
Lecture 6

■ This lecture, we will look at:

♦ Calculating the electric field from 

the electric potential.

♦ The potential of a charged 

isolated conductor.

■ After this lecture, you should be able 

to answer the following questions:

■ Determine the electric field due to an 

isolated charge from the expression 

for the electric potential.

■ Describe the electric field and 

potential inside and outside a charged 

isolated conductor.

■ Explain why you could survive a 

lighting strike if you were inside a 

car.



Calculating 

■ We know how to find the potential 

from the electric field, now look at 

getting the field from the potential.

■ Charge q0 moves from one 

equipotential to next, step      along s 

axis. 

■ Work done by field is related to 

change in potential energy...

■ ...but also to force and distance:

■ Equating these two expressions:

■ Hence

■ But E cos q is the component of

the s axis, so we can write: 
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An aside – Partial Derivatives

■ Consider a function of two variables, 

f(x,y).

■ The partial derivatives of this 

function w.r.t. x and y are defined by:

■ Example: f(x,y) = xy2.

■ Geometrically, consider z = f(x,y) 

shown opposite:

■ Keep y = y0, then z = f(x,y0) traces 

out the red curve shown.

■ The slope of this curve at (x0,y0) is 

given by 
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Calculating 

■ Taking s to be the x, y and z axes in 

turn, we have:

■ See units of E field also V m1.

■ More succinctly, the electric field is 

given by the (negative) gradient of 

the potential:

■ Consider example 

of point charge 

again.

■ We have

■ Calculate E field using our 

prescription:  

E from V

x y z

V V V
E , E and E .

x y z

  
     

  

V V V
E V , ,       [6.1]

x y z

   
    

   

0

2 2 2
0

1 q
V

4 r

1 q
.

4 x y z









  

+q

1
2

3
2

2 2 2

0

2 2 2

0

2 2 2 2 2 2
0

2

0

V q
(x y z )

x 4 x

q 1
(x y z ) 2x

4 2

1 q x

4 x y z x y z

1 q x
.

4 rr





 
  

  


   






    








Calculating 

■ Doing the same for y and z we have:

■ Hence:

■ Now x/r = r cos qxr is the component 

of the radius vector in the x direction, 

y/r that in the y direction and z/r that 

in the z direction, so we see:

■

■ ...the E field is directed radially away 

from the charge, as expected.

■ The gradient vector is in the direction 

of the maximum variation of the 

potential. 

■ Can see this in 2D:
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Potential of a Charged Isolated Conductor 

■ We have shown that           inside a 

conductor (and that the charge sits on 

the outer surface of the conductor). 

■ Using 

we see:

■ Hence V = const. (Remember that 

■ Example, E field and potential inside 

and outside a conducting sphere, 

radius 1.2 m, carrying charge 10 mC:
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Field and Potential in Conductor: Faraday Cage



Corona Discharge


