Lecture 4

- Recap of PHYS110-1 lecture
- Physical Optics - 4 lectures

EM spectrum and colour
Light sources
Interference and diffraction
Polarization

- Lens Aberrations - 3 lectures

Spherical aberrations
Coma, astigmatism, field curvature, distortion
Chromatic aberrations

- Instrumental Optics - 4 lectures

Telescope, microscope
Stops, eyepieces
Instruments for the anterior eye
Instruments for the posterior eye

Lecture 4

- Interference and diffraction
- Interference
- Anti-reflective coatings
- Single- and double slit diffraction
- Diffraction gratings
- Airy's disk and Raleigh's criterion

Phase difference

- Two waves of the same wavelength can differ in phase

phase difference

$$
1 / 12 \lambda=30^{\circ}
$$

$1 / 4 \lambda=90^{\circ}$

$$
1 / 2 \lambda=180^{\circ}
$$

$3 / 4 \lambda=270^{\circ}=-90^{\circ}$

Interference

Constructive interference

> "out-of-phase" phase difference $=$ half a wavelength or a half-integer number of wavelengths $1^{1 / 2}, 2^{1 / 2}, 3^{1 / 2}, \ldots$

\qquad

Destructive interference

Partial interference

- Less extreme interference is also possible
phase difference $=$ quarter wavelength

$+$

"out-of-phase" but different amplitude

Two waves that have different amplitudes cannot fully cancel each other

Anti-reflective coating

- In going from one medium to the other (for example air to glass) some fraction of the light will be reflected
- For perpendicular incidence, the fraction R of reflected light is

$$
R=\left(\frac{n_{2}-n_{1}}{n_{2}+n_{1}}\right)^{2}
$$

- This reflection can be reduced by applying a thin coating

Anti-reflective coating

- By applying a thin coating on the lens, the light is reflected twice
- If the optical pathlength between the two reflections is a half-integer number of wavelengths, the two reflections interfere destructively and the reflection is reduced
- This corresponds to a film thickness of $1 / 4,3 / 4,11 / 4, \ldots$ wavelength

- $1 / 4$ wavelengths is common: quarterwavelength coating

Anti-reflective coating

- Recall, in a medium with refractive index $n>1$, the wavelength is shorter than in air.
- The quarter-wavelength coating should be the thickness of a quarter wavelength inside the coating
- The right thickness is thus:

$$
t=\frac{1}{4} \frac{\lambda}{n_{2}}
$$

Anti-reflective coating

- For fully destructive interference the amplitudes of the two reflections should be equal
- That is achieved by choosing

$$
n_{2}=\sqrt{n_{1} \cdot n_{3}}
$$

- For glass with $n_{3} \approx 1.5$ this means $n_{2}=1.22$
- In practice no material with such low refractive index exists and magnesiumfluoride ($n=1.38$) is often used

- Zero reflection is not possible with such coating

Anti-reflective coating

- The thickness of anti-reflective coating is optimal for one wavelength and one angle of incidence only
- By choosing optimal suppression of reflection for green light (550 nm), reasonable suppression is achieved over the whole visible spectrum:

- Further reduction of reflections can be achieved by applying multiple layers of coating

Single slit diffraction

- If a parallel beam of light (e.g. laser) falls on a very narrow slit ($<\lambda$), secondary waves are generated as if there was a source of light at the slit

- The spreading of light at the narrow opening is called diffraction

Double slit diffraction

- When the laser strikes two slits that are close together, two sets of waves will be generated that will interfere in the region beyond the slits

Double slit diffraction

- In the directions where the wavefronts overlap one has constructive interference (diffraction maxima)

Double slit diffraction

- If the pathlength between the light coming through the two slits is an integer number m ($0,1,2,3, \ldots$) wavelengths, constructive interference occurs:

Double slit diffraction

- If the pathlength between the light coming through the two slits is a half integer number ($1 / 2,11 / 2,2^{1 / 2}, \ldots$) of wavelengths, destructive interference occurs:

Double slit diffraction

- The pathlength difference is the distance d between the two slits times the sine of the outgoing angle $\theta: d \sin \theta$

Double slit diffraction

- Constructive interference (diffractive maxima) occur at angles θ to the beam direction given by:

$$
d \sin \theta=m \lambda, \text { where } m=0,1,2,3, \ldots
$$

- Destructive interference (diffractive minima) occur at angles θ to the beam direction given by:

$$
d \sin \theta=(m+1 / 2) \lambda, \text { where } m=0,1,2,3, \ldots
$$

Diffraction grating

- A diffraction grating is a series of many narrow closely spaced slits
- Monochromatic light is diffracted into a series of narrow diffraction lines
intensity \rightarrow

Diffraction grating

- Just as for the two-slit diffraction, the distance between the maxima is given by $d \sin \theta=m \lambda$
- Because of the narrow maxima, a diffraction grating can be used to measure the wavelength of a light source

Spectral analysis

- A diffraction grating can be used to analyse the spectrum of a light source
- For example a gaseous light source with 3 discrete spectral lines gives the following diffraction pattern:

Spectral analysis

- A solid light source with a continuous spectrum will show its complete spectrum when analyzed with a grating:

- Only the first order spectrum is clear, the 2nd, 3rd, etc. overlap

Prism vs diffraction grating

- We have now seen two different ways to do a spectral analysis of light: a prism through dispersion and a grating through diffraction. There are some differences:
- A diffraction grating has a $0^{\text {th }}$ order maximum with light that passes straight through, a prism deflects all light.
- A diffraction grating splits the light into multiple spectra, a prism generates just one spectrum
- A diffraction grating separates the colours much stronger than a prism does
- A prism deflects short wavelengths (blue) more than long wavelengths (red). A diffraction grating deflects red more than blue

Prism vs diffraction grating

Diffraction through circular opening

- A beam of light striking a small pinhole produces a circular diffraction pattern on a screen beyond.
- The bright central spot is called Airy's disc.

Size of Airy's disc

- The first minimum of Airy's disc occurs at $\sin \theta=1.22 \lambda / d$

- This angle is called the angular radius of Airy's disc

Airy's disc for an optical system

- The same holds for an optical system
- Parallel light impending on a perfect lens will not focus in a spot of zero size
- The diffraction limit of the spot size is Airy's disc with an angular size of $\sin \theta=1.22 \lambda / d$

Resolving power of optical system

- Suppose there are two distant light sources $\mathrm{O}_{1}, \mathrm{O}_{2}$ (e.g. stars) separated by an angle a that produce two images $\mathrm{I}_{1}, \mathrm{I}_{2}$ in a telescope with a lens of diameter d
- The images will be two Airy discs with a radius given by $\sin \theta=1.22 \lambda / d$

- What is the smallest angle a that can be resolved?

Rayleigh's criterion

- Lord Rayleigh proposed the criterion that two points are just resolvable when the angular separation a equals the angular radius of Airy's disc
- At this radius there is a distinct dip in the intensity of the observed image between the two points

Resolution power

- We thus find the following relation for the resolution power of an optical system:

$$
\sin a=1.22 \lambda / d
$$

- For small angles we have sina a and the relation simplifies to $a=1.22 \lambda / d$

Visual acuity of the eye

- For the eye, the resolution power is called the visual acuity
- Assuming a pupil diameter of 4 mm and a wavelength of 550 nm we find

$$
\begin{aligned}
& \alpha=1.22 \frac{\lambda}{d}=1.22 \frac{550 \cdot 10^{-9} \mathrm{~m}}{4 \cdot 10^{-3} \mathrm{~m}}= \\
& 1.7 \cdot 10^{-4}=0.17 \mathrm{mrad}
\end{aligned}
$$

- This corresponds to being able to distinguish two points separated by 0.17 mm at a distance of 1 m

