TOPICS

- Recap of PHYS110 1 lecture
- Physical Optics 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization

• Lens Aberrations - 3 lectures

Spherical aberrations

Coma, astigmatism, field curvature, distortion Chromatic aberrations

Instrumental Optics - 4 lectures

Telescope, microscope Stops, eyepieces Instruments for the anterior eye Instruments for the posterior eye

Lecture 6: Spherical aberrations

- The paraxial approximation
- Spherical aberrations
- Reducing spherical aberrations
- Spherical aberrations in the eye

The spherical lens

- Parallel light is incident on a lens with a spherical surface
- Light that is further away from the principle axis
 - has a larger angle with the normal
 - is bent stronger
- The light is focused

The paraxial approximation

- Refraction at the surface of a lens is governed by Snell's law: $n_1 \sin \theta_i = n_2 \sin \theta_r$
- At small angles, $\sin\theta \approx \tan\theta \approx \theta$
 - This is called the paraxial approximation
 - Snell's law can be simplified to $n_1 \theta_i = n_2 \theta_r$

The paraxial approximation

- 1. All the rays leaving a particular point on an object are focused on a point on the image.
- 2. The magnification is the same at all points on the image.
- 3. An object in a plane perpendicular to the principal axis is focused on a single image plane perpendicular to the principal axis.

To produce a focused, undistorted image, all three conditions need to be satisfied!

Aberrations

- Aberrations arise when:
 - The paraxial approximation is no longer valid
 ⇒monochromatic aberrations
 - The refractive index of the lens varies with the light wavelength (dispersion)
 ⇒ chromatic aberrations
- Aberrations cause blurred and distorted images

$\sin\theta$

θ	θ	$\sin heta$	$(\theta - \sin \theta)/\theta$
(degrees)	(radians)		
10	0.174533	0.173648	0.0051
20	0.349066	0.342020	0.0202
30	0.523599	0.500000	0.0451
40	0.698132	0.642788	0.0793
50	0.872664	0.766044	0.1222

 $\Rightarrow \sin\theta < \theta$

 \Rightarrow Difference increases at large θ

Bending on air-glass (*n*=1.5) interface

⇒ True bending is stronger than the paraxial approximation, in particular at large θ

Consequences

- Parallel light far away from the principal axis focuses stronger than light close to the optical axis
- Points do not image to points
- The image is blurred

• This is called spherical aberration

PHYS210 – Optics for Orthoptics 2

Reducing spherical aberrations

- Aspheric lens
- Aperture stop
- Distribute bending
- High refractive index
- Doublets

Aspheric lenses

- A smaller curvature far from the from the principal axis reduces spherical aberrations.
- These lenses are not spherical and thus called aspheric
- They are more difficult to produce than spherical lenses

Aperture stops

- Rays close to the principal axis have the smallest spherical aberration
- An aperture stop blocks the light far from the principal axis

without aperture stop

Distribute bending

- A lens has two surfaces
- The angle of incidence of the light should be minimised
- One way to achieve that is to distribute the bending equally over the two surfaces

High refractive index

 For a given focal length, lenses made from glass with a high refractive index are thinner and suffer less from spherical aberrations

high refractive index

Doublets

- Combining a convex lens with a weaker concave lens with a different refractive index can be designed to result in a converging system with reduced spherical aberrations
- The spherical aberration in the first lens is balanced by the opposite spherical aberration in the second.

Spherical aberrations in the eye

- Are reduced by several factors:
 - The cornea is aspheric
 - The lens has a graded index
 - The iris acts as an aperture stop
 - The retinal cones have directional sensitivity

Aspheric cornea

- Further from the optical axis, the curvature of the cornea decreases
- This reduces spherical aberrations in the same way as in aspheric lenses

Graded index lens

- The outer part of the lens has a lower refractive index than the centre
- This helps to reduce spherical aberrations

The iris as an aperture stop

- The iris acts like an aperture stop
- It blocks light far from the principal axis

Directional sensitivity of cones

- The cones are most sensitive to light that fall straight on them (paraxial rays).
- The cones are less sensitive to oblique rays that suffer more from spherical aberrations

