Department of Physics Year 1 Tutorials Module Phys123 Electricity and Magnetism **Tutorial 5**

Issued Hand in to tutors Tutorials Thursday 2nd December Wednesday 8th December 16:00 Friday 10th December

See the Year 1 Notice Board for tutorial groups, tutors, locations and times of tutorials.

Problems

- 1. An alternating current with an amplitude of 5 A is flowing through a 10 Ω resistor. What power is dissipated in the resistor?
- 2. An alternating voltage with an amplitude of 30 V and a frequency of 1 kHz is applied in turn across: a) a 50 Ω resistor; b) a 250 mH inductor; and c) a 1.5 μ F capacitor. What is the amplitude of the resulting current in each case? What is the power dissipated in each case?
- 3. The figure below shows the applied voltage \mathcal{E} (solid line) and the current i (dashed line) for a series LCR circuit.
 - a. Does the current lead or lag the applied voltage?
 - b. Is the circuit acting mainly inductively or mainly capacitively?
 - c. Is the frequency of the applied voltage greater or less than the resonant frequency of the circuit?

- 4. A series circuit consists of a capacitor C = 1 nF, an inductor $L = 10 \mu$ H, a resistor $R = 10 \Omega$ and a variable frequency power supply having a voltage amplitude of 10 V and zero internal resistance. Initially, the angular frequency is set to $\omega_d = 2 \times 10^6$ rad sec⁻¹.
 - a. Calculate values for the reactances of both the capacitor and the inductor.
 - b. Calculate the phase angle by which the current leads the voltage.
 - c. Calculate the magnitude of the impedance of the circuit.
 - d. The frequency of the power supply is now varied. Sketch a graph of the current amplitude I against the angular frequency ω_d . At what value of the angular frequency will the current amplitude be a maximum and what is the value of that maximum current amplitude?