
Lecture 21

■ In this lecture we will look at:

♦ Power and resonance.

♦ The quality factor of a circuit.

♦ Describing AC circuits using 

complex numbers. 

■ After this lecture, you should be able 

to answer the following questions:

■ Describe how the power dissipated in 

a series LCR circuit varies with the 

frequency of the signal driving the 

circuit.

■ How is the Q value of a circuit 

related to the width of the peak in the 

power spectrum at resonance?

■ How would you ensure that a series 

LCR circuit had a large Q value?



Power and Resonance

■ Average power maximum when 

cos f = 1, i.e. f = 0, the resonance 

condition.

■ Look at power as function of 

frequency:

■ Full width (of peak at) half maximum 

(power) FWHM = 2Dw.

■ Define the quality factor (the sharpness 

of the resonance):

■ Now:

■ To work out width, need wd at which 

power has decreased to Ppeak/2:
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Power and Resonance: Quality factor of Circuit

■ From this we get:

■ This can be written as a quadratic 

equation in wd:

■ Only +ive solutions of this make 

sense (can’t have –ive frequency!) 

so discard the two solutions with  

the second minus sign.

■ The remaining +ive solutions must 

represent the w + Dw and w – Dw.

■ Subtracting these gives:

■ Hence:

■ At resonance, wL = 1/wC, so we can also 

write this:

■ We see small R relative to XL or XC

means large Q or sharp resonance.
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Quality Factor of Circuit and Energy Loss

■ There is a second definition of the 

quality factor of a circuit:

■ The energy stored (e.g. when it is all 

in the inductance) is:

■ The energy lost per cycle is:

■ Hence:

■ The two definitions lead to the same 

mathematical expression.

■ A circuit with a large Q value is thus 

one for which the resonance is sharp, 

but also one for which the energy lost 

per cycle is a small proportion of the 

stored energy.

■ This is the end of the course!
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Complex Numbers

■ An alternative formalism for 

describing AC circuits is offered by 

complex numbers.

■ A complex number can be written:

■ The real part of z is x, that is: 

■ The imaginary part of z is y, that is:

■ The quantity j is defined by:

■ A point in the complex plane can be 

used to represent z (in the Argand 

diagram).

■ Argand diagram:

■ De Moivre’s theorem states:

■ Hence z = z exp [jq], where:
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Complex Numbers and AC Circuits

■ Can represent quantities in AC circuits, 
e.g. emf E = Em sin (wdt), using:

♦ Phasors, vector length Em rotating 

at angular frequency w.

♦ Complex number, 
E = Emexp [jwdt].

■ Choosing the imaginary part of E

would give for the emf: 
E = Im(E) = Emsin (wdt).

■ Choosing the real part gives:
E = Re(E) = Emcos (wdt).

■ Usually, the real part is used to 

represent the emf driving a circuit: in 
the rest of this lecture, E = Em cos (wdt).

■ Complex numbers allow a compact 

and convenient description of AC 

circuits.

■ Consider our series LCR circuit:

■ Kirchoff’s loop rule tells us:
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Complex Numbers and AC Circuits

■ Using the familiar expressions for the 

voltage across the capacitance and 

the inductance:

■ We are representing i as a complex 

number as it must also be sinusoidal.

■ We must also allow the phase of i to 

be different to that of v, so we write:

■ Differentiating and integrating i we 

have:

■ Substituting these expressions into 

our integro-differential equation:

■ Rearranging gives:

■ Using j2 = 1:
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Complex Numbers and AC Circuits

■ We see the equation

has the form E = i Z, where Z is the 

quantity:

■ Z, the complex impedance, can be 

expressed in the alternative form:

■ In the Argand diagram:

■ See similarity to phasor approach. 

■ Resistive component of Z same phase 
as E, inductive component leads and 

capacitive component lags E by /2.

■ Voltages associated with these 

components behave similarly.
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Complex Impedance and Circuits with only R or L

■ For resistor:

■ From E = i Z can calculate complex 

current:

■ The current through the circuit is 

given by the real part of this:

■ This is in phase with the emf, 
remember here E = Em cos (wdt), and 

has amplitude Em/R as we expect.

■ For inductor:

■ Current:

■ Take real part of this:

■ Again, result is as expected: current 

lags behind emf by /2 and has 
amplitude Em/wdL.
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Complex Impedance with only C: General Circuits

■ For capacitor:

■ Current:

■ Take real part of this:

■ As expected: current leads emf by 
/2 and has amplitude Em/(1/wdC).

■ For general AC circuit:

■ Determine impedance of each 

component.

■ Combine to give total impedance:

♦ Series

♦ Parallel

■ Complex current from

■ Amplitudes and phases from:

■ Current from Re(i).

d

2 2 2

d d

1 d

0 j L

Z 0 (1 C)  =1 ( C)

1 C
and tan .

0 2



  w

   w w

 w  
f    

 

Z

m d

m
d

d

exp[ j t]

Zexp[ j 2]

exp[ j( t 2)].
1 C

w
 

 

 w  
w

i
Z

E

E

E

m
d

d

i Re( ) cos( t 2).
1 C

  w  
w

i
E

itotal i

1 1
.

Z Z

total i

i

.Z Z

total
.i ZE

1 totalm
total

total

Im( )
 and tan .

I Re( )

  
  

 

Z
Z

Z

E



Complex Impedance and Series LCR Circuit

■ Complex impedances:

♦

♦

♦

■ Add in series:

■ Hence:

♦

♦

■ Current:
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