Lecture 21

- In this lecture we will look at:
- Power and resonance.
- The quality factor of a circuit.
- Describing AC circuits using complex numbers.
- After this lecture, you should be able to answer the following questions:
- Describe how the power dissipated in a series LCR circuit varies with the frequency of the signal driving the circuit.
- How is the Q value of a circuit related to the width of the peak in the power spectrum at resonance?
- How would you ensure that a series LCR circuit had a large Q value?

Power and Resonance

- Average power maximum when $\cos \phi=1$, i.e. $\phi=0$, the resonance condition.
- Look at power as function of frequency:

Angular frequency

- Full width (of peak at) half maximum (power) FWHM $=2 \Delta \omega$.
- Define the quality factor (the sharpness of the resonance):

$$
\begin{equation*}
\mathrm{Q}=\frac{\omega}{2 \Delta \omega} \tag{21.1}
\end{equation*}
$$

- Now:

$$
\begin{aligned}
& P_{\mathrm{rms}}=I_{\mathrm{rms}}{ }^{2} R=\frac{\mathcal{E}_{\mathrm{rms}}{ }^{2} \mathrm{R}}{\mathrm{R}^{2}+\left(\omega_{\mathrm{d}} \mathrm{~L}-1 / \omega_{\mathrm{d}} \mathrm{C}\right)^{2}} \\
& \mathrm{P}_{\text {peak }}=\frac{\mathcal{E}_{\mathrm{rms}}{ }^{2} \mathrm{R}}{\mathrm{R}^{2}}=\frac{\mathcal{E}_{\mathrm{rms}}{ }^{2}}{\mathrm{R}} .
\end{aligned}
$$

- To work out width, need ω_{d} at which power has decreased to $\mathrm{P}_{\text {peak }} / 2$:

$$
\frac{P_{\text {rms }}}{P_{\text {peak }}}=\frac{\mathcal{E}_{\text {rms }}{ }^{2} R}{R^{2}+\left(\omega_{d} L-1 / \omega_{d} C\right)^{2}} \times \frac{R}{\mathcal{E}_{\text {rms }}{ }^{2}}=\frac{1}{2}
$$

Power and Resonance: Quality factor of Circuit

- From this we get:

$$
\begin{aligned}
& \frac{\mathrm{R}^{2}}{\mathrm{R}^{2}+\left(\omega_{\mathrm{d}} \mathrm{~L}-1 / \omega_{\mathrm{d}} \mathrm{C}\right)^{2}}=\frac{1}{2} \\
& \Rightarrow \mathrm{R}^{2}=\left(\omega_{\mathrm{d}} \mathrm{~L}-1 / \omega_{\mathrm{d}} \mathrm{C}\right)^{2} \\
& \text { or } \omega_{\mathrm{d}} \mathrm{~L}-1 / \omega_{\mathrm{d}} \mathrm{C}= \pm \mathrm{R}
\end{aligned}
$$

- This can be written as a quadratic equation in ω_{d} :

$$
\begin{aligned}
& \mathrm{L} \omega_{\mathrm{d}}^{2} \mp \mathrm{R} \omega_{\mathrm{d}}-1 / \mathrm{C}=0 \\
& \Rightarrow \omega_{\mathrm{d}}=\frac{ \pm \mathrm{R} \pm \sqrt{\mathrm{R}^{2}+4 \mathrm{~L} / \mathrm{C}}}{2 \mathrm{~L}} .
\end{aligned}
$$

- Only +ive solutions of this make sense (can't have-ive frequency!) so discard the two solutions with the second minus sign.
- The remaining +ive solutions must represent the $\omega+\Delta \omega$ and $\omega-\Delta \omega$.
- Subtracting these gives:

$$
\begin{aligned}
2 \Delta \omega & =\frac{+\mathrm{R}+\sqrt{\mathrm{R}^{2}+4 \mathrm{~L} / \mathrm{C}}}{2 \mathrm{~L}}-\frac{-\mathrm{R}+\sqrt{\mathrm{R}^{2}+4 \mathrm{~L} / \mathrm{C}}}{2 \mathrm{~L}} \\
& =\mathrm{R} / \mathrm{L}
\end{aligned}
$$

■ Hence:

$$
\begin{equation*}
Q=\frac{\omega}{2 \Delta \omega}=\frac{\omega}{R / L}, \text { so } Q=\frac{\omega L}{R} \tag{21.2}
\end{equation*}
$$

- At resonance, $\omega \mathrm{L}=1 / \omega \mathrm{C}$, so we can also write this:

$$
\begin{equation*}
\mathrm{Q}=\frac{1 / \omega \mathrm{C}}{\mathrm{R}}=\frac{1}{\omega \mathrm{C}} \frac{1}{\mathrm{R}} \tag{21.3}
\end{equation*}
$$

- We see small R relative to X_{L} or X_{C} means large Q or sharp resonance.

Quality Factor of Circuit and Energy Loss

- There is a second definition of the quality factor of a circuit:

$$
\begin{aligned}
\mathrm{Q} & =2 \pi \frac{\text { energy stored }}{\text { energy lost per cycle }} \\
& =\frac{\text { energy stored }}{\text { energy lost per radian }} .
\end{aligned}
$$

- The energy stored (e.g. when it is all in the inductance) is:

$$
\mathrm{E}_{\text {stored }}=\frac{1}{2} \mathrm{LI}^{2}
$$

- The energy lost per cycle is:

$$
\mathrm{E}_{\text {lost }}=\mathrm{P}_{\text {avg }} \mathrm{T}=\frac{\mathrm{I}^{2} \mathrm{R}}{2} \mathrm{~T}=\frac{\mathrm{I}^{2} \mathrm{R}}{2} \frac{2 \pi}{\omega} .
$$

- Hence:

$$
\mathrm{Q}=2 \pi \frac{\frac{1}{2} \mathrm{LI}^{2}}{\mathrm{I}^{2} \mathrm{R} / 2 \times 2 \pi / \omega}, \text { or } \mathrm{Q}=\frac{\omega \mathrm{L}}{\mathrm{R}}
$$

- The two definitions lead to the same mathematical expression.
- A circuit with a large Q value is thus one for which the resonance is sharp, but also one for which the energy lost per cycle is a small proportion of the stored energy.
- This is the end of the course!

Complex Numbers

- An alternative formalism for describing AC circuits is offered by complex numbers.
- A complex number can be written:

$$
\mathbf{z}=\mathrm{x}+\mathrm{jy} .
$$

- The real part of \mathbf{z} is \mathbf{x}, that is: $\operatorname{Re}(\mathbf{z})=x$.
- The imaginary part of \mathbf{z} is y, that is: $\operatorname{Im}(\mathbf{z})=y$.
- The quantity j is defined by: $\mathrm{j}^{2}=-1$ or $\mathrm{j}=\sqrt{-1}$.
- A point in the complex plane can be used to represent \mathbf{z} (in the Argand diagram).
- Argand diagram:
imaginary

- De Moivre's theorem states:
$\exp [j \theta]=\cos \theta+j \sin \theta$
$\Rightarrow \cos \theta=\operatorname{Re}(\exp [\mathrm{j} \theta])$
and $\sin \theta=\operatorname{Im}(\exp [j \theta])$.
- Hence $\mathbf{z}=\mathrm{zexp}[j \theta]$, where:

$$
\mathrm{z}=|\mathbf{z}|=\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}} \text { and } \theta=\tan ^{-1}\left[\frac{\mathrm{y}}{\mathrm{x}}\right] .
$$

Complex Numbers and AC Circuits

- Can represent quantities in AC circuits, e.g. emf $\mathcal{E}=\mathcal{E}_{\mathrm{m}} \sin \left(\omega_{\mathrm{d}} \mathrm{t}\right)$, using:
- Phasors, vector length E_{m} rotating at angular frequency ω.
- Complex number,

$$
\mathcal{E}=\mathcal{E}_{\mathrm{m}} \exp \left[\mathrm{j} \omega_{\mathrm{d}} \mathrm{t}\right] .
$$

- Choosing the imaginary part of \mathcal{E} would give for the emf: $\mathcal{E}=\operatorname{Im}(\mathcal{E})=\mathcal{E}_{\mathrm{m}} \sin \left(\omega_{\mathrm{d}} \mathrm{t}\right)$.
- Choosing the real part gives: $\mathcal{E}=\operatorname{Re}(\mathcal{E})=\mathcal{E}_{\mathrm{m}} \cos \left(\omega_{\mathrm{d}} \mathrm{t}\right)$.
- Usually, the real part is used to represent the emf driving a circuit: in the rest of this lecture, $E=\mathcal{E}_{\mathrm{m}} \cos \left(\omega_{\mathrm{d}} \mathrm{t}\right)$.
- Complex numbers allow a compact and convenient description of AC circuits.
- Consider our series LCR circuit:

- Kirchoff's loop rule tells us:

$$
\mathcal{E}=\mathbf{v}_{\mathrm{R}}+\mathbf{v}_{\mathrm{C}}+\mathbf{v}_{\mathrm{L}}
$$

Complex Numbers and AC Circuits

- Using the familiar expressions for the voltage across the capacitance and the inductance:

$$
\mathcal{E}-\mathrm{L} \frac{\mathrm{~d} \mathbf{i}}{\mathrm{dt}}-\frac{1}{\mathrm{C}} \int \mathbf{i} \mathrm{dt}=\mathbf{i} \mathrm{R}
$$

- We are representing \mathbf{i} as a complex number as it must also be sinusoidal.
- We must also allow the phase of i to be different to that of v, so we write: $\mathbf{i}=\operatorname{Iexp}\left[j\left(\omega_{\mathrm{d}} \mathrm{t}-\phi\right)\right]$.
- Differentiating and integrating \mathbf{i} we have:

$$
\frac{\mathrm{d} \mathbf{i}}{\mathrm{dt}}=\mathrm{j} \omega_{\mathrm{d}} \mathrm{I} \exp \left[\mathrm{j}\left(\omega_{\mathrm{d}} \mathrm{t}-\phi\right)\right] \text { and }
$$

$$
\int \mathbf{i} d t=\frac{1}{j \omega_{\mathrm{d}}} \operatorname{Iexp}\left[\mathrm{j}\left(\omega_{\mathrm{d}} \mathrm{t}-\phi\right)\right]
$$

- Substituting these expressions into our integro-differential equation:

$$
\begin{aligned}
& \mathcal{E}_{\mathrm{m}} \exp \left[\mathrm{j} \omega_{\mathrm{d}} \mathrm{t}\right]-\mathrm{j} \omega_{\mathrm{d}} \mathrm{LI} \exp \left[\mathrm{j}\left(\omega_{\mathrm{d}} \mathrm{t}-\phi\right)\right]- \\
& \frac{1}{\mathrm{j} \omega_{\mathrm{d}} \mathrm{C}} \operatorname{Iexp}\left[\mathrm{j}\left(\omega_{\mathrm{d}} \mathrm{t}-\phi\right)\right]=\operatorname{RI} \exp \left[j\left(\omega_{\mathrm{d}} \mathrm{t}-\phi\right)\right] .
\end{aligned}
$$

- Rearranging gives:

$$
\begin{aligned}
\mathcal{E}_{\mathrm{m}} \exp \left[j \omega_{d} t\right] & =\operatorname{Iexp}\left[j\left(\omega_{d} t-\phi\right)\right] \times \\
& \left(R+j \omega_{d} L+\frac{1}{j \omega_{d} C}\right)
\end{aligned}
$$

- Using $\mathrm{j}^{2}=-1$:
$\mathcal{E}_{\mathrm{m}} \exp \left[\mathrm{j} \omega_{\mathrm{d}} \mathrm{t}\right]=\operatorname{Iexp}\left[\mathrm{j}\left(\omega_{\mathrm{d}} \mathrm{t}-\phi\right)\right] \times$

$$
\left(\mathrm{R}+\mathrm{j}\left(\omega_{\mathrm{d}} \mathrm{~L}-\frac{1}{\omega_{\mathrm{d}} \mathrm{C}}\right)\right)
$$

Complex Numbers and AC Circuits

- We see the equation
$\mathcal{E}_{\mathrm{m}} \exp \left[j \omega_{\mathrm{d}} \mathrm{t}\right]=\operatorname{I} \exp \left[\mathrm{j}\left(\omega_{\mathrm{d}} \mathrm{t}-\phi\right)\right] \times$

$$
\left(\mathrm{R}+\mathrm{j}\left(\omega_{\mathrm{d}} \mathrm{~L}-\frac{1}{\omega_{\mathrm{d}} \mathrm{C}}\right)\right),
$$

has the form $\mathcal{E}=\mathbf{i} \mathbf{Z}$, where \mathbf{Z} is the quantity:

$$
\mathbf{Z}=\mathrm{R}+\mathrm{j}\left(\omega_{\mathrm{d}} \mathrm{~L}-\frac{1}{\omega_{\mathrm{d}} \mathrm{C}}\right)
$$

- Z, the complex impedance, can be expressed in the alternative form:
$\mathbf{Z}=\mathbf{Z} \exp [j \phi]$, where:
$Z=\sqrt{R^{2}+\left(\omega_{d} L-1 / \omega_{d} C\right)^{2}}$ and
$\phi=\tan ^{-1}\left(\frac{\omega_{\mathrm{d}} \mathrm{L}-1 / \omega_{\mathrm{d}} \mathrm{C}}{\mathrm{R}}\right)$.
- In the Argand diagram:
imaginary

- See similarity to phasor approach.
- Resistive component of Z same phase as \mathscr{E}, inductive component leads and capacitive component lags E by $\pi / 2$.
- Voltages associated with these components behave similarly.

Complex Impedance and Circuits with only R or L

- For resistor:

$$
\begin{aligned}
& \mathbf{Z}=\mathrm{R}+\mathrm{j} 0 \Rightarrow \mathrm{Z}=\sqrt{\mathrm{R}^{2}+0^{2}}=\mathrm{R} \\
& \text { and } \phi=\tan ^{-1}(0 / \mathrm{R})=0
\end{aligned}
$$

- From $\mathcal{E}=\mathbf{i} \mathbf{Z}$ can calculate complex current:

$$
\mathbf{i}=\frac{\mathbf{E}}{\mathbf{Z}}=\frac{\mathcal{E}_{\mathrm{m}} \exp \left[j \omega_{\mathrm{d}} \mathrm{t}\right]}{\mathrm{Z} \exp [j 0]}=\frac{\mathcal{E}_{\mathrm{m}}}{\mathrm{R}} \exp \left[j \omega_{\mathrm{d}} \mathrm{t}\right] .
$$

- The current through the circuit is given by the real part of this:
$\mathrm{i}=\operatorname{Re}(\mathbf{i})=\frac{\mathcal{E}_{\mathrm{m}}}{\mathrm{R}} \cos \left(\omega_{\mathrm{d}} \mathrm{t}\right)$.
- This is in phase with the emf, remember here $\mathcal{E}=\mathcal{E}_{\mathrm{m}} \cos \left(\omega_{\mathrm{d}} \mathrm{t}\right)$, and has amplitude $\mathcal{E}_{\mathrm{m}} / \mathrm{R}$ as we expect.
- For inductor:
$\mathbf{Z}=0+j \omega_{d} L \Rightarrow \mathbf{Z}=\sqrt{0^{2}+\left(\omega_{d} L\right)^{2}}=\omega_{d} L$ and $\phi=\tan ^{-1}\left(\omega_{\mathrm{d}} \mathrm{L} / 0\right)=\pi / 2$.
- Current:
$\mathbf{i}=\frac{\boldsymbol{E}}{\mathbf{Z}}=\frac{\mathcal{E}_{\mathrm{m}} \exp \left[\mathrm{j} \omega_{\mathrm{d}} \mathrm{t}\right]}{\mathrm{Z} \exp [\mathrm{j} \pi / 2]}=\frac{\mathcal{E}_{\mathrm{m}}}{\omega_{\mathrm{d}} \mathrm{L}} \exp \left[\mathrm{j}\left(\omega_{\mathrm{d}} \mathrm{t}-\pi / 2\right)\right]$.
- Take real part of this:

$$
i=\operatorname{Re}(\mathbf{i})=\frac{\mathcal{E}_{\mathrm{m}}}{\omega_{\mathrm{d}} \mathrm{~L}} \cos \left(\omega_{\mathrm{d}} \mathrm{t}-\pi / 2\right) .
$$

- Again, result is as expected: current lags behind emf by $\pi / 2$ and has amplitude $\mathcal{E}_{\mathrm{m}} / \omega_{\mathrm{d}} \mathrm{L}$.

Complex Impedance with only C: General Circuits

- For capacitor:

$$
\begin{aligned}
& \mathbf{Z}=0-\mathrm{j} / \omega_{\mathrm{d}} \mathrm{~L} \\
& \Rightarrow \mathrm{Z}=\sqrt{0^{2}+\left(1 / \omega_{\mathrm{d}} \mathrm{C}\right)^{2}}=1 /\left(\omega_{\mathrm{d}} \mathrm{C}\right)^{2} \\
& \text { and } \phi=\tan ^{-1}\left(\frac{-1 / \omega_{\mathrm{d}} \mathrm{C}}{0}\right)=-\frac{\pi}{2} .
\end{aligned}
$$

- Current: $\mathbf{i}=\frac{\boldsymbol{E}}{\mathbf{Z}}=\frac{\mathcal{E}_{\mathrm{m}} \exp \left[j \omega_{\mathrm{d}} \mathrm{t}\right]}{\mathrm{Z} \exp [-\mathrm{j} \pi / 2]}$

$$
=\frac{\mathcal{E}_{\mathrm{m}}}{1 / \omega_{\mathrm{d}} \mathrm{C}} \exp \left[\mathrm{j}\left(\omega_{\mathrm{d}} \mathrm{t}+\pi / 2\right)\right] .
$$

- Take real part of this:

$$
\mathrm{i}=\operatorname{Re}(\mathbf{i})=\frac{\mathcal{E}_{\mathrm{m}}}{1 / \omega_{\mathrm{d}} \mathrm{C}} \cos \left(\omega_{\mathrm{d}} \mathrm{t}+\pi / 2\right)
$$

- As expected: current leads emf by $\pi / 2$ and has amplitude $\mathcal{E}_{\mathrm{m}} /\left(1 / \omega_{\mathrm{d}} \mathrm{C}\right)$.
- For general AC circuit:
- Determine impedance of each component.
- Combine to give total impedance:
- Series $\mathbf{Z}_{\text {total }}=\sum_{\mathrm{i}} \mathbf{Z}_{\mathrm{i}}$.
- Parallel $\frac{1}{\mathbf{Z}_{\text {total }}}=\sum_{\mathrm{i}} \frac{1}{\mathbf{Z}_{\mathrm{i}}}$.

■ Complex current from $\mathbf{i}=\boldsymbol{E} / \mathbf{Z}_{\text {total }}$.

- Amplitudes and phases from: $\frac{\mathcal{E}_{\mathrm{m}}}{\mathrm{I}}=\left|\mathbf{Z}_{\text {total }}\right|$ and $\tan ^{-1}\left(\frac{\operatorname{Im}\left(\mathbf{Z}_{\text {total }}\right)}{\operatorname{Re}\left(\mathbf{Z}_{\text {total }}\right)}\right)$.
- Current from $\operatorname{Re}(\mathbf{i})$.

Complex Impedance and Series LCR Circuit

- Complex impedances:
- $\mathbf{Z}_{\mathrm{R}}=\mathrm{R}$.
- $\mathbf{Z}_{\mathrm{L}}=\mathrm{j} \omega_{\mathrm{d}} \mathrm{L}$.
- $\mathbf{Z}_{\mathrm{C}}=-\mathrm{j} / \omega_{\mathrm{d}} \mathbf{C}$.

- Current:

$$
\mathrm{i}=\operatorname{Re}(\mathbf{i})=\operatorname{Re}\left(\frac{\mathcal{E}}{\mathbf{Z}_{\text {total }}}\right)
$$

$$
\begin{aligned}
& =\mathbf{Z}_{R}+\mathbf{Z}_{L}+\mathbf{Z}_{C} \\
& =R+j \omega_{d} L-j / \omega_{d} C \\
& =R+j\left(\omega_{d} L-1 / \omega_{d} C\right) .
\end{aligned}
$$

$$
=\operatorname{Re}\left(\frac{\mathcal{E}_{\mathrm{m}} \exp \left[\mathrm{j} \omega_{\mathrm{d}} \mathrm{t}\right]}{\mathrm{Z}_{\text {total }} \exp [\mathrm{j} \phi]}\right)
$$

$$
=\operatorname{Re}\left(\frac{\mathcal{E}_{\mathrm{m}}}{\mathrm{Z}_{\text {total }}} \exp \left[\mathrm{j}\left(\omega_{\mathrm{d}} \mathrm{t}-\phi\right)\right]\right)
$$

- Hence:

$$
\mathrm{Z}_{\text {total }}=\left|\mathbf{Z}_{\text {total }}\right|=\sqrt{\mathrm{R}^{2}+\left(\omega_{\mathrm{d}} \mathrm{~L}-1 / \omega_{\mathrm{d}} \mathrm{C}\right)^{2}}
$$

$$
=\frac{\mathcal{E}_{\mathrm{m}}}{\mathrm{Z}_{\text {total }}} \cos \left(\omega_{\mathrm{d}} \mathrm{t}-\phi\right)
$$

$$
\begin{aligned}
\phi & =\tan ^{-1}\left(\frac{\operatorname{Im}\left(\mathbf{Z}_{\text {total }}\right)}{\operatorname{Re}\left(\mathbf{Z}_{\text {total }}\right)}\right) \\
& =\tan ^{-1}\left(\frac{\omega_{\mathrm{d}} \mathrm{~L}-1 / \omega_{\mathrm{d}} \mathrm{C}}{\mathrm{R}}\right) .
\end{aligned}
$$

