in the

high grade subset may be a result of the greater number of patients (n=17), as well as

the wider histopathological variance across the dataset, with three dysplasia severity

groups (G3, G4, G5) as opposed to the two in the low grade model (G1, G2).

Visualisation of predicted transformation potential on different samples can be at-

tained by plotting the pixel-wise scores and comparing with the corresponding H&E

image. Figure 6.24 shows the spatial arrangement of predictions for a low scorer in

the NT outcome group (12329), which has a mislabelling rate of ≈ 40%. Figure 6.25 is

the corresponding H&E image of the depicted region.

Figure 6.24 does not appear to indicate any ‘borderline’ regions that lead to the out-

come prediction changing for the lesion, unlike what was seen in Fig. 6.19. With the

exception of perhaps Fig. 6.24d, the probability of transformation is rather uniform

across each lesion, which implies that, for this lesion, prediction of transformation is

difficult. This may be due to the fact that severity of dysplasia may be one of the

factors that each model intrinsically accounts for, and given that the lesion shown in
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FIGURE 6.24: The spatial arrangement of test spectra super-imposed on
the absorbance map at 1650 cm−1, for each of the models where 12329
(NT) appears in test set, of which there are 10 (a-j). The color encodes
the transformation probability for each spectrum. Hard and soft voting
probabilities are also shown to inform the patient outcome decision.

Scale bar in (a) = 200 µm.
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FIGURE 6.25: H&E stained sample of ROI shown in Fig. 6.24

Fig. 6.25 contains moderately dysplastic cells, this may lead to the apparent ambiguity

in transformation potential.

A similarly poor scoring lesion in the T outcome group is 12127, which also has a

mislabelling rate of ≈ 40%. Pixel-wise probabilities are shown below (Fig. 6.26) for

visualisation. A corresponding photograph of the H&E stained sample is shown in

Fig. 6.27.

For cases where the lesion has been incorrectly predicted as non-transforming, there

appears to be distinct regions close to the basal layer which are dominated by spec-

tra with low transformation probability. It may be hypothesised that these particular

areas do not contain dysplastic cells which harbour a high transformation potential,

especially given the heterogeneous nature of histology specimens.

The malignancy threshold can be varied (as in Figs. 6.17 and 6.23) in order to alter the

sensitivity and specificity of the test. Considering the current management strategy of

moderate and severe OED is excision/ablation [175], a more optimised protocol which

was able to precisely identify negative cases is desirable. This means that the number
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FIGURE 6.26: The spatial arrangement of test spectra super-imposed
on the absorbance map at 1650 cm1, for each of the models where 12127
(T) appears in test set, of which there are 7 (a-g). The colour encodes
the transformation probability for each spectrum. Hard and soft voting
probabilities are also shown to inform the patient outcome decision.

Scale bar in (a) = 200 µm

of false negatives must be very low, requiring a test with high sensitivity. With such

a test, patients who definitely do not require excision can be optimally stratified as

such, rather than undergoing unnecessary and potentially harmful procedures such

as surgical excision.

Setting the threshold low (25%) for this leads to a scenario where the number of times

transforming lesions are predicted as non-transforming (false negatives) is low (2/70).

This form of test would be ideal for this particular case, where it’s envisaged that this
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FIGURE 6.27: H&E stained sample of ROI shown in Fig. 6.26

True Positives True Negatives
0

10

20

30

40

50

60

70

N

Transformation threshold = 25%(a)
Hard
Soft

True Positives True Negatives
0

10

20

30

40

50

60

70
Transformation threshold = 50%(b)

Hard
Soft

True Positives True Negatives
0

10

20

30

40

50

60

70
Transformation threshold = 75%(c)

Hard
Soft

FIGURE 6.28: Number of times patients were correctly labelled as ei-
ther transforming (true positive) or non-transforming (true negative)

for both voting strategies, shown for different thresholds.

tool would be deployed as a ‘rule out’ test. Lesions which score less than the chosen

threshold would be stratified into a lower risk group, which requires less rigorous and

invasive follow-up. In addition to the obvious benefit this would bring on a patient
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level, the economic benefit of confidently and automatically ruling out patients pre-

senting with a high grade lesion would be significant, given that the current diagnostic

pipeline is time consuming, stress inducing and expensive. More considerations for

the future landscape of machine learning in healthcare are discussed in chapter 7.

6.4.4 Spectral Biomarker Analysis

The well performing classifiers (LDA, logistic regression) deployed in this analysis

share common characteristics. The main one is that they are statistical methods which

seek to express a categorical variable (in this case, malignant transformation) in terms

of a set of continuous variables (IR absorbance at each wavenumber). This encourages

reasonable interpretation of the parameters emerging from fitted models, as they en-

code the importance each wavenumber contributes to a discriminating model, which

in turn permits careful discussion of the spectral biomarkers associated with malig-

nant transformation.

Trained logistic regression models have a coefficient vector and bias term which trans-

forms each spectrum into a single number, which is subsequently used as the argu-

ment in a sigmoid function (Eq. (3.24)) to estimate class membership probabilities. As

an example, Fig. 6.30a outlines the models decision boundaries for one of the patient

splits in the low-grade analysis, for which the ROC curve is shown in Fig. 6.30b. The

model is used to predict the identity of each test spectrum, which have been marked in

Fig. 6.30a as either green or red dots, indicating the correct labelling of NT or T spectra

respectively. Spectra which have been incorrectly labelled by the model are marked

with a black cross.

The weight attributed to each wavenumber variable in the model can be probed as

a measure of importance. However, there is a PCA step which precedes logistic re-

gression (PCA-LR) in the top performing pipeline. The weights in the classifier model

(WLR) are therefore in the principal component domain, rather than the wavenumber

domain, thus they should be transformed using the weight vector of the PCA model

(WPCA) using Eq. (6.4):

Wc = WPCA ·WLR. (6.4)



Chapter 6. Dysplasia Transformation Analysis 181

60 40 20 0 20 40 60
x

NT

T

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Pipeline (AUC = 0.96)0.0

0.2

0.4

0.6

0.8

1.0

P(
x)

FIGURE 6.29: (a) Data points (spectra) transformed into predictions by
the trained sigmoid function (see Eq. (3.24)) for one of the train-test
splits. Those with a sigmoid output of > 0 are predicted as the positive

class. (b) The ROC curve for the transformed points shown in (a).

FIGURE 6.30: (a) Logistic regression model for a single train-test split,
for which the ROC curve is shown in (b)

The combined weight vector for the same model as shown previously (Fig. 6.30) is

shown in Fig. 6.31. The magnitude of the weight reflects the importance of the vari-

able in the model, where positive weights indicate that relative increases in the pre-

processed signal lead to an increase in the sigmoid argument, which in turn raises the

probability of the spectrum being labelled as transforming. The opposite is true for

negative weights. However, since the input to the PCA-LR is a pre-processed dataset

which has been smoothed, differentiated and standardised, the weights can not be

directly attributed to relative changes in absorbance. Instead, the weight should be

interpreted as the importance attributed to changes in gradient at points across the

spectrum. In the instance shown in Fig. 6.31, the wavenumber with the highest weight

is at about 1650 cm−1, which is the centre of the amide I peak, with a weight of ≈ −2.

This implies that relative decreases in the gradient at 1650 cm−1 leads to a higher

probability of transformation.

Next, the important features for the best high-grade pipeline (table 6.3 can be investi-

gated. Trained PCA-LDA classifiers have two sets of model parameters, in the form
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FIGURE 6.31: Combined weight plot for PCA-LR model for low-grade
patients.

of linear transformation matrices, also known as weights (W), through which the pre-

processed spectra are propagated. The linear discriminant vectors therefore exist in

the domain of the principal components, therefore to extract feature importance the

two matrices should be multiplied together (Eq. (6.5)) like for the PCA-LR classifier

described in Eq. (6.4).

Wc = WPCA ·WLDA (6.5)

Figure 6.32 shows both the decision boundary and the feature importance for an LDA

model fit to a partition of the data.

Both Fig. 6.15 and Fig. 6.11 emphasise that prediction of malignant transformation

in FTIR spectra from OED lesions is intrinsically complex and requires a pragmatic,

multivariate approach in order to acquire reasonable scores. The weight plots for both

grades are similar to some extent, with significant importance attributed to wavenum-

bers within both the amide I (1600 - 1700 cm−1) and amide II (1500 - 1600 cm−1) for

both models. Less importance is attributed to lower wavenumbers in the low-grade

model than the high-grade model, where there are prominent peaks at both 1030 cm−1

and 1252 cm−1, which are characteristically absorbed by glycogen and nucleic acids re-

spectively. Furthermore, more importance is attributed to the spectral region beyond

amide I, ranging from 1700 - 1800 cm−1, which can be attributed to the stretching

vibrations of C=O bonds in lipids.
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FIGURE 6.32: Decision boundary (top) and combined weight plot for
PCA-LCA model (bottom) for high-grade patients. The stars delineate
the wavenumbers with the highest weight amplitude, listed in table 6.5

The extent of pre-processing necessary to acquire reasonable results leads to a com-

promise in model interpretability, given that the classifiers are constructed on the ba-

sis of spectra which have been transformed to different domains that may no longer

directly reflect the underlying biochemistry. For example, changes in intensities of a

first derivative spectrum indicate that the gradient of an absorbance peak is different,

rather than the absorbance itself. Furthermore, the convoluted nature of IR absorbance

peaks leads to ambiguities in their origin. For instance, the amide I peak represents

protein content, but there are multiple underlying absorbances resulting from from
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differently structured proteins which contribute towards the convolution [176]. It is

therefore important that careful biochemical interpretation is made on a high level,

rather than forensically examining the importance attributed to each potential spec-

tral biomarker. The six peaks with the largest magnitude on the high grade feature

plot (Fig. 6.32) have been marked with a star and tabulated in table 6.5.

TABLE 6.5: Important wavenumbers for outcome prediction

Rank Wavenumber (cm−1) Biomarker

1 1678 Amide I
2 1574 Amide II
3 1628 Amide I
4 1653 Amide I
5 1020 Glycogen
6 1242 Nucleic Acids

It is clear that a lot of discriminatory power is derived from wavenumbers in the amide

regions of the spectrum, which indicates that protein content and expression plays an

important role in malignant transformation. Protein phosphorylation is a process by

which a molecule of ATP donates a phosphate group to an amino acid residue, catal-

ysed by a protein kinase. Phosphorylation and dephosphorylation play an important

role in the regulation of cell signalling pathways, acting as molecular switches, facili-

tating protein-protein interaction or translocating target proteins to different parts of

the cell. Inappropriate activity of protein kinases may lead to the dysregulation of sig-

nalling pathways and malignant transformation may occur [177]. Overexpression of

tyrosine phosphorylated epidermal-growth-factor-receptor (EGFR) is associated with

an enhanced risk of malignant transformation in PPOELs [178]. Since protein phos-

phorylation manifests in structural changes, the subtle relative shifts in the amide

regions may be the result of transforming lesions exhibiting increased expression of

EGFR.

In advanced stages of OSCC transformation, epithelial cells migrate from the strati-

fied epithelium and infiltrate surrounding tissue. Adhesion between normal cells is

predominantly maintained by E-cadherin, a transmembrane glycoprotein. The abun-

dance of E-cadherin can be regarded as a tumour-suppressor gene due to it’s role in

the negative regulation of cell proliferation [179]. A recent study concluded that the
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loss of E-cadherin can be utilised as a marker for increased susceptibility for oral can-

cer progression from oral leukoplakia [180]. Changes in the relative concentration of

E-cadherin, which has a complex secondary structure, will lead to subtle shifts in the

constituent bands that contribute to the convoluted amide bands.

The importance at 1020 cm−1 indicates that glycogen plays an important role in pre-

dicting malignant transformation in high-grade lesions. The abundance of glycogen

has been shown to deplete in pre-malignant tissue as a result of the increased prolif-

eration of abnormal cells, which require more energy than tissue in a less proliferative

state [181]. It is plausible that the lesions in this dataset which did eventually trans-

form were in a proliferative state, especially those of a higher histopathological grade.

The importance of the spectral region attributed to nucleic acids (1242 cm−1) is also

interesting. DNA aneuploidy refers to the case where there are an abnormal number

of chromosomes in a givne cell, and is a known event in oral carcinogenesis [168]. A

plausible hypothesis is that lesions with higher propensity to transform may be part

characterised by this mechanism, leading to the changes in this region of the spectrum.

The decision not to use the metric analysis (MA) method described in section 3.3.2 is

due to a number of reasons. Principally, the method is not suitable for the PipeOpt

framework, given that it is written in a different language and application program-

ming interface (API). The brute force nature of MA, which trials every pair of wavenum-

bers in a defined spectral domain, also retracts from it’s utility in this study, given that

the LOPOCV method depicted in Fig. 6.5 generates from 42 to 224 independent data

partitions depending on the cohort. The parallel processing framework (HTCondor)

has access to a finite number of processors, so utilisation of an expensive algorithm

would impose a computational bottleneck on the analysis.

6.5 Conclusion

In this chapter, FTIR-MS of tissue harbouring OED has been used in conjunction with

an objective and and pragmatic analytical pipeline, described in chapter 5, to build

classification models which can predict malignant transformation. Despite promising

results, it is important to note that the size of the dataset is limited, which limits the
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impact. Nevertheless, it is the author’s opinion that this work is significant as it in-

dicates feasibility of the approach, which will hopefully lead to more a more robust

analysis on wider cohorts of patients.

In addition to demonstrating a promising tool in the scope of oral cancer prediction,

it was also shown that the method can provide intelligible reasoning in terms of what

spectral features (and hence, biochemical moieties) drive discrimination between high

and low risk lesions. The characteristic wavenumbers from this study find origin in

biomolecules such as proteins, nucleic acids and glygogen, which are generally under-

stood as major components in malignant transformation. The next chapter will focus

on critically discussing the impact and limitations of this thesis.
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Chapter 7

Future and Outlook

It is the author’s belief that there is novelty in the work undertaken in this thesis.

Chapter 4, the first experimental chapter, described a series of experiments where two

techniques, Fourier transform infrared (FTIR) imaging and infrared scanning near-

field optical microscopy (IR-SNOM) were exploited to gain further insight into pri-

mary and metastatic oral cancer tissue. The first study utilised a novel classifica-

tion algorithm, ‘metric analysis’ (MA), to discriminate amongst several histopatho-

logically defined classes. The results showed that, for the first time, the method is

robust to semantically label hyperspectral data that can be directly cross-referenced

with histopathological images.

The remaining two experiments in the chapter involved investigating the use of MA

and FTIR as a means to inform the configuration of IR-SNOM experiments. IR-SNOM

is a discrete-frequency infrared (DF-IR) technique, where the planning and data ac-

quisition time scale is significant in comparison to FTIR. The results show that the

techniques can give deep and complementary insight into the chemical processes in-

volved with oral cancer metastasis, such as the concentration and spatial arrangement

of collage, and increased protein production in the advancing front of a metastatic

tumour.

Chapter 5 describes the concept, design and construction of a novel framework, PipeOpt,

which is able to efficiently and thoroughly search for the best protocol to pre-process

and classify labelled spectral data. Despite the generally accepted notion that this

process should be optimised objectively, in reality this approach is unfortunately not



Chapter 7. Future and Outlook 188

widespread. Furthermore, the data and labels will have a heavy influence on the opti-

mal solution. For these reasons, it is recommended that researchers in the field adopt

this approach, or something similar. The unification of methodological approaches

and a departure from subjective decisions made on intuitive bases will, in the author’s

opinion, only serve to advance research as scientists can collaborate and communicate

far more effectively.

Chapter 6 describes the investigation into the feasibility of using IR techniques to pre-

dict malignancy in patients with histopathologically diagnosed oral epithelial dys-

plasia, which is the most common precursor to frank oral squamous cell carcinoma

(OSCC). The work aimed to address some of the issues surrounding oral pre-malignant

disorders (OPMDs), such as inter and intra-observer disagreement, subjective and

ambiguous gold-standard diagnosis and high costs. The experiments leveraged the

framework described in chapter 5 in order to maximise the performance of the pre-

dictive model. To the author’s knowledge, this was the first case of using FTIR-MS

to directly predict malignant transformation of OED. One of the key strengths of this

study is the use of hard, certain labels (malignant progression within a well defined

time-frame), rather than those based on a subjective diagnosis. Through a robust sta-

tistical analysis, the study demonstrated that the approach has potential utility, but

aspects such as clinical implementation (rule-in/rule-out) must be considered.

One confounding factor within the work contained in this thesis is the cost of ob-

taining high quality data. Despite the advances of FTIR technology over the last few

decades, acquiring hyperspectral images of excised human tissue is very expensive, in

terms of both labour and capital. Aside from the specialised, multi-staged process of

tissue extraction, storage and sample preparation, state of the art FTIR microscopes are

costly and in high demand, often meaning that extended periods of experiments are

infeasible. This is one of the main reasons as to why FTIR imaging data is scarce, espe-

cially in the public domain. Data is the most important resource for the construction

of reliable, robust and valid models, and without an abundance of good quality data,

it is impossible to definitively assess the efficacy of a technique. The author is entirely

aware of these issues, and therefore the described work should act as intermediate,

proof-of-concept studies which may aid to pave the way for future large scale studies.



Chapter 7. Future and Outlook 189

In the following sections, various ways in which these limitations can be addressed

are considered.

7.1 Multi-Centre Studies

A multi-centre study is carried out in multiple different locations, by different re-

searchers on different subjects. Their importance in the context of medical trials can-

not be understated, and the benefits are abundant [182]. One major advantage is the

increased number of participants, as the public reach will scale with the number of

centres participating in the study. A consequence of both the increase in quantity and

reach of patients is the introduction of a more biologically diverse and representative

population. Furthermore, it is essential to perform external validation of a model us-

ing data from a separate population, in order to assess generalisability [183]. However,

design and conduction of multi-centre trials requires a plurality of logistical and sci-

entific expertise, and therefore, resources. It is thus imperative that planning of wider

scale studies should be backed by smaller studies, such as the ones contained in this

work, rather than wasting time and money.

As discussed in chapter 5, and in [77], one of the major obstacles in realising the po-

tential of infrared imaging is the striking diversity between methodologies. Without

unification, multi-centre studies would be incomparable due to the intrinsic influence

sample preparation, instrumental configuration and data analysis imposes on results.

It is of the author’s view that the work contained within chapter 5 has the potential

to contribute towards overcoming this barrier. Comparing objectively optimised re-

sults across studies would lead to more robust discussion and consideration into the

feasibility of the research.

7.2 Different Sample Domain

Another consideration for the future would be the type of sample used to acquire data.

In this work, thin tissue (histopathological) sections obtained from excised tissue was

used. There were numerous reasons to utilising this sample domain, one of which was

the availability of oral cancer tissue specimens from the the University of Liverpool
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biobanking facility. Another was that the apparent morphological structures within

an infrared image of tissue enabled easy spatial co-registration with a histopatholog-

ical image, offering clarity in terms of the semantics within the data. Experiments

in Chapters 4 and 6 extract labelled spectra under the guidance of histopathological

labelling, which wouldn’t be possible using a different sample domain.

On the other hand, there are drawbacks to this approach. Firstly, acquiring a large

image of tissue (> 1 mm) takes at least 15 minutes, a factor which does not scale well

for a large number of samples. Furthermore, a small minority of the imaged region

is actually extracted for analysis. Tissue microarrays (TMAs) are closely arranged

small (diameter≈ 1 mm) tissue extracts which offer an efficient alternative to imaging

multiple sections. Future experiments should incorporate the use of TMAs to increase

the throughput of data acquisition.

Another option would be to change to sample medium entirely. Liquid biopsies,

which are samples of biological fluid (usually blood serum), offer an alternative ap-

proach to conventional surgical biopsies. Compared with their surgical counterpart,

liquid biopsies are non-invasive, homogeneous, and easy to obtain, making them ideal

for early diagnostic and screening. In the context of FTIR spectroscopy, liquid biopsies

remove the requirement for imaging, due to the presence of a homogeneous medium

with a known chemical composition and concentration. A recent systematic review

by Anderson et al [184] summarises that vibrational spectroscopy for clinical cancer

diagnosis shows high potential, but argues that standardised and uniform reporting

of results is paramount, in addition to increasing patient numbers and performing

external validation, if its clinical value is to be realised.

7.3 Deep Learning

The supervised classification algorithms applied in this work, such as metric analysis

(MA), logistic regression (LR) and linear discriminant analysis (LDA), are fundamen-

tally simple compared with other methods in machine learning. Metric analysis is an

ensemble of bivariate classifiers, with a total of 2n parameters (the mean and standard

deviation of each metric ratio in the ensemble). Metric analysis is limited by the prior
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assumption that the variables are normally distributed, which is one of the key rea-

son why it was not applied for the analysis of the more heterogeneous data. LR and

LDA are based on determining a set of parameters to incorporated into a linear model

which can discriminate between given classes. This constrains the model to learn sim-

ple, linear relationships between a small number of features, which is sub-optimal for

problems where there may be more nuanced and complex relationships in the data.

Deep learning is a subset of machine learning algorithms which aim to progressively

learn features which characterise data [185]. It does this by passing the data through

non-linear operations in successive layers, where each layer would extract higher level

features than the previous. The design of these algorithms are generally based around

artificial neural networks (ANNs), a revolutionary concept inspired by the processes

underpinning biological neurological processes.

One major advantage of using neural networks is that they are robust enough to dis-

criminate data with very complex decision boundaries. This is because there are typ-

ically millions of trainable parameters within the network, each representing a con-

nection between two features in consecutive layers. The necessity for abundant and

diverse data is even more potent for deep learning than for shallower methods, given

that the high number of parameters increases susceptibility to overfitting, which leads

to poor generalisation accuracy.

Computer vision (CV) is a very active branch of research which merges principles

from deep learning and image analysis to emulate processes in the human visual cor-

tex, in order to infer from visual inputs [186]. At the heart of CV are convolutional

neural networks (CNNs), which learn the coarse and fine spatial features which char-

acterise imagery. In addition to classification, the versatility of CNNs allow adaptation

to other tasks, such as object detection [187] and segmentation [188]. Object detection

aims to identify a localised region of interest from a much larger field of view, whilst

the purpose of segmentation architectures is to semantically label pixels in an image.

Assuming an abundance of multi-centre, multi-modal data, future studies should

make use of these CV architectures to maximise performance and efficiency. An end-

to-end, multi-task approach should be adopted, utilising different CV architectures
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to localise dysplasia and predict outcome. This may take the form of an object de-

tection framework which extracts a crop of dysplastic tissue from an hyperspectral

image. This can be followed by a classifier which predicts outcome based on informa-

tion in the entire image. This holistic approach to classification using deep learning is

one of the key advantages compared with using the more supervised methods in this

thesis, rather than specifically labelling the data to pipe into the ML model, the CV

model is able to take into consideration the spatial information, and peripheral fea-

tures. Furthermore, specifically labelled dysplastic regions will no longer be required,

rather just regions of interest to train the object detector, and transformation labels for

dysplastic images to train the classifier. This will remove the significant overhead of

histopathological segmentation and pixel level labelling.

The future of cancer care and management is reliant on the emergence of state of the

art technology, a passionate workforce, and cutting edge research. Research efforts

must focus on early diagnostics as population growth and resource scarcity stretch

healthcare services worldwide. The future is bright, but the adoption of automated

techniques into diagnostics requires collaboration and compromise.
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