TOPICS

- Recap of PHYS110-1 lecture

- Physical Optics - 4 lectures

EM spectrum and colour
Light sources
Interference and diffraction
Polarization

- Lens Aberrations - 3 lectures

Spherical aberrations
Coma, astigmatism, field curvature, distortion
Chromatic aberrations

- Instrumental Optics - 4 lectures

Telescope, microscope
Stops, eyepieces
Instruments for the anterior eye
Instruments for the posterior eye

Lecture 11

- Instruments for examining the anterior eye
- Slit-lamp biomicroscope
- Operating microscope
- Tonometer
- Keratoscope
- Keratometer

Slit-lamp biomicroscope

- Focal points of light source and microscope coincide
- Large distance ($\approx 10 \mathrm{~cm}$) between microscope and eye
- Allows additional optical elements between microscope and eye

Projection system (Kohler illumination)

- Condenser focuses image of the light source on the projection lens
- Projection lens focuses image of the slit on the eye

Slit-lamp biomicroscope

Used for investigating anterior eye:

- Cornea
- Iris
-Lens
etc

Requires additional instrumentation to see beyond the lens

Operating microscope

- Instrument to view the eye while doing surgery
- Variation of the slit-lamp biomicroscope:
- Circular light beam instead of slit
- Longer working distance ($\approx 20 \mathrm{~cm}$)

Applanation tonometer

- Measure intraocular pressure P
- Measure the force F needed to flatten a circle of 3.06 mm of the eye

- At 3.06 mm the corneal rigidity and tear fluid surface tension cancel

Applanation tonometer

- Image seen through tonometer:

- How to measure the size of the ring?

Goldmann-type tonometer

- Image of tear ring size is split into 2 displaced half-circles using prism

Applanating plate
prisms

Goldmann-type tonometer

- Image seen through Goldmann tonometer:

large force

- Correct applanation area when inner rings of circles intersect

Keratoscope

- Study the shape of the corneal surface
- Detect astigmatism, irregularities
- Essential for contact lens fitting
- Small fraction of light reflected by cornea
- Works as a convex mirror
- Study virtual image of bright object

Keratoscope: Placido's disc

- Disc with white reflecting rings and convex lens in the centre
- Held in front of the eye and illuminated
- Examine the shape of the reflected rings

Image of Placido's disc

- Examine the shape of the reflected rings:

Normal eye
equally spaced
symmetrical rings

Corneal astigmatism oval-shaped rings

Aspherical cornea
non-equidistant rings

> Small degree of asphericity is normal

Keratometer

- The keratoscope gives qualitative information only
- A keratometer provides a quantitative measurement of the radius of the cornea
- Vergence power of the corneal surface is directly related to the radius:

$$
F=\frac{n_{2}-n_{1}}{R}=\frac{1.3375-1.0}{R}=\frac{0.3375}{R}
$$

- Principle: measure the image size of an illuminated object in front of the eye

Virtual image from corneal reflection

- Size of virtual image: $\frac{h^{\prime}}{h}=\frac{r / 2}{x}$

Javal-Schiotz keratometer

- Movement of the eye makes the image 'dance' and difficult to measure
- Use image doubling
- Two objects A, B are moved till the images touch
- The distance between A and B is a measure of the radius of the cornea

Javal-Schiotz keratometer

- One object (A) has a step form
- The other (B) is rectangular
- One step of A corresponds to one Dioptre

$$
\begin{array}{llll}
\square & \square \square & \square & \text { object size too small } \\
ъ & \square & \square & \text { object size correct } \\
\square & \square & \square & \square
\end{array}
$$

Corneal topography

- With a keratometer one typically measures up to 4 points of the central corneal surface
- Computer-analysis of a picture from Placido's disc can measure the curvature at thousands of points on the whole cornea

