

Symmetries

Note: symmetries in physics imply conservation laws

symmetry	invariant	
Space translation	momentum	
Time translation	energy	
Rotation	Angular momentum	
Global phase; Ψ→e ^{iθ} Ψ	Electric charge	
Local phase; Ψ→e ^{iθ(x,t)} Ψ	Lagrangian + gauge field (\rightarrow QED)	

QCD

Strong interactions; non-abelian

- SU(3): 8 massless gauge bosons (gluons), coupling g_s
 - Source is colour
 - Field strength $\alpha_s = g_s^{2/4}\pi$
- Fields represented by quark triplets (3 colours)
 - Hadrons (observable states) colourless
 - Leptons, neutrinos do not couple to gluons

	Effect	t on coup	lings
Subst fo	r W+,W-,Z	²⁰ ,γ in lagrangi	an;
 Coupling fermions 		form (I.h. (W_{μ}^{3}) a	nd r.h. (B_{μ})
-g/	4cos θ _w $\overline{\nu}$ γ _μ (1-γ⁵)νΖ _u	(Ih neutrinos)
	•	1-γ⁵)-4sin²θ _w γ _µ)eZ _µ	(lh & rh e)
\Rightarrow Effe	ctive vector	and axial couplir	ligs $\mathbf{g}_{vf}, \mathbf{g}_{af}$ for Z ⁰
		os θ _w e($\gamma_{\mu}(g_{vf} - g_{a})$	
deca			
deca	ys; g/4co	os θ _w e(γ _μ (g _{vf} - g _ε	_{,f} γ⁵))eŻ _μ
deca	ys; g/4co <mark>fermion</mark>	$\frac{os\ \theta_{W}\ e(\gamma_{\mu}(g_{vf}-g_{z}))}{g_{vf}}$	$f_{\rm f}\gamma^5))eZ_{\mu}$
deca	ys; g/4cc fermion νe,νμ,ντ	DS θ _W e(γ _μ (g _{vf} - g _ε g _{vf} 0.5	_f γ ⁵))eZ _μ g _{af} 0.5

How many free parameters?

SM does not predict:

- Magnitude of gauge couplings g, g', gs
- Masses of fermions (3 leptons, 6 quarks, 3 neutrinos)
- Weak-strong eigenstate quark mixing (can express by 4 parameters), ditto for neutrinos
- Higgs related quantities (mass of Higgs and vacuum expectation value)

\Rightarrow Some 26 unknowns in the theory.

These values must be added by hand (experimental measurements)

Review

SM unites electromagnetic, weak, strong forces

SM predicts cross-sections, couplings

- SM incomplete 26 free parameters
 - Relations between some free parameters are predicted

Next lectures will discuss how these free parameters are measured and SM is tested