The Standard Model

Overview / introduction

Outline

- Overview of Standard Model:
 - What does it describe?
 - What does it need as inputs?
 - What do we use and why
 - What can it predict?
 - How is it tested and how well does it perform?

Overview

Standard model describes interactions of fundamental particles:

- Fermions; 6 flavours of quarks (3 types rgb), leptons
- Vector bosons; γ , W^{+/-}, Z⁰, 8 gluons
- Scalar bosons; H

Theory describes at least 61 fundamental particles and three forces!

(note: not gravity – SM is incomplete at the outset)

Overview

- SM unites electromagnetic, strong and weak forces
- Represented theoretically by
 - U(1) hypercharge
 - SU(3) colour
 - SU(2) isospin
- Use lagrangian to describe particle field
 and interactions

Lagrangians

- Describe interactions and fields
- Classically, L = kinetic energy potential energy
- Particle physics:
 - Use Dirac equation to describe free spin-1/2 particle:

$$\mathsf{L} = \overline{\Psi}(\mathsf{i}\gamma^{\mu}\partial_{\mu} - \mathsf{m})\Psi$$

Symmetries

Note: symmetries in physics imply conservation laws

symmetry	invariance
Space translation	momentum
Time translation	energy
Rotation	Angular momentum
Global phase; Ψ→e ^{iθ} Ψ	Electric charge
Local phase; $\Psi \rightarrow e^{i\theta(x,t)}\Psi$	SM lagrangian

Lagrangians

Apply local gauge symmetry to Dirac equation:

 $\Psi \rightarrow e^{i\theta(x,t)}\Psi$, $\Psi \rightarrow e^{-i\theta(x,t)}\Psi$

Consider very small changes in field $\Psi \rightarrow \Psi + \delta \Psi = \Psi - i\theta(x,t)\Psi$ ie. $\delta \Psi = i\theta(x,t)\Psi$

$$L = \overline{\Psi}(i\gamma^{\mu}\partial_{\mu} - m)\Psi \Rightarrow \delta L = \overline{\Psi}\gamma^{\mu}\partial_{\mu}\theta(\mathbf{x},t)\Psi$$

Invariant lagrangian $\Rightarrow \delta L=0$

2) If we

Satisfied 1) if we introduce gauge field A_{μ} to interact with fermion, and A_{μ} transforms as;

replace
$$A_{\mu} + \delta A_{\mu} = A_{\mu} + 1/e \partial_{\mu} \theta(\mathbf{x}, t)$$
$$\partial_{\mu} \rightarrow D_{\mu} = \partial_{\mu} + ieA_{\mu}$$

Lagrangians

Hence $L = \Psi(i\gamma^{\mu}D_{\mu} - m)\Psi$ is invariant

Not the whole story – need to add term for field strength (kinetic term): Define $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$ Add term -1/4 $F_{\mu\nu}F^{\mu\nu}$ (Lorentz invariant, matches Maxwell's equations)

Final lagrangian (for QED!): $L = -1/4F_{\mu\nu}F^{\mu\nu} + \Psi(i\gamma^{\mu}D_{\mu} - m)\Psi$

Nb. No mass term for A_{μ} ; then L is not invariant

QED

Electromagnetic interactions; abelian

- U(1): 1 gauge field B_{μ} , coupling g'
 - In SM, source is hypercharge Y
 - Field strength α_{em} = g' ²/4 π (fine structure constant) = 1/137

$$L_{Y} = -1/4F_{\mu\nu}F^{\mu\nu} + \overline{\Psi}(i\gamma^{\mu}D_{\mu} - m)\Psi$$

 $\begin{array}{l} \mathsf{D}_{\mu} = \partial_{\mu} + i e \mathsf{B}_{\mu} \\ \text{ to conserve invariance under } \Psi \rightarrow e^{\text{-i} \mathsf{Y}(\Psi)} \Psi \end{array}$

(value not predicted)

Lagrangians

- Strong, weak forces are described by nonabelian theories:
 - In non-abelian theories gauge bosons can self interact
 - In non-abelian theories gauge invariance achieved by adding n²-1 gauge bosons for SU(n)

QCD

Strong interactions; non-abelian

- SU(3): 8 massless gauge bosons (gluons), coupling g_s
 - Source is colour
 - Field strength α_{s} = g_{s}^{2}/4\pi
- Fields represented by quark triplets (3 colours)
 - Hadrons (observable states) colourless
 - Leptons, neutrinos do not couple to gluons

QCD

$$\mathsf{L}_{\mathsf{QCD}} = -1/4\mathsf{F}^{(a)}{}_{\mu\nu}\mathsf{F}^{(a)\mu\nu} + \mathsf{i}\Sigma_{\mathsf{q}}\overline{\Psi}^{\mathsf{i}}{}_{\mathsf{q}}(\mathsf{i}\gamma^{\mu}(\mathsf{D}_{\mu})_{\mathsf{ij}} - \mathsf{m})\Psi_{\mathsf{jq}}$$

$$\begin{split} \mathbf{D}_{\mu} &= \delta_{ij} \partial_{\mu} + \mathbf{ig}_{s} \Sigma_{a} \left(\lambda^{a}_{i,j} / 2 \right) \mathbf{A}^{a}_{\mu} \\ \lambda^{a} & \text{are 8 3x3 matrices (analogous to Pauli spin matrices in SU(2))} \\ a & \text{is sum over gauge bosons} \quad (\text{section 35, PDG}) \\ \mathbf{A}^{a}_{\mu} & \text{is gluon gauge field} \end{split}$$

$$\mathbf{F^{(a)}}_{\mu\nu} = \partial_{\mu} \mathbf{A^{a}}_{\nu} - \partial_{\nu} \mathbf{A^{a}}_{\mu} - \mathbf{g_{s}} \mathbf{f_{abc}} \mathbf{A^{b}}_{\mu} \mathbf{A^{c}}_{\nu}$$

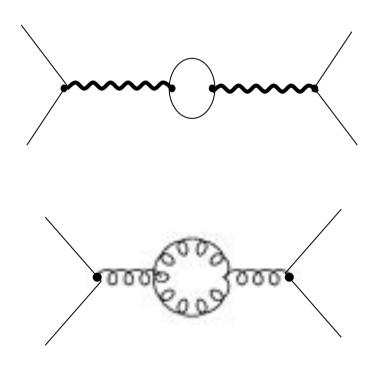
$$\mathbf{f_{abc}} \text{ structure constants for SU(3) (section 35, PDG)}$$

Weak force

Weak interactions: non-abelian

- SU(2): 3 gauge bosons W¹_μ, W²_μ, W³_μ, coupling g
 Source is weak charge
- **Observed** to violate parity so left, right handed fermions treated separately in theory

$$\begin{split} \Psi &= \Psi_{L} + \Psi_{R} \\ \Psi_{L} \ \textbf{doublet}; \ \text{interacts under weak force} \\ D_{\mu} &= \partial_{\mu} + \text{igT}^{a} W^{a}_{\mu} \\ T^{a} &= \text{Pauli spin matrices} \end{split}$$


 Ψ_{R} singlet, does not couple to $W_{\mu}^{1}, W_{\mu}^{2}, W_{\mu}^{3}$

note: implies zero fermion mass ($\Psi m \Psi$ independent of handedness, and would give contribution from right-handed state)

Aside: Running coupling constants

• Arise from loop diagrams "screening" charge at large distance scales:

 \Rightarrow Coupling constant values are function of E

Screening of charge by vacuum polarisation;

High E \Rightarrow smaller distance scale \Rightarrow see more charge

Coupling constant increases with E

Non-abelian forces also include these "extra" charge loops

Net effect: coupling constant decreases with E

Combine forces in SM

Left handed fermions:

Interact with weak force Interact with electromagnetic force Quarks interact with strong force

Right handed fermions:

Interact with electromagnetic force Quarks interact with strong force

Note: strong quark eigenstates are superposition of weak quark eigenstates: \rightarrow CKM matrix (later)

SM lagrangian

SM: $U(1) \times SU(2) \times SU(3)$

Substitute in for $D_{\mu},\,F_{\mu\nu}$ for each interaction, and fermion fields

Free particle term $\mathcal{L}_{(SM,1)} = \sum_{\text{gauge bosons}} -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \sum_{\text{fermions}} \overline{\psi} \ \mathcal{D}\psi + (D_{\mu}\Phi)^{+} (D^{\mu}\Phi) - V(\Phi)$ Gauge boson interaction terms (to give mass) $V(\Phi) = -\mu^{2} \Phi^{+} \Phi + \lambda \left| \Phi^{+} \Phi \right|^{2}$

SM fix-ups

W, Z masses

• Approach yields deeper insight

Fermion masses Quark mixing CP violation Neutrino mixing (Neutrino CP violation?)

• No deeper insight yet

ie. observed, unexplained properties of nature that must be added to the SM by hand.

W, Z Masses

- Everything in SM lagrangian is **massless**
- Mass conferred via Higgs mechanism
 - Introduce Higgs field (complex doublet) Φ = (0, v+H)
 - Subst. into lagrangian
 - $D_{\mu}\Phi D^{\mu}\Phi$ contains terms of the form

 $(g^2v^2/4)W_{\mu}^{+}W_{\mu}^{-} + (v^2/8)(gW_{\mu}^{-}g'B_{\mu})^2$ $W_{\mu}^{+} = (W_{\mu}^{-1} + iW_{\mu}^{-2})/\sqrt{2}$ etc.

v = vacuum expectation value = $\mu/\sqrt{\lambda}$

 \Rightarrow Masses for gauge bosons + gauge invariance. Mixing of U(1) and SU(2) gauge bosons

(electroweak unification)

Prediction of Higgs boson (m_H)

Electroweak unification

$$\begin{split} & \textbf{W}_{\mu}^{1} \textbf{,} \textbf{W}_{\mu}^{2} \text{ mix after Higgs breaking} \rightarrow \textbf{massive W}^{+} \text{ and } \textbf{W}^{-} \\ & \textbf{W}^{+} = (\textbf{W}_{\mu}^{-1} + \textbf{W}_{\mu}^{-2})/\sqrt{2} & (\text{massive}) \\ & \textbf{W}^{-} = (\textbf{W}_{\mu}^{-1} - \textbf{W}_{\mu}^{-2})/\sqrt{2} & (\text{massive}) \end{split}$$

SM relates M_w,M_z and g',g:

Tan $\theta_{W} = g' / g$ $M_{W} = M_{Z}/\cos \theta_{W}$ **Unification here!**

Effect on couplings

Subst for W⁺,W⁻,Z in lagrangian;

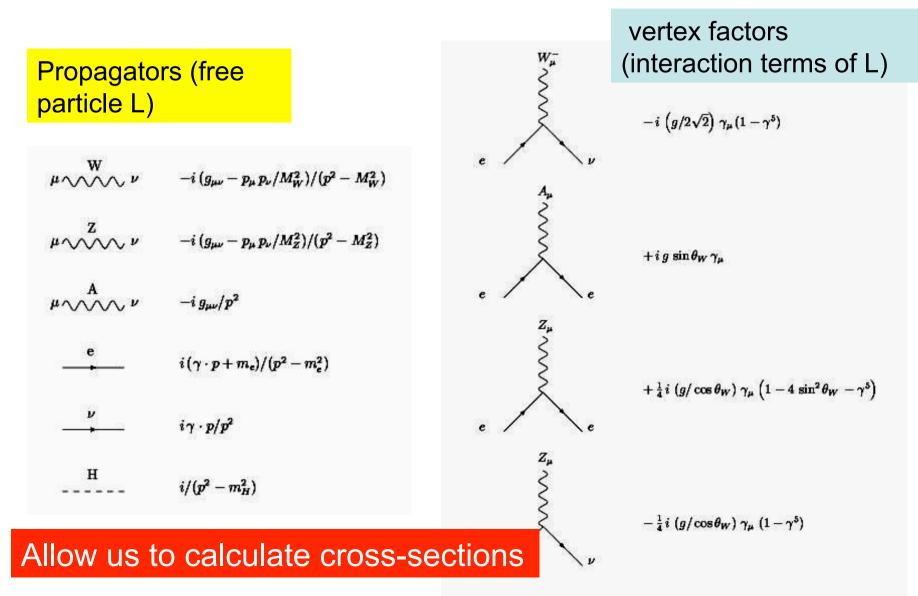
- Couplings for W^{\pm} of form (only I.h. fermions; W_{μ}^{1} , W_{μ}^{2}) -g/2 $\sqrt{2} \overline{v} \gamma_{\mu} (1-\gamma^{5}) e W_{\mu}^{-}$
- Couplings for photons of form g sin θ_w eγ_μeA_μ

 γ_{μ} transforms as vector (P odd) $\gamma_{\mu}\gamma^{5}$ transforms as axial vector (P even) (Vector + axial vector \Rightarrow parity violation for weak force)

Effect on couplings

Subst for W⁺,W⁻,Z in lagrangian;

- Couplings for $\boldsymbol{Z^0}$ of form (I.h. $(W_{\mu}{}^3)$ and r.h. (B_{μ}) fermions)


-g/4cos $\theta_{\rm W} \overline{\nu} \gamma_{\mu} (1-\gamma^5) \nu Z_{\mu}$ (lh neutrinos)

g/4cos $\theta_W \overline{e}(\gamma_\mu (1-\gamma^5)-4sin^2\theta_W \gamma_\mu)eZ_\mu$ (lh & rh e)

⇒ Effective vector and axial couplings g_{vf} , g_{af} for Z⁰ decays; g/4cos $\theta_W e(\gamma_\mu (g_{vf} - g_{af}\gamma^5)) eZ_\mu$

fermion	g _{vf}	g _{af}
νε,νμ,ντ	0.5	0.5
<mark>e,</mark> μ,τ	-0.5+2sinθ _w	-0.5
u,c,t	0.5-4/3sin ² θ _w	0.5
d,s,b	-0.5+2/3sin²θ _w	-0.5

Aside: Feynman rules

Fermion masses

- Assumed to arise from Higgs
- Simplest (Yukawa) coupling assumed

 $g arphi_0 \overline{\psi} \psi$

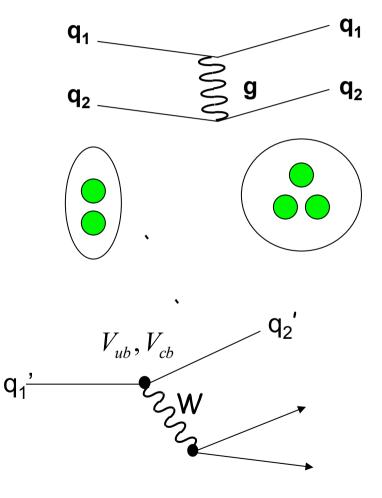
 $g_{,\phi_0}$ are (unknown) constants (looks like mass term) Form proposed by Glashow.

Can now be tested.

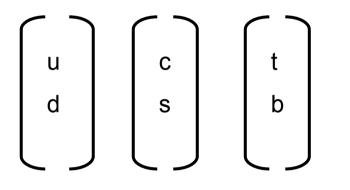
Weak and strong eigenstates

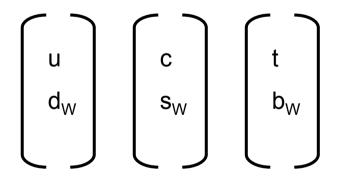
Quarks interact through the strong force

Gluons couple to strong (physical) quark eigenstates q


 \rightarrow hadrons

Quarks also interact through the weak force


W couples to weak quark eigenstates q'

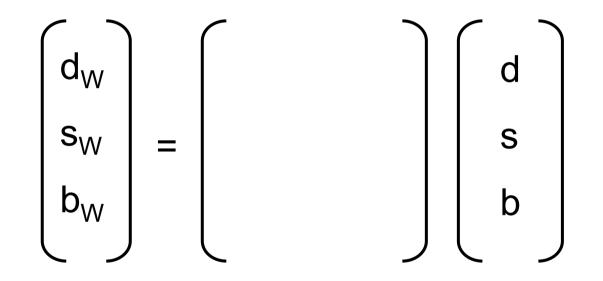

q' related to q through mixing matrix

q' admixture of q and v.v.

Weak, strong eigenstates

Strong quark eigenstates

Gluons couple to strong quark eigenstates → observable hadrons


Weak quark eigenstates

W boson couples to weak quark eigenstates

(**convention** to change bottom member of family)

Weak quark eigenstates are admixtures of strong quark eigenstates

Quark mixing

Strong, weak eigenstates related by mixing matrix Mixing matrix is unitary (inverse = complex conjugate)

CKM matrix

3x3 matrix = CKM matrix (1973 – before charm!)

Elements describe every weak quark transition

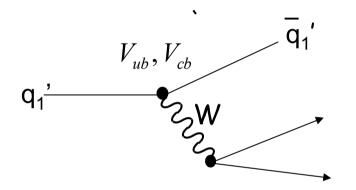
SM does not predict existence of or values for matrix elements (couplings of W to quarks).

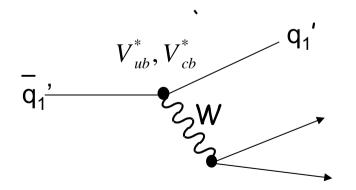
Input by experimental data

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

CP violation

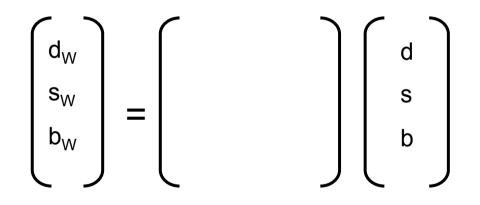
C = charge operator P = parity operator


CP operation changes particle to antiparticle (and vice versa) CP **violation** if part.->anti part. rate different to anti part. -> part.


CP violation observed in weak decays.

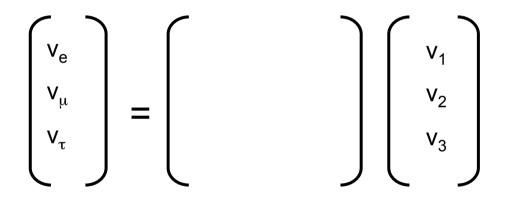
Must be added to Standard Model. $(V_{ub} \neq V_{ub}^* \text{ etc.})$

Note:


- SM does not predict CP violation.
- SM does not explain CP violation.

CP violation

 Need 3 generations of quarks to introduce CP violation into theory

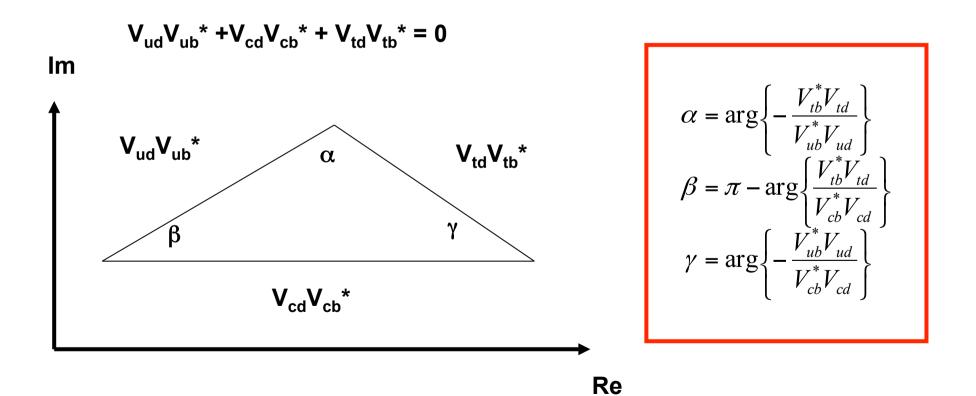

Mixing matrix is 3x3.

Unitarity constraints \Rightarrow 4 independent parameters

3 angles quantify mixing between (1,3) (2,3) (1,2) generations,
1 complex phase (mechanism for introducing CP)

Neutrino CP violation, mixing

• Similar framework adopted for neutrinos (MNS matrix). Flavour (e, μ , τ) related to mass eigenstates:


Mixing matrix is 3x3.

Unitarity constraints \Rightarrow 4 independent parameters

3 angles quantify mixing between (1,3) (2,3) (1,2) generations,
1 complex phase (mechanism for introducing CP)

Testing: Unitarity triangle

SM constraint of unitarity gives relations between unknown CKM matrix elements, eg:

How many free parameters?

SM does not predict:

- Magnitude of gauge couplings g, g', g_s
- Masses of fermions (3 leptons, 6 quarks, 3 neutrinos)
- Weak-strong eigenstate quark mixing (can express by 4 parameters), ditto for neutrinos
- Higgs related quantities (mass of Higgs and vacuum expectation value)

\Rightarrow Some 26 unknowns in the theory.

These values must be added by hand (experimental measurements)

SM predicts relationships

- All observables can be predicted in terms of 26
 free parameters
 - If we have > 26 measurements of these observables, we overconstrain SM
 - Overconstrain ⇒ we don't have any more ad hoc inputs AND we can test the consistency of the model

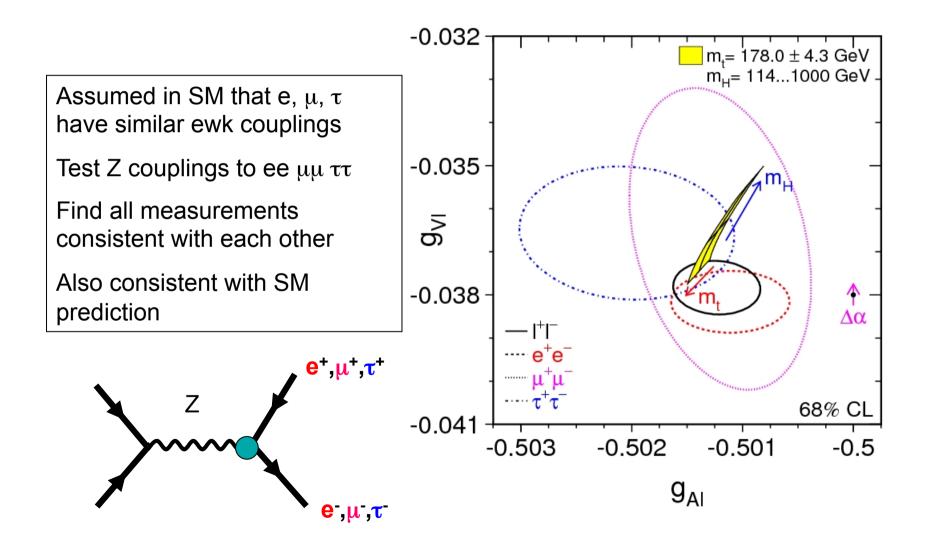
• Best plan:

- pick well measured set of observables
- Calculate other observables in terms of these well known quantities
- Test predictions; measure observable, compare to theory

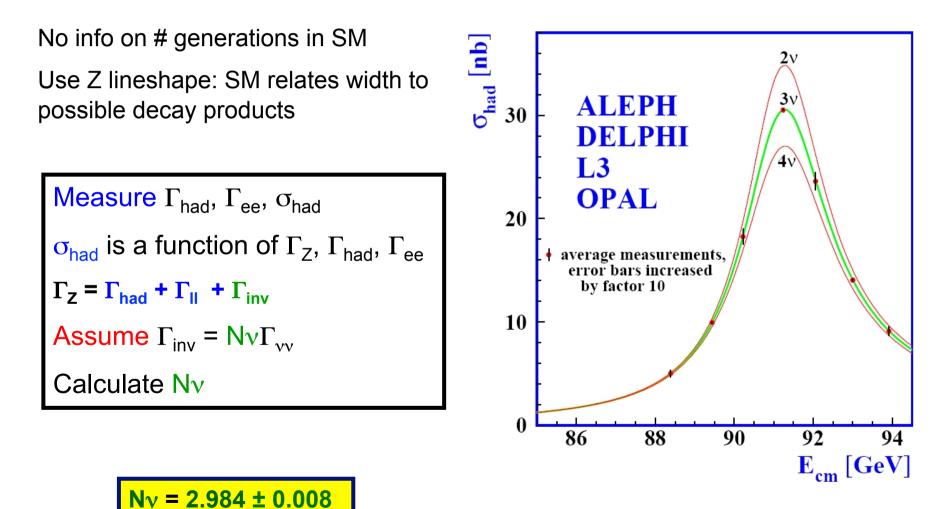
Testing the SM

- 1. Test any assumptions we've made
- 2. Measure unknown parameters in different ways and check consistency
- 3. Compare predicted quantities to measurements
- 4. Check internal consistency of entire SM framework

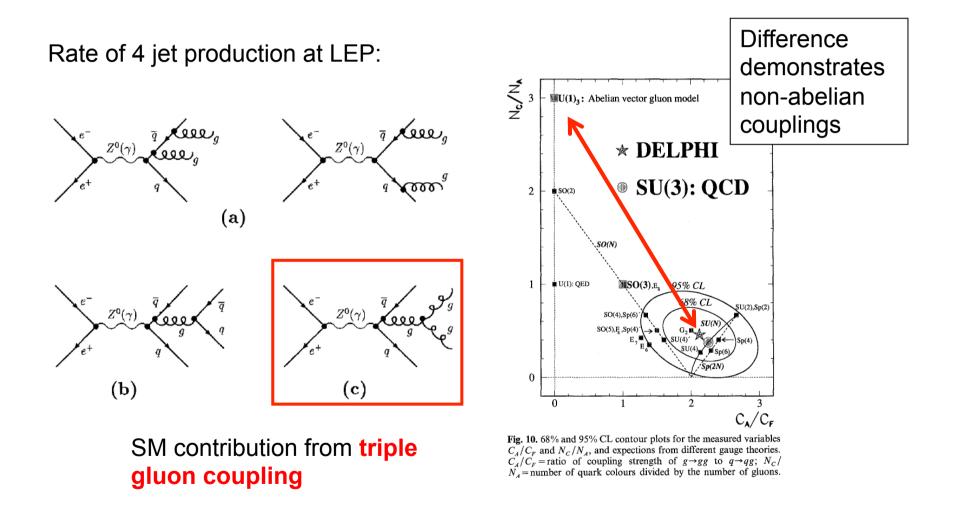
Where can the SM be tested?


Particle physics experiments designed to test specific aspects of SM

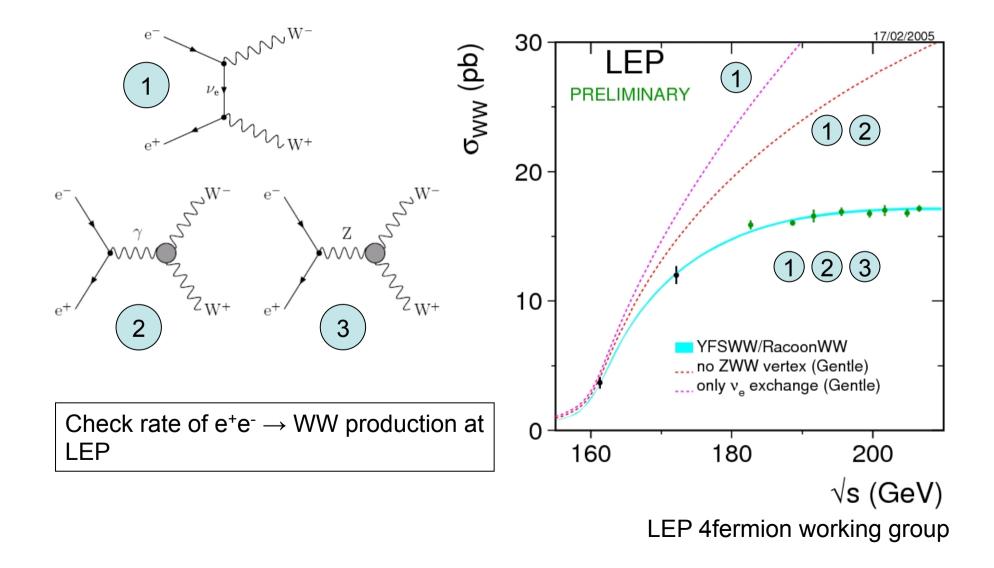
– Major historical experiments:


- LEP (ALEPH, DELPHI, L3, OPAL) Electroweak, qcd $(\sqrt{s} = M_Z \rightarrow >2M_W)$
- Babar, Belle ($\sqrt{s} = 2M_B$) Quark mixing, CP
- CDF, D0 $(\sqrt{s} = 2 \text{ TeV})$ electroweak, qcd, quark mixing
- H1, Zeus ($\sqrt{s} = 0.95 \text{ TeV}$) qcd
- Major running experiments:
 - ATLAS,CMS,LHCb ($\sqrt{s} = 7,8 \text{ TeV}$)

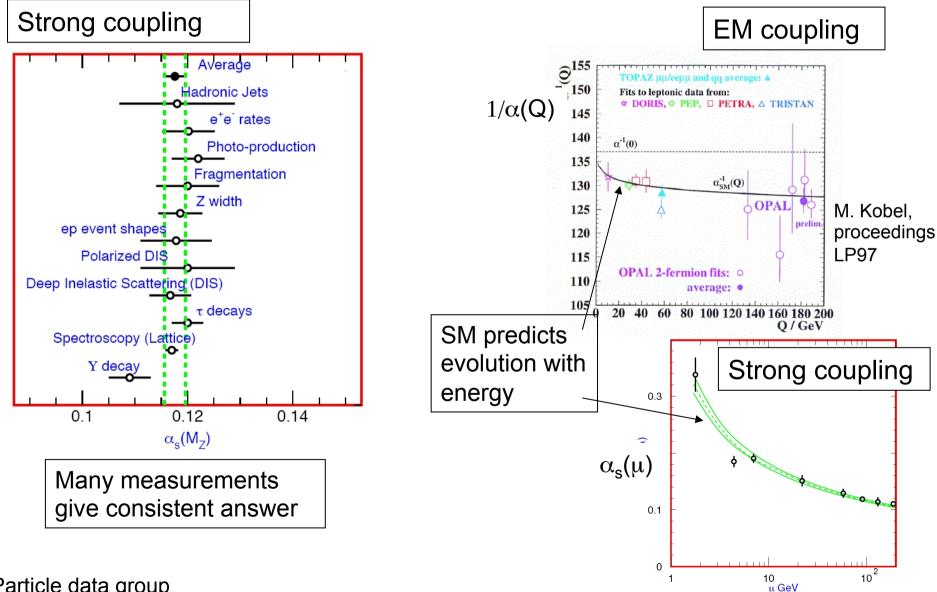
electroweak, qcd, quark mixing, CP


Assumption: Lepton universality

Assumption: 3 generations of matter



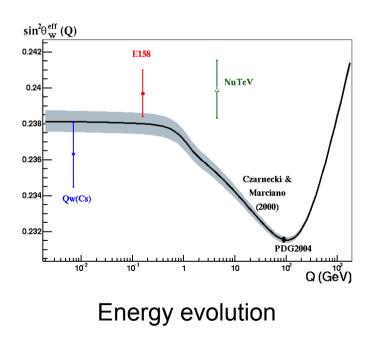
Test: Non-abelian strong force

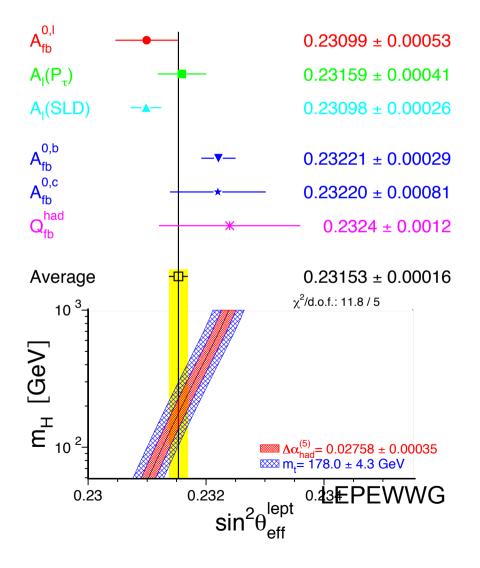


Zeit. Phys. C59 (3) (1993) 357

Test: Non-abelian weak force

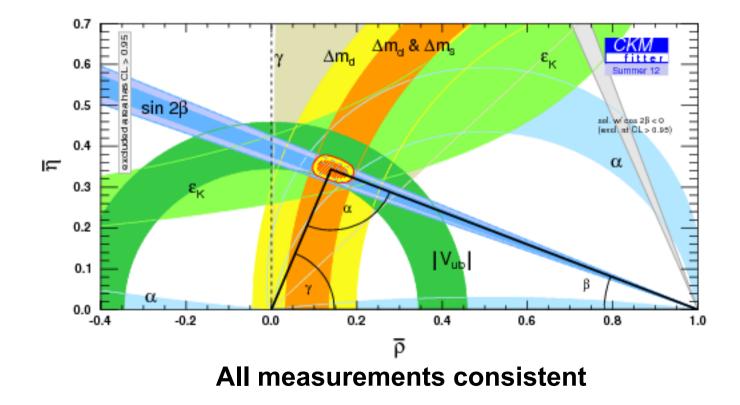
Input: Couplings

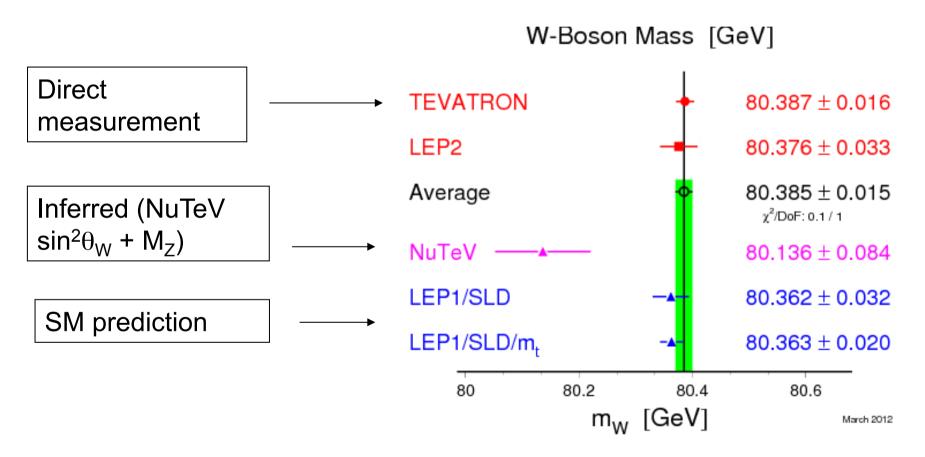



Particle data group

Input: sin² θ_w

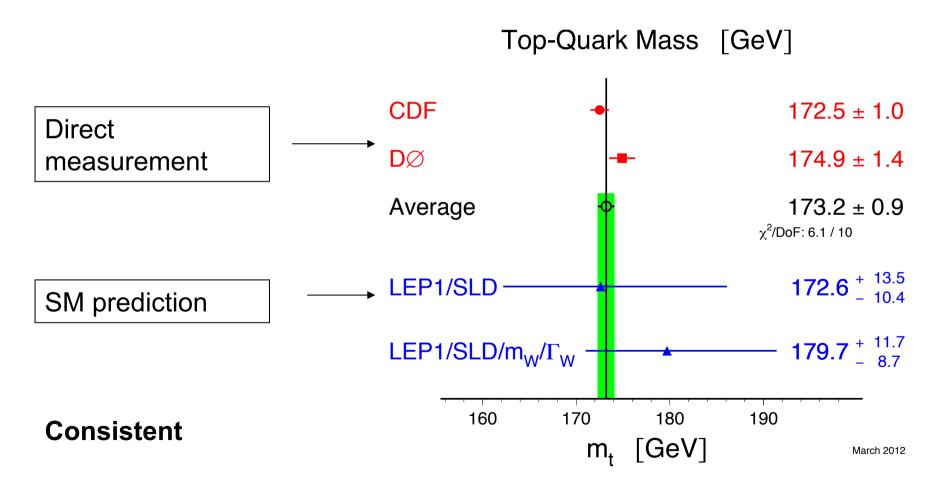
Relates weak, em couplings and $\rm M_{\rm W},\,\rm M_{\rm Z}$


Consistent result extracted from many different measurements



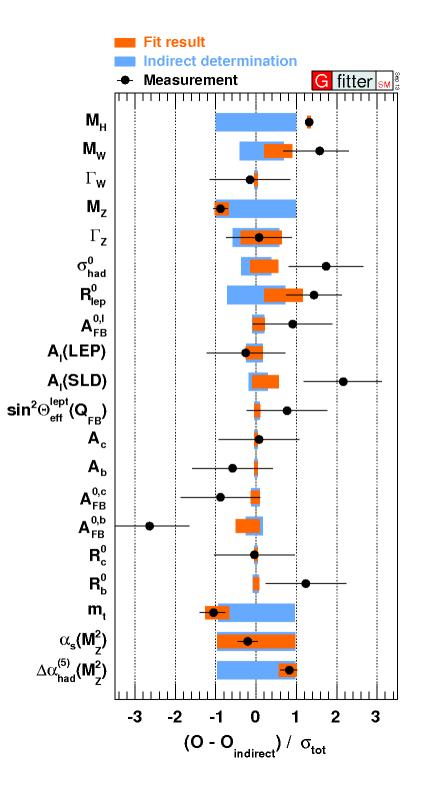
Input: Quark mixing, CP

Many measurements of the 4 parameters describing quark mixing and CP violation



Input/test: W boson mass

Consistent (NuTeV result low)


Input/test: Top quark mass

Internal consistency

Many consistency checks possible

- Here fit to Z, W top quark results is shown
- χ²/ndf = 18.2/13 (Probability ~15 %)

Shortcomings

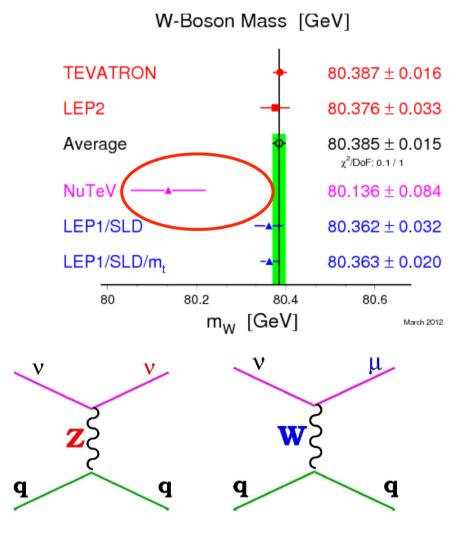
1. Experimental

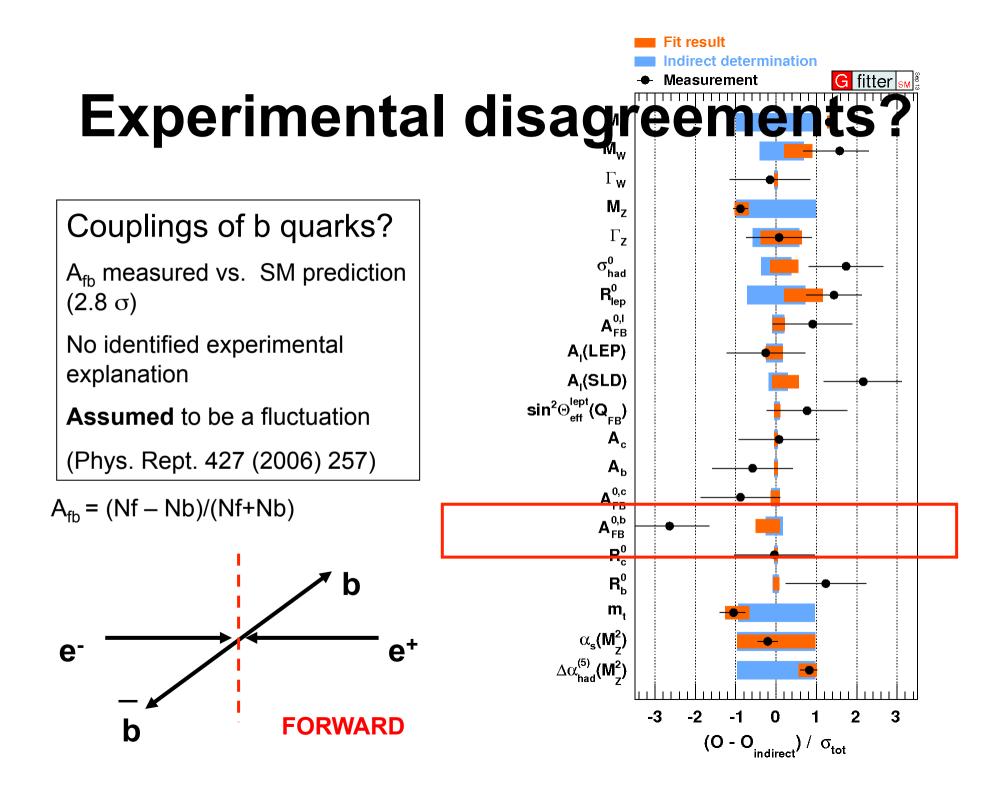
- Still haven't experimentally verified all of SM
- Any differences wrt predictions could signal New Physics

2. Philosophical

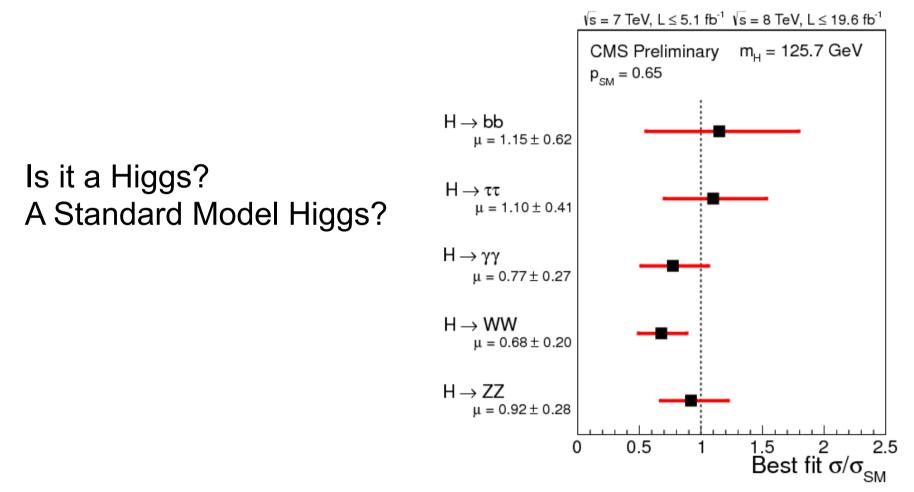
- There is a lot we still don't understand
- What lies beyond the limits of the SM?

Experimental disagreements?


NuTeV $\sin^2\theta_W$ (~ 3 σ)


Extract from ratio of neutral:charged ν nucleon couplings

New Physics? (eg. Z', new fermions)


Or analysis? (uncertainties in pdfs, radiative corrections)

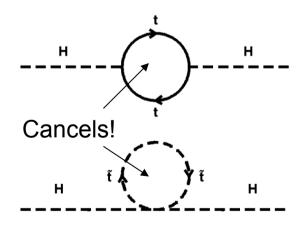
Phys. Rept. 427 (2006) 257

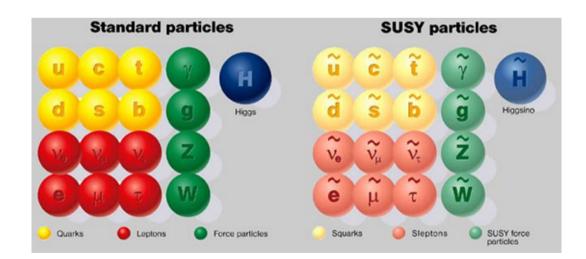
Might be an issue...

(updates from 2015...)

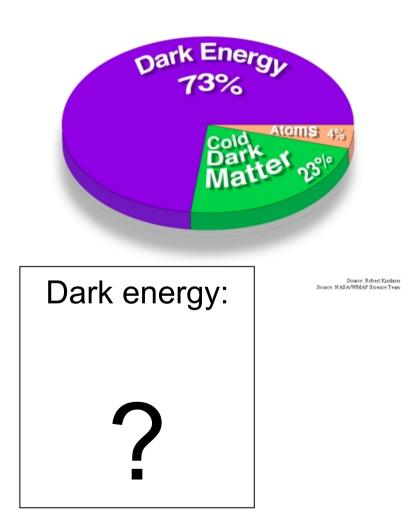
What else is wrong?

Fine tuning:


Higgs mass calculation: bare mass + radiative corrections + loops


very careful choice of parameters to ensure mass ~ 100 GeV

Supersymmetry:


Symmetry between fermions and bosons

New supersymmetric particles can cancel divergences in mH calculation

4% of the universe?

SM with electroweak and strong interactions only describes 4% of the universe

Dark matter?

Try Supersymmetry

Lightest supersymmetric particle is a dark matter candidate (massive and unobservable)

And finally

Gravity

Can't describe it in SM

Can include it in string theory – not very testable

Large extra dimensions could be observed at full LHC energy .. perhaps.

CP violation

Consistent picture in SM but insufficient to explain matter – antimatter asymmetry of the universe

? Answer lies in new physics?

Many open questions not addressed by the SM

Review

SM unites electromagnetic, weak, strong forces

SM predicts cross-sections, couplings

SM incomplete – 26 free parameters

- Relations between some free parameters are predicted
- So far theory is consistent with experimental findings, if incomplete.