TOPICS

- Recap of PHYS110-1 lecture

- Physical Optics - 4 lectures

EM spectrum and colour
Light sources
Interference and diffraction
Polarization

- Lens Aberrations - 3 lectures

Spherical aberrations
Coma, astigmatism, field curvature, distortion
Chromatic aberrations

- Instrumental Optics - 4 lectures

Telescope, microscope
Stops, eyepieces
Instruments for the anterior eye
Instruments for the posterior eye

Lecture 7:

- Other monochromatic aberrations:
- Coma
- Oblique astigmatism
- Curvature of field
- Distortion
- Astigmatism in the eye
- Cross-cylinders

Spherical aberrations

- True bending according to Snell's law $\left(n_{l} \sin \theta_{i}=n_{2} \sin \theta_{r}\right)$ is stronger than the paraxial approximation $\left(n_{l} \theta_{i}=n_{2} \theta_{r}\right)$, in particular at large θ.
- As a result, parallel light far away from the principal axis is focused stronger than light close to the optical axis

Oblique incidence

- Spherical aberrations refer to light from objects on the principal axis (on-axis).
- For light from objects not on the principal axis, (off-axis) four extra aberrations occur

1. Coma

- Magnification and focal distance of the image depend on the distance (r) from the principle axis at the lens

1. Coma

- The effect is that a off-axis point-like object results in an image with a comet-like shape (hence "coma").

2. Oblique astigmatism

- Recall: cylindrical lens
- focuses in one plane only
- Recall: toric (sphero-cylindrical) lens:
- Different horizontal and vertical curvature
- Different focal strength in horizontal and vertical plane
- Equivalent to spheric + cylindrical lens

Sturm Conoid

- For a toric lens, light does not focus in a point but in two lines at right angles with each other
- The interval between the two line foci is called the interval of Sturm
- The best focusing occurs somewhere inside the interval of Sturm. This point is called the Circle of least confusion
- The complete envelope of the light near the Circle of least confusion is called the Sturm Conoid

Sturm Conoid

Sturm Conoid:

2. Oblique astigmatism

- A toric lens is astigmatic for all objects
- A spheric lens is astigmatic only for objects away from the principal axis (off-axis)
- This is called oblique astigmatism
- A spheric lens behaves like a toric lens for offaxis objects

2. Oblique astigmatism

Tangential / sagittal planes

- The tangential plane contains the off-axis object and the principal axis
- In the tangential plane the object is furthest off-axis
- The sagittal plane contains the chief ray and is perpendicular to the tangential plane
- In the sagittal plane the object is on-axis
- The chief ray is the ray of light from the off-axis object and passing through the centre of the lens

3. Curvature of field

- Objects on a plane perpendicular to the principal axis give rise to a curved image:

3. Curvature of field

- The effect is to blur the off-axis points when imaging on to a plane, as for example in a camera lens
- It is not important in the eye, because the curvature of the retina compensates for the curvature of field.

Oblique astigmatism + curvature of field

- The combined effect of oblique astigmatism and curvature of field is two curved focal planes:

4. Distortion

- Distortion arises because the magnification of the lens varies across the image.
- In the absence of other aberrations, all points are perfectly imaged as points.
- For a square grid, the corners are displaced the most

Image

Barrel distortion

Pin-cushion distortion

Summary of monochromatic aberrations

- All are caused by large incidence angles of light on the air-glass interface and the consequent breakdown of the paraxial approximation
- On-axis objects only suffer from spherical aberrations
- Off-axis objects suffer from four additional aberrations:
- Coma: unequal magnification and focal distance through different lens zones
- Oblique astigmatism: shorter focal length for rays through tangential than sagittal plane
- Curvature of field: plane objects give rise to curved images
- Distortion: uneven magnification of the object
- Affect both convex and concave lenses

Reducing monochromatic aberrations

- In general, similar techniques that reduce spherical aberrations are valid to reduce the other monochromatic aberrations:
- aspheric lenses
- aperture stop
- distributed bending
- thin lenses of high refractive index
- using doublets

Monochromatic aberrations in the eye

- Spherical aberrations are reduced by
- The aspheric cornea
- The graded-index lens
- The iris as an aperture stop
- The directional sensitivity of the cones
- The four other monochromatic aberrations are not very relevant for the eye because they apply to off-axis objects only
- The eye only has high-resolution vision in the central part (macula)
- Curvature of field is no problem for the eye because the retina is curved

Astigmatism in the eye

- If the refractive power of the eye varies in different meridians, this is called astigmatism
- Astigmatism is caused by an irregularly shaped cornea or lens
- It can be corrected with a cylindrical lens
- It is often necessary to correct for myopia or hypermetropia as well
- This can be done by combining a spheric and a cylindrical lens into a toric (spherocylindrical) lens

Toric lens surface

Cross-cylinders

- Used to detect astigmatism and find the axis of astigmatism of the eye
- Combination of a negative and positive cylinder of equal strength (usually 0.5 D) mounted at an angle of 90 degrees

- In practice combined into one piece of glass

Cross-cylinders

- For the non-astigmatic eye, introducing crosscylinders will deteriorate the view independent of the orientation
- For the astigmatic eye, the view will be best when the axis of the cross-cylinders is aligned with the axis of astigmatism
- Patient is asked which orientation gives the best view
- If astigmatism is detected, a cylinder is introduced until the view is independent of the rotation of the cross-cylinders

