
Making-Modules

December 9, 2019

1 Making Modules
1.1 Module functions
Start by writing a few functions that we can use to create a module.

[1]: import numpy as np
#
def circleParams(r):

'''
Given the radius of a circle, this function returns its area and␣

↪→circumference.
'''
A = np.pi*r**2
c = 2*np.pi*r
return A, c

#
def rectangleParams(h, w):

'''
Given the height and width of a rectangle, this function returns its area␣

↪→and perimeter.
'''
A = h*w
p = 2*(h + w)
return A, p

#
def sphereParams(r):

'''
Given the radius of a sphere, this function returns its volume and its␣

↪→surface area.
'''
V = 4/3*np.pi*r**3
A = 4*np.pi*r**2
return V, A

#
def rectPrismParams(h, w, d):

'''

1

Given the height, width and depth of a rectangular prism, this function␣
↪→returns its volume,

surface area and total side length.
'''
V = h*w*d
A = 2*(h*w + w*d + h*d)
s = 4*(h + w + d)
return V, A, s

We can use these functions in the Notebook in which they are defined. For example, here is a plot
of the volume, V , and area, A, of a sphere as a function of its radius, r.

[2]: import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
#
nArr = 50
rBot = 0.0
rTop = 4.0
rArr = np.linspace(rBot, rTop, nArr)
Varr, Aarr = sphereParams(rArr)
#
plt.figure(figsize = (7, 5))
plt.title("Volume and area of sphere")
plt.ylabel("Volume (m3) or area (m2)")
plt.xlabel("Radius (m)")
plt.plot(rArr, Varr, linestyle = '-', color = 'r')
plt.plot(rArr, Aarr, linestyle = '-', color = 'b')
plt.grid(color = 'green')
plt.show()

2

1.2 Creating and using a module
In order to create a module containing routines from this Notebook, click on the File menu, then
on Download as and select Python. (If using running Jupyter Lab rather than Jupyter Notebook,
use File, Export Notebook As… and then Export Notebook to Executable Script.) Depending on
the browser security settings, may get a warning about the file that is created, saying that it can
damage your computer. Ignore this and click Keep or Save. In default download location (usually
Downloads folder) will then have file called Making-Modules.py.

Move Making-Modules.py into working directory and rename it. Call it MakingModules.py. Open
MakingModules.py by clicking on it in Jupyter. See it is just a copy of this Notebook written as
Python code, i.e. all the Markdown cells have been turned into Python comments by sticking a
“#” in front of them. Tidy up the file by deleting the superfluous comment lines - leave the ones
that are useful! - and other material that isn’t part of the functions. Do not delete the line that
reads import numpy as np!

Can now use all the functions in MakingModules.py by importing it as a module, as shown in the
following example. (The reason it had to be renamed that hyphens are not allowed in module
names in Python, so wouldn’t be able to import the file if it was called Making-Modules.py.) Note,
file name should have extension .py, but don’t include this in the import statement.

Notice that, after doing import MakingModules as mm, we have called the routine
mm.circleParams (with an mm. in front of the name to indicate it comes from the MakingMod-

3

ules module, cf. using np.cos to use the cosine function from the numpy library). The version of
circleParams below is therefore that from the MakingModules module, not the one defined in this
Notebook!

[5]: import numpy as np
import matplotlib.pyplot as plt
import MakingModules as mm
#
nArr = 50
rBot = 0.0
rTop = 4.0
rArr = np.linspace(rBot, rTop, nArr)
Aarr, cArr = mm.circleParams(rArr)
#
plt.figure(figsize = (7, 5))
plt.title("Area and circumference of circle")
plt.ylabel("Area or circumference")
plt.xlabel("Radius")
plt.plot(rArr, Aarr, linestyle = '-', color = 'r')
plt.plot(rArr, cArr, linestyle = '-', color = 'b')
plt.grid(color = 'green')
plt.show()

4

Include the statement import numpy as np at the top of MakingModules.py. This statement is
executed when the module is first loaded, so even if the functions in MakingModules.py are used
from a program which doesn’t import numpy, they will work OK.

1.3 Accessing modules in other folders
The above only allows us to use functions from a module in the directory in which we are working.
Modules in other directories acan also be accessed. In order to try this, make a copy of MakingMod-
ules.py and call it MakingModulesNew.py. Make a new folder MakingModulesLib in your working
directory. Move the file MakingModulesNew into the folder MakingModulesLib. Now try to run the
cell below.

[6]: import numpy as np
import matplotlib.pyplot as plt
import MakingModulesNew as mmnew
#
nArr = 50
rBot = 0.0
rTop = 4.0
rArr = np.linspace(rBot, rTop, nArr)
Aarr, cArr = mmnew.circleParams(rArr)
#
plt.figure(figsize = (7, 5))
plt.title("Area and circumference of circle")
plt.ylabel("Area or circumference")
plt.xlabel("Radius")
plt.plot(rArr, Aarr, linestyle = '-', color = 'r')
plt.plot(rArr, cArr, linestyle = '-', color = 'b')
plt.grid(color = 'green')
plt.show()

␣
↪→---

ModuleNotFoundError Traceback (most recent call␣
↪→last)

<ipython-input-6-6e29b32b207b> in <module>
1 import numpy as np
2 import matplotlib.pyplot as plt

----> 3 import MakingModulesNew as mmnew
4 #
5 nArr = 50

ModuleNotFoundError: No module named 'MakingModulesNew'

5

Python can’t find the MakingModulesNew module, because it only looks for it in the current working
directory and in directories specified by a system variable called path. We can see which directories
are in path using the sys.path command, after we have imported the sys module, as follows.

[7]: import sys
#
print("Directories in path are:\n",sys.path)

Directories in path are:
['C:\\Users\\green\\OneDrive\\OneDocuments\\Liverpool\\Teaching\\Phys105-Comp01
-2019\\Phys105-Lectures2019', 'C:\\Users\\green\\Anaconda3\\python37.zip',
'C:\\Users\\green\\Anaconda3\\DLLs', 'C:\\Users\\green\\Anaconda3\\lib',
'C:\\Users\\green\\Anaconda3', '', 'C:\\Users\\green\\Anaconda3\\lib\\site-
packages', 'C:\\Users\\green\\Anaconda3\\lib\\site-packages\\win32',
'C:\\Users\\green\\Anaconda3\\lib\\site-packages\\win32\\lib',
'C:\\Users\\green\\Anaconda3\\lib\\site-packages\\Pythonwin',
'C:\\Users\\green\\Anaconda3\\lib\\site-packages\\IPython\\extensions',
'C:\\Users\\green\\.ipython']

The path variable is set up when Anaconda is installed. Exactly what you see will depend on your
computer’s operating system and where Anaconda was installed. The path entries will always have
the structure top_level/second_level/third_level, and this is what you will see on a Macintosh or
a Linux system. On a Windows computer, the forward slashes (/) will be replaced by back-slashes
(\). These have to be represented by a double back-slash, as the first backslash is treated as an
escape character (in both Python and Markdown).

If we want to temporarily add a new directory to path, we can do it using path.append from the
sys module as follows.

[8]: sys.path.append('MakingModulesLib')
print("Directories in path are:\n",sys.path)

Directories in path are:
['C:\\Users\\green\\OneDrive\\OneDocuments\\Liverpool\\Teaching\\Phys105-Comp01
-2019\\Phys105-Lectures2019', 'C:\\Users\\green\\Anaconda3\\python37.zip',
'C:\\Users\\green\\Anaconda3\\DLLs', 'C:\\Users\\green\\Anaconda3\\lib',
'C:\\Users\\green\\Anaconda3', '', 'C:\\Users\\green\\Anaconda3\\lib\\site-
packages', 'C:\\Users\\green\\Anaconda3\\lib\\site-packages\\win32',
'C:\\Users\\green\\Anaconda3\\lib\\site-packages\\win32\\lib',
'C:\\Users\\green\\Anaconda3\\lib\\site-packages\\Pythonwin',
'C:\\Users\\green\\Anaconda3\\lib\\site-packages\\IPython\\extensions',
'C:\\Users\\green\\.ipython', 'MakingModulesLib']

You will see that MakingModulesLib has now been added to path. Now import MakingModulesLib
as mmlib will work.

[9]: import numpy as np
import matplotlib.pyplot as plt

6

import MakingModulesNew as mmnew
#
nArr = 50
rBot = 0.0
rTop = 4.0
rArr = np.linspace(rBot, rTop, nArr)
Aarr, cArr = mmnew.circleParams(rArr)
#
plt.figure(figsize = (7, 5))
plt.title("Area and circumference of circle")
plt.ylabel("Area or circumference")
plt.xlabel("Radius")
plt.plot(rArr, Aarr, linestyle = '-', color = 'r')
plt.plot(rArr, cArr, linestyle = '-', color = 'b')
plt.grid(color = 'green')
plt.show()

The addition to path we have made above will allow us to use anything in the module Making-
ModulesLib if it is in our current working directory. If we want to be able to use routines from
MakingModulesLib from any directory, we have to add the full description of its location to path.
On my computer, this implies…

7

[11]: import sys
#
sys.path.append('C:/Users/green/OneDrive/OneDocuments/Liverpool/Teaching/
↪→Phys105-Comp01-2019/Phys105-Lectures2019/MakingModulesLib')

print("Directories in path are:\n",sys.path)

Directories in path are:
['C:\\Users\\green\\OneDrive\\OneDocuments\\Liverpool\\Teaching\\Phys105-Comp01
-2019\\Phys105-Lectures2019', 'C:\\Users\\green\\Anaconda3\\python37.zip',
'C:\\Users\\green\\Anaconda3\\DLLs', 'C:\\Users\\green\\Anaconda3\\lib',
'C:\\Users\\green\\Anaconda3', '', 'C:\\Users\\green\\Anaconda3\\lib\\site-
packages', 'C:\\Users\\green\\Anaconda3\\lib\\site-packages\\win32',
'C:\\Users\\green\\Anaconda3\\lib\\site-packages\\win32\\lib',
'C:\\Users\\green\\Anaconda3\\lib\\site-packages\\Pythonwin',
'C:\\Users\\green\\Anaconda3\\lib\\site-packages\\IPython\\extensions',
'C:\\Users\\green\\.ipython', 'MakingModulesLib', 'C:/Users/green/OneDrive/OneDo
cuments/Liverpool/Teaching/Phys105-Comp01-2019/Phys105-Lectures2019/MakingModule
sLib']

…which is a bit of a mouthful. (You can work out what the full description of the location of
MakingModulesLib should be on your computer by looking at the existing entries in your path
variable.) Notice that I can use forward slashes in the sys.path.append command; Python changes
these to the format that is relevant for my operating system. (Because I am working on a Windows
machine, I could have used the double back-slash notation, it’s just a bit clumsier.)

There are (system dependent) ways of permanently adding folders like mylib to path, but getting
this wrong can cause problems, so we will use the above method. The downside is that before using
any of the routines in the library mylib, we have to include the statement:

import sys
sys.path.append('path to mylib')

The upside is that when we shut down our Jupyter Notebook, or restart the kernel, path returns
to its original value and we don’t influence how anything else on the computer works.

8

	Making Modules
	Module functions
	Creating and using a module
	Accessing modules in other folders

