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Abstract

An analysis of the Run 1-4 T2K data is performed with a Markov Chain Monte
Carlo. The data included in the analysis are the ND280 v,, SK 1R, and SK 1R,
samples. When fitting with only T2K data, the best fit point for the oscillation
parameter is Am3, = 2.491 x 1073 eV?, sin® fy3 = 0.520, and sin? ;3 = 0.0377 for
normal hierarchy and d., = 0, with 90% credible intervals of 2.34-2.69%x1073 V2,
0.445-0.595, and 0.0230-0.0600, respectively. When fitting with the reactor con-
straint, the best fit point for normal hierarchy is Am3, = 2.510 x 1073 eV?,
sin? @3 = 0.527, and dep = —1.551. The 90% credible interval for d., excludes
0.45-2.66 for the normal hierarchy and 0.15-3.04 for inverted hierarchy. Other in-

terpretations of the data are also discussed.

T2K-TN-171
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1 Introduction

This technical note describes a fit to the ND280 tracker v,, SK 1R, and SK 1R,
Run 1-4 data using the Markov Chain Monte Carlo method. A description of the
Markov Chain method can be found in [1].

This analysis uses two new features compared to the method described the ref-
erenced note; instead of reweighting the predicted Monte Carlo (MC) spectra using
binned pdf templates, the individual MC events are weighted event-by-event, ac-
cording to the relevant variable(s) for the tweak being applied. Then, when all
weights have been calculated, the MC events are binned to create the predicted
spectra.

Additionally, the method to find the best fit point has been changed, due to the
increased number of interesting oscillation variables. The fitter now uses an adaptive
kernel density method to smooth the posterior and find the maximal point. This
method is described in Section 5.

The Bayesian probability function used to fit the data depends on the data sam-
ple and flux, cross section, detector, and final state interactions (FSI) systematics,

which will be described in subsequent sections. This function has the form:
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where V;; represents covariance matrices constraining systematic parameters la-
beled by b for flux, x for cross section, f for FSI, d for ND280 detector, and skd for
SK detector. N? is the number of predicted events in a particular bin, given the

values of the systematic parameters, and Nz-d is the number of data events.

2 Event Selection

2.1 ND280 Tracker v,

The 2013 tracker v, selection is described in T2K-TN-152 [2]. The charged-current
inclusive (CClnc) is divided into three subsamples: charged-current 0-7 (CCO7),
charged-current single 7+ (CC17), and charged-current other (CCoth). The sample
is subdivided in order to isolate topologies of interest for constraining cross section
systematics.

The inclusive sample is defined by the following cuts:

1. Good Data Quality: the global ND280 data quality flag must be good
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2. Bunching: Tracks considered part of the same event must be in the same beam

bunch

3. TPC Quality and Fiducial Volume: There must be at least one track beginning
in FGD1’s fiducial volume, and entering a TPC with at least 18 vertical TPC

clusters

4. Backwards-going and TPCL veto: if there is activity in TPC1, or if the end
position of the highest momentum track is more upstream than the start po-

sition, the track is vetoed

5. Broken Tracks FGD1: Events are rejected when the muon candidate’s z start
position is more than 425 mm away from the FGD1 upstream edge and in the
same event where at least one “FGD-only” track with its start position out the

FGD1 fiducial volume exists.

6. Muon PID: The highest momentum negative track in the event must be muon-

like, according to TPC PID

The CCOm sample is further defined by rejecting events with any pion recon-
structed in the TPC, any electrons or positrons in the TPC, or any Michel electrons
or pions reconstructed in the FGDs.

The CCl7w sample is further defined by rejecting events with negative pions or
electrons or positrons in the TPC and selecting events where there is one recon-
structed positive pion or one Michel electron reconstructed in the TPCs and FGDs.

The CCoth sample contains all other CClnc events not in the CCOx or CClnw
samples.

The binning for the samples chosen for fitting is finer than the binning from the
2012 analysis, and is chosen to be as fine as possible while still requiring at least 25

MC events in each bin. The binning procedure is described in [2]. The bins are:

e CCOm and CCoth

— pu (MeV): 0, 300, 400, 500, 600, 700, 800, 900, 1000, 1250, 1500, 2000,
3000, 5000, 30000

— cosf: -1.0, 0.6, 0.7, 0.8, 0.85, 0.9, 0.92, 0.94, 0.96, 0.98, 0.99, 1.0

o CClm
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— pu (MeV): 0, 300, 400, 500, 600, 700, 800, 900, 1000, 1250, 1500, 2000,
5000, 30000

— cosf: -1.0, 0.6, 0.7, 0.8, 0.85, 0.9, 0.92, 0.94, 0.96, 0.98, 0.99, 1.0

The data samples are shown in Figure 1. Table 1 gives the number of events in

the 0-30 GeV muon momentum region for the three samples and the CC inclusive

total sample.
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Figure 1: The data samples for this analysis. Shown in (a) is the CCOm sample, in (b)

the CClm sample, and in (¢) the CCoth sample.

Table 1: Number of data events in the three subsamples and the inclusive sample.

CCor  CClx ccoth\ccmc
17369 4047 4173 ‘25589

2.2 SK 1R, and 1R,

The selection for the SK data samples in 2013 is described in TN-148 [3]. For the

1R,

1.

events, the selection is as follows:

Fully-contained fiducial volume

One ring found by the ring counting algorithm

. The ring is identified as electron-like by the PID algorithm

. Visible energy (F,;s) is greater than 100 MeV

7

Events per 100 MeV per 0.01
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Events/50 MeV

5. Zero decay electrons

6. Reconstructed neutrino energy (FE,.. ) is less than 1250 MeV

7. iTQun 7° cut of In(L0/Le) < 175 — 0.875 x m 0

There are 28 total events in this sample.

For the 1R, events, the selection is as follows:

1. Fully-contained fiducial volume event

2. One ring found by the ring counting algorithm

3. The ring is identified by the PID as muon-like

4. Reconstructed momentum is greater than 200 MeV /c

5. Number of decay electrons is equal or less than one

There are 120 total events in this sample.

Erec (GeV)

Events/50 MeV

10

...

|l o @l .19
5

6 7
Erec (GeV)

Figure 2: SK data samples for Runs 1-4. Left plot shows 1R, and right plot 1R,. The
fit window for the 1R, events extends to 30 GeV, but no events are found above 7 GeV,

so the data is only shown up to this limit for clarity.
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3 Systematic Errors

3.1 Flux

The flux systematic errors are from TN-099 |[1]. The covariance matrix is binned in
11 bins for v, 5 bins for v, 7 bins for v,, and 2 bins for 7, for both ND280 and

SK as follows, in true neutrino energy (GeV):
o v, 0.0,04,05,0.6,0.7, 1.0, 1.5, 2.5, 3.5, 5.0, 7.0, 30.0
o 7, 0.0,0.7, 1.0, 1.5, 2.5, 30.0
o v 0.0,05,0.7, 0.8, 1.5, 2.5, 4.0, 30.0

e i/.: 0.0, 2.5, 30.0

Figure 3 shows the flux covariance matrix.

Parameter Index; ND280: 0-24, SK: 25-49

30 40
Parameter Index; ND280: 0-24, SK: 25-49

Figure 3: The flux covariance matrix used in the analysis. The bin indices are as follows:
ND280 v, (0-10), ND280 v, (11-15), ND280 v, (16-22), ND280 v, (23-24), SK v, (25-
35), SK v, (36-40), SK v, (41-47), and SK 7, (48-49), with the energy divisions for the

neutrino types given in the text.

Flux weights are applied on an event-by-event basis to the MC events depending

on the true neutrino energy of the event.



145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

3.2 Cross Section

The cross section parameterization is largely unchanged from the 2012 analysis. The
relevant parameters are given in Table 2. All parameters are independent from one
another, excepting MEES, CClr El1, and NC17Y%, which have correlations between
them as detailed in [5].

The two types of systematic, shape and normalization, are treated differently.
For the shape parameters, the treatment is different between ND280 and SK. At
ND280 a spline is created using T2KReWeight for each MC event. This spline is
then evaluated for the desired reweighting value of the parameter, and that weight
is applied to the event. At SK, splines are created in binned E,.. and Ej.,.. Each
MC event is weighted according to the evaluated spline for the kinematic bin of that
event. For the normalization parameters, the event is simply weighted by the value

of the parameter.

3.3 ND280 Detector

The detector systematics for this analysis are described in the tracker selection
technical note [2]. For an MCMC analysis, the method of reanalyzing every event
for every step was computationally prohibitive, taking approximately 3s to reweight
each step. Therefore, a covariance matrix approach was used, similar to the 2012
method. The covariance matrix was produced by 2000 throws of the inputs for the
detector systematics, and the full detector systematic analysis was used for each

throw. The covariance for each bin of the matrix was calculated as

2000 (er;ewelghted,z _ Naverageﬂ') (er;ewelghted,] _ Naverage,j)

1
V;j = 2000 nz: Nyaverage,j yjaverage,i (2)

INAVEragei ig the average of the 2000 throws.

where
The binning for the detector systematic covariance matrix was chosen to be
coarser than the binning used for fitting the data, in order to reduce the number of
parameters used in the fit, especially as the size of the detector systematic errors
is typically smaller than the size of the flux and cross section errors. The binning

chosen for all samples has seven bins in momentum and five bins in cos and is as

follows:

10



Table 2: NIWG 2012a cross section parameters for the fit, showing the applicable range
of neutrino energy, nominal value and prior error. The type of systematic (shape or

normalization) is also shown.

Parameter FE, Range Nominal Error | Class
MEE all 1.21 GeV/c?  0.45 | shape
MEES all 1.41 GeV/c*  0.11 | shape
pr 12C all 217 MeV/c 30 shape
Egp 2C all 25 MeV 9 shape
SF 12C all 0 (off) 1 (on) | shape

CC Oth shape ND280 all 0.0 0.40 | shape
pp 60 all 225 MeV /c 30 shape

Eg 150 all 27 MeV 9 shape

SF 160 all 0 (off) 1 (on) | shape

CC Oth shape SK all 0.0 0.40 | shape
W-Shape all 0.0 0.20 | shape
Pionless Delta Decay all 0.0 0.2 shape

CCQE E1 0<E, <15 1.0 0.11 norm

CCQE E2 15< E, <35 1.0 0.30 norm

CCQE E3 E, > 35 1.0 0.30 norm

CClr E1 O0< FE, <25 1.15 0.43 norm

CClm E2 E,>25 1.0 0.40 norm

CC Coh all 1.0 1.0 norm
NC1x® all 0.96 0.43 | norm
NC 17+ all 1.0 0.3 norm
NC Coh all 1.0 0.3 norm

NC other all 1.0 0.30 | norm

v,/ Ve all 1.0 0.03 norm
v/v all 1.0 0.40 | norm

11
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e p, (MeV): 0, 300, 500, 600, 700, 1000, 2000, 30000

e cosf: -1, 0.85,0.9, 0.94, 0.98, 1.0

The covariance matrix is shown in Figure 4. In this matrix, bins 0-34 cover the
CCOn sample, 35-69 the CClw sample, and 70-104 the CCoth sample. Within each

sample, the bins iterate over cos @ from low to high for the lowest momentum bin,

then from low to high for the second lowest momentum bin, etc.

Sio =
—

S =
2

= X
= <
S b
O c
S 2
2 2
©

& 70)

)

5 0.15

)

g

@

g

3 35

%

()

2

£ 0.05

Q

@

£

8

©

[a%

OO

35 70 105
Parameter Index: CG(0-34), CC1 (35-69), CCoth (70-104)

Figure 4: The detector covariance matrix used in the analysis. In this matrix, bins 0-34
cover the CCOm sample, 35-69 the CClz sample, and 70-104 the CCoth sample. Within
each sample, the bins iterate over cosf from low to high for the lowest momentum bin,

then from low to high for the second lowest momentum bin, etc.

To apply this systematic, each event is weighted by the value according to the

bin corresponding to the event’s reconstructed momentum and angle.

3.4 Final State Interactions (ND280 only)

In previous ND280 analyses, the final state interaction systematics were combined
with the detector systematics. However, due to the new treatment of the detector
systematics, the FSI is no longer included. For this analysis, the six FSI parameters
described in [5] (Pion production, ‘PION _PROD’; pion absorption ‘PION ABS’;
low and high energy charge exchange, ‘CEX L0’ and ‘CEX_HT’; and low and high

12



187 energy inelastic interactions, INEL LO’ and ‘INEL HI") are treated as indepen-
188 dent. That is

Wrsi(0INEL LO»OINEL HI,OPION PROD>0OPION ABS,OCEX LO,0OCEX HI)=
W(oiner 1o) X W(oiner ur) x W(opron ProD) X
W(opron aBs) x W(ocex ro) x W(ocex mr)

189 A covariance matrix was created from the variations in Table 1 of [5], and is

190 shown in Figure).

CEX_HI

CEX_LO

sign(V IV

PION_ABS

PION_PROD

INEL_HI

INEL_LO 03

INEL_LO INELHI  PION_PROD  PION_ABS CEX_LO CEX_HI

Figure 5: The FSI covariance matrix used in the analysis. The parameters are defined in

the NIWG 2012a technical note. |5]

101 For each parameter, a spline is created using T2KReWeight for each MC event.
102 This spline is then evaluated for the desired reweighting value of the parameter, and
103 that weight is applied to the event.

104 3.5 SK Detector

105 The SK detector systematics are correlated between the 1R, and 1R, samples, as
196 described in TN-186 [6]. The first 12 parameters are for the 1R, sample, in four
197 sets of three energy bins (0-0.35; 0.35-0.8; 0.8-1.25 GeV) for the signal v, beam
198 v, CC, beam v, CC, and NC events. The next 6 parameters are for 1R,: three
199 energy bins (0-0.4; 0.4-1.1; 1.1-30 GeV) for v, CCQE, one bin for v, CCnQE, one
200 bin for v, CC, and one bin for NC events. The final bin is the energy scale error.

13



201 The covariance matrix is shown in Figure 6. The matrix contains the FSI+SI errors

202 for SK.

I
N

sign(V) x ||V,

i

o
©

Parameter Index: 1R0-11, 1R 12-17, Escale 18

0O 2 4 6 8 10 12 14 16 18
Parameter Index: 1R0-11, 1R 12-17, Escale 18

Figure 6: The SK detector covariance matrix used in the analysis. The errors for 1R, are

in bins 0-11, 1R, in bins 12-17, and the energy scale error in bin 18.

- 4 Monte Carlo Predictions and Pre-fit Data/MC

204 comparison

205 4.1 ND280

206 This analysis uses Production 5E/F MC to generate the predicted spectra for the
207 samples. The raw MC undergoes two tunings to generate the initial predicted
208 distributions. First, the events are tuned according to the 11bv3.2 tuning including
200 Run 4 data. Secondly, the events are tuned for the non-nominal values of the
210 cross section parameters MfES, CClw E1, and NC170 according to a fit to the
211 MiniBoone CClm data as described in [5]. Table 3 gives the number of events in
212 the 0-30 GeV/c muon momentum region for the data and the MC.

213 The nominal MC prediction for the is shown in Figure 7. The ratio of data
214 to nominal MC is shown in Figure 8. Projections of the data and nominal MC in
215 momentum and angle are shown in Figures 9 and 10. Generally, the MC predicts

14



Table 3: Number of data events in the three subsamples and the inclusive sample.

CCOr  CClm  CCoth | CClnc

Data 17369 4047 4173 25589
MC 19978.2  4953.2 4544.26 | 29475.6
Data/MC Ratio  0.869  0.817  0.918 0.868

216 a larger number of events than the data, with the effect more pronounced in the

217 CCO7 and CClw samples than in the CCoth sample.
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Figure 7: The nominal number of MC predicted events in the p—cos # binning used for the
fit. The highest momentum and backwards angle bins are not shown for clarity. Shown

in (a) is the CCO7 sample, in (b) the CClz sample, and in (c¢) the CCoth sample.

15
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Figure 8: The ratio between the data events and the nominal number of MC events in
the p—cos 6 binning used for the fit. Shown in (a) is the CCOnm sample, in (b) the CClx
sample, and in (c¢) the CCoth sample.

> > s > LAAARE RAAAS LAY MRS RARSS LLLLS LALLE LALL |
3 2] L
s S50k Data = Data s
(=3 f=3 f=3
=] — Prefit MC = — Prefit MC = — Prefit MC
5 200 o) 5
(=% (=% (=%
] 8° 8
= = =
2 1500] Q 25 Q
43 @ 53]

g

Bl bbbl bbbt d
500 1000 1500 2000 2500 3000 3500 4000 4500 5000 00 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Momentum (MeV) Momentum (MeV) Momentum (MeV)

Figure 9: The data and predicted number of MC events projected onto the momentum

axis. Shown in (a) is the CCOxm sample, in (b) the CClm sample, and in (c¢) the CCoth

sample.
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Figure 10: The data and predicted number of MC events projected onto the cosf axis.

Shown in (a) is the CCOx sample, in (b) the CClz sample, and in (c¢) the CCoth sample.
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4.2 SK IR,

This analysis uses SKMC v13a to generate the predicted spectra for the samples.
The raw MC undergoes two tunings to generate the initial predicted distributions.
First, the events are tuned according to the 11bv3.2 tuning including Run 4 data.
Secondly, the events are tuned for the non-nominal values of the cross section pa-
rameters MEES, CClm E1, and NC170 according to a fit to the MiniBoone CClzw
data as described in [5]. Table 4 gives the number of events in the 0-30 GeV
reconstructed energy range, broken down by sample type and interaction mode.
Additionally, Table 5 shows the number of predicted events by sample type, after
tuning by the BANFF v5 ND280 fit.

4.3 SK 1R,

This analysis uses SKMC v13a to generate the predicted spectra for the samples.
The raw MC undergoes two tunings to generate the initial predicted distributions.
First, the events are tuned according to the 11bv3.2 tuning including Run 4 data.
Secondly, the events are tuned for the non-nominal values of the cross section pa-
rameters MEES, CClm E1, and NC170 according to a fit to the MiniBoone CClzw
data as described in [5]. Table 6 gives the number of events in the 0-1250 MeV
reconstructed energy range, broken down by sample type and interaction mode.
Additionally, Table 7 shows the number of predicted events by sample type, after
tuning by the BANFF v5 ND280 fit.

Table 8 shows the number of data events and predicted MC events and their
ratios for the two samples, using PDG2012 values for the oscillation parameters;
Figure 11 shows the same graphically as a function of E,.., along with the unoscil-
lated spectra. Figure 12 shows a scan of the total rates as a function of oscillation

parameters.

18



Table 4: Top: Oscillated rates for 1R,,, tuned by NIWG2012 for 6.57x10%*° POT. Os-
cillation parameters used: sin?fy; = 0.5, sin?#;3 = 0.0251, sin?#y, = 0.311, Am?2, =
7.5 x 107° eV, Am3, = 2.4 x 1073 €V, d,, = 0. Bottom: Unoscillated rates for 1R,. All

mixing angles set to zero.

v, U, v, U, vesignal

CCQE 73.583 | 0.035 | 4.782 | 0.002 | 0.198
CClm 41.398 | 0.029 | 2.949 | 0.002 | 0.081
CC coherent 0.897 |0.001 | 0.247 | 0.000 | 0.005
CCnr 6.558 | 0.004 | 0.404 | 0.000 | 0.001
CC other 2.175 | 0.003 | 0.100 | 0.000 | 0.001
NCrY 0.945 | 0.032 | 0.054 | 0.004 | 0.000
NCrt/~ 4.638 | 0.131 | 0.262 | 0.016 | 0.000
NC coherent 0.018 | 0.000 | 0.001 | 0.000 | 0.000
NC other 2764 | 0.112 | 0.158 | 0.012 | 0.000
Sample Totals || 132.977 | 0.348 | 8.956 | 0.036 | 0.285

Total Rate 142.603
vy U, vy, U, vesignal

CCQE 367.066 | 0.038 | 9.710 | 0.002 | 0.000
CClm 81.343 | 0.031 | 4.143 | 0.002 | 0.000
CC coherent 2.138 | 0.001 | 0.462 | 0.000 | 0.000
CCnr 7.465 | 0.004 | 0.461 | 0.000 | 0.000
CC other 2.304 | 0.003 | 0.107 | 0.000 | 0.000
NCrY 0.945 | 0.032 | 0.054 | 0.004 | 0.000
NCrt/~ 4.638 | 0.131 | 0.262 | 0.016 | 0.000
NC coherent 0.018 | 0.000 | 0.001 | 0.000 | 0.000
NC other 2.764 | 0.112 | 0.158 | 0.012 | 0.000
Sample Totals || 468.681 | 0.353 | 15.358 | 0.036 | 0.000

Total Rate 484.428
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Table 5: Top: Oscillated rates for 1R, tuned by BANFF2013 v5 for 6.57x10%° POT.
Oscillation parameters used: sin®#fs3 = 0.5, sin? ;5 = 0.0251, sin® #;, = 0.311, Ami, =
7.5 x 107° eV, Am3, = 2.4 x 1073 €V, d,, = 0. Bottom: Unoscillated rates for 1R,. All

mixing angles set to zero.

v, U, Uy v, vesignal
Sample Totals || 116.642 | 0.259 | 7.866 | 0.024 | 0.275
Total Rate 125.067
vy Ve vy, U vesignal
Sample Totals || 431.753 | 0.263 | 13.992 | 0.024 | 0.000
Total Rate 446.032
I e L L L L B L 12} U I IR LU I I T
I A & n AN
w F ° 1R: Data eventz o w 35 ° 1R: Data event: o —:

30 4

25 3

0.6 08 1 12

Energy (GeV) Energy (GeV)

Figure 11: Oscillated (blue) and unoscillated (red) spectra for 1R,, (left) and 1R, (right)
samples. Rates are tuned by NIWG2012 for 6.57x10% POT. Oscillation parameters
used: sin®fy3 = 0.5, sin? 013 = 0.0251, sin® @y, = 0.311, Am2, = 7.5 x 1075 eV, Am2, =
24 x 1073 eV, 6. = 0.
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Table 6: Top: Oscillated rates for 1R., tuned by NIWG2012 for 6.57x10%° POT, using the
fiTQun 7° cut. Oscillation parameters used: sin®#y3 = 0.5, sin® 613 = 0.0251, sin? 6y =
0.311, Am?, = 7.5 x 107 €V, Am3, = 2.4 x 1073 eV, ., = 0. Bottom: Unoscillated rates

for 1R.. All mixing angles set to zero.

v, Ve v, U, ve.signal

CCQE 0.050 | 2.276 | 0.001 | 0.098 | 14.989
CClm 0.021 | 0.952 | 0.000 | 0.053 | 2.970
CC coherent || 0.000 | 0.009 | 0.000 | 0.007 | 0.044
CCnm 0.001 | 0.050 | 0.000 | 0.003 | 0.030
CC other 0.000 | 0.008 | 0.000 | 0.000 | 0.002
NCr? 0.475 | 0.015 | 0.024 | 0.002 | 0.000
NCrt/~ 0.149 | 0.004 | 0.008 | 0.000 | 0.000
NC coherent | 0.181 | 0.005 | 0.016 | 0.001 | 0.000
NC other 0.329 | 0.010 | 0.013 | 0.001 | 0.000
Sample Totals || 1.207 | 3.329 | 0.062 | 0.165 | 18.036

Total Rate 22.798
vy Ve v, U, vesignal

CCQE 0.050 | 2.471 | 0.001 | 0.104 | 0.365
CClm 0.021 | 1.010 | 0.000 | 0.056 | 0.040
CC coherent || 0.000 | 0.010 | 0.000 | 0.007 | 0.001
CCnr 0.001 | 0.052 | 0.000 | 0.003 | 0.000
CC other 0.000 | 0.008 | 0.000 | 0.000 | 0.000
NCr? 0.475 | 0.015 | 0.024 | 0.002 | 0.000
NCrt/- 0.149 | 0.004 | 0.008 | 0.000 | 0.000

NC coherent | 0.181 | 0.005 | 0.016 | 0.001 | 0.000

NC other 0.329 | 0.010 | 0.013 | 0.001 | 0.000
Sample Totals || 1.206 | 3.585 | 0.062 | 0.175 | 0.406
Total Rate 5.434
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Table 7: Top: Rates for oscillated 1R, using the iTQun 7° cut and tuned by BANFF2013
v for 6.57x10%° POT. Oscillation parameters used: sin?f,; = 0.5, sin?26;3 = 0.1,
sin 20, = 0.8704, Am2, = 7.6 x 107° eV, Am32, = 2.4 x 107% eV, J,, = 0. Bottom:
Rates for unoscillated 1R, using the fitqun7® cut and tuned by BANFF2013 v5. Ounly

sin? 2613 = 0.0; other oscillation parameters remain the same.

vy, U, vy, U, vesignal

Sample Totals || 0.946 | 3.114 | 0.067 | 0.152 | 17.331

Total Rate 21.610

Yy Ve vy, U, vesignal

Sample Totals || 0.946 | 3.364 | 0.067 | 0.161 | 0.410

Total Rate 4.947

Table 8: Number of data events in the SK samples, with MC tuned by NIWG2012 for
6.57x10%° POT, using the iTQun 7° cut for 1R.. Oscillation parameters used: sin? 6y =
0.5, sin®fy3 = 0.0251, sin® 6o = 0.311, Am2, = 7.5 x 107° eV, Am2, = 2.4 x 1073 eV,
dep = 0.

1R, 1R,
Data 28 120
MC 22.798 142.603

Data/MC Ratio | 1.228  0.841
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Figure 12: A scan of event rates for Run 1-Run 4 data of 6.57x10%° POT. Left shows 1R,
scanning over sin? 3 and Am3,; right shows 1R, scanning over sin? 0,5 and Ocp. Other
oscillation parameter are fixed at sin®fp; = 0.5 (for 1R.), sin?#y3 = 0.0251 (for 1R,),
sin? 01, = 0.311, Am2, = 7.5 x 1075 eV, Am32, = 2.4 x 107 eV (for 1R.), d,, = 0 (for
IR,)
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5 Adaptive Kernel Density Method

The primary result of a Bayesian analysis such as this one is the whole posterior;
however, it is desirable to summarize the result with a best fit point. Here, it is
defined as the point of maximum probability density in oscillation parameter space.
In the previous MCMC analysis, there were only two oscillation parameters of in-
terest, and the best fit point was determined by the maximum bin of the binned 2D
posterior in those parameters. This analysis, however, has four oscillation parame-
ters of interest, and as a result, binning the posterior and finding the maximum bin
quickly runs into a problem of bin statistics. Therefore, this analysis uses a kernel
density estimation (KDE) technique to turn a set of discrete points into a smooth
continuous density surface. Minuit |7] is then used to find the point of maximum
density.
The kernel density estimator at a point x is defined as:

r — Iy

f)= S KT Q
=1

where x1, xo ...z, are discrete points and K is the kernel function. This analysis

uses a gaussian kernel function, with bandwidth h becoming the o of the gaussian:

n

fay =23 e () @

For optimum smoothing, we use an adaptive kernel density estimator that ad-
justs the bandwidth to the local density of points as detailed in [8]. In this method,
the bandwidth is inversely proportional to the local density of points—producing
a larger bandwidth in areas of low density and a smaller bandwidth in areas of
high density—which means that low density areas are not undersmoothed and high

density areas are not oversmoothed.

6 Fitter Validation

This analysis has been validated with three methods: using a nominal data set, an
ensemble of toy experiments and a series of common fake data sets shared between

joint oscillation analyzers.
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6.1 Nominal Data Set

20xxwx[xwxw[xxxx[xxxx[xxxx[xwxw

18— — Nominal Data Set

16—

Toy Data Set 1

Events Per 50 MeV

14f
12F

10F

2 25
Reconstructed Energy (GeV)

Figure 13: Nominal data set compared to a toy data set.

A nominal dataset is defined to be a toy experiment generated from the PDF in
such a way that there are no statistical or systematic fluctuation as illustrated in
Figure 13. This is achieved by reweighting the PDF to nominal values of systematic
parameters, along with the chosen oscillation parameter values, and required protons
on target, but instead of drawing randomly from the PDF, the PDF is considered
as the dataset. This produces a dataset free from statistical fluctuations, which,
when fit, should result in parameters free from bias. Figures 14 and 15 show the
results of a fit to a nominal dataset using 20 million MCMC steps. Figure 14
shows the best fit values of all systematic parameters and their posterior error, and
Figure 15 shows the fractional residual of each systematic parameter. Both plots
show minimal bias in the parameters, and are complimentary to the toy experiment
results in section 6.2.

Figures 16 and 17 show credible intervals and best fit values constructed from
the nominal posterior distributions. Also plotted are the true parameter values of

the nominal data set.

6.2 Toy Experiments

Toy experiments are produced by throwing fake datasets from both SK and ND280

PDFs. Data sets are generated from poisson fluctuations of a particular underlying
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Parameter Number

Figure 14: Nominal best fit values from systematic parameters. Error bars are the

posterior error. Most parameters have either a true central value of 1 or 0.
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Figure 15: Nominal best fit value subtracted from the true central value, divided by the
best fit value. Shows the fractional shift from the true value of each systematic parameter.

All parameters stay within 10% of the true value.
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Figure 16: Nominal data fit contours. In (a), best fit lines are constructed in slices of d.,
and the value at d., = 0 is positively offset from the true value due to marginalization of

the spectral function as shown in Figure 21.
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Figure 17: sin?(fy3) vs Am2, separated into both hierarchies for a nominal data fit.
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PDF. To create this underlying PDF, all systematic parameters are kept at nomi-
nal values; however, systematic fluctuation is introduced by randomly throwing the
central values for the systematic penalty terms when performing the fit. In Equa-

"o is the central value which is thrown separately for each toy dataset,

tion 5, p
according to the prior PDF for that systematic, including the correlation between
related systematics. Toy experiments are fit using a minimum of 10® steps to allow

the production of many fits, whilst ensuring adequate convergence.

n n
1 —1(, pr
—InP = ZZ§(pr0P _plnom)‘/;j1<p§ Op_p?om) (5)

i=0 j=0
To test the fitter for bias and correct error determination, the following definition

is used to construct pull distributions for all parameters:

pull = Hfit = Hirue (6)

O fit

The best fit and post-fit error for nuisance parameters are extracted from the toy
posterior distributions by constructing a 1D marginal distribution for each parame-
ter and fitting a gaussian to a restricted range defined by p =+ rms of the histogram.
For oscillation parameter pulls, the best fit is found using the 3D posterior mode
at dep = 0 described in Section 5. Because the 1D posterior distributions for the
oscillation parameters are non-gaussian, the RMS is used as a better estimate of
the error.

The post-fit error oy;; of each parameter for every toy experiment was plotted
against the prior error and, where available, the ND280 BANFFv2 post-fit error
value [9] in Figure 18. Shown in Figure 19 is the mean of the pull distributions for
the toys, constructed from Equation 6. The plots in Figure 20 show the oscillation

parameter pull distributions.

6.3 Marginalization Induced Biases

To extract the best fit values and errors necessary for pull calculations, the 1D
marginal posterior for each parameter is constructed as described in section 6.2.
This method means that for each parameter, the best fit estimate and error is
found marginalizing all other parameters. In doing so, any non-gaussian behavior

and correlations with parameters with non-gaussian behavior can cause apparent
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Figure 18: Black 1

applicable). Black points: posterior error from toy experiments. These plots show how

the power to constrain parameter errors is in good agreement with the BANFFv2 post-fit

values.
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Figure 20: Oscillation parameter pulls for d., = 0. Since there is no sensitivity to fit for

dcp, the pull distribution is omitted.

biases in the mean of the pull distributions. In this analysis, there are several

parameter pulls which are not within 1o of 0. These are:

e Quasi-Elastic Axial Mass (MEE): this parameter is correlated with the ND280
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spectral function parameter, which is both non-gaussian and one-sided (Fig-

ure 22).

Fermi momentum: this parameter is highly correlated with spectral function,

which likewise produces an apparent shift as with MgE. (Figure 23).

Spectral function for carbon and oxygen: these are parameters which are de-
fined to be between 0 and 1, and have a distinctly non-gaussian shape in the

posteriors.

SK Energy Scale: the energy scale is a unique parameter in that it shifts
the reconstructed energy of events from both SK samples. A high enough
shift will cause an event to migrate to an adjacent bin. This behavior causes
a non-gaussian posterior distribution for the energy scale parameter. Al-
though the posterior mode shows there is negligible bias, fitting a gaussian
to a non-gaussian distribution causes a bias in the resulting pull distribution
(Figure 24).

CCnQE v, Normalization: this parameter is correlated with the oscillation
parameters. Since these parameters have non-gaussian posterior distributions,
marginalizing them affects the posteriors of correlated parameters. This man-
ifests in the CCnQE v, normalization parameter as a small negative shift in

the central value.
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Figure 21: Joint posterior for sin?(f;3) and the oxygen spectral function. When marginal-
izing the spectral function, due to the correlations between both parameters and the
boundary at 0, a shift in probability to positive values is caused in the 1D marginal

posterior of sin®(;3). Plot constructed from a nominal data set posterior.
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Figure 22: Correlation between quasi-elastic axial mass and spectral function parameters

for carbon. Plot constructed from a nominal data set posterior.
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Figure 23: Correlation between fermi momentum and spectral function parameters for

carbon. Plot constructed from a nominal data set posterior.
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Figure 24: Non-gaussian posterior distribution of the SK energy scale parameter. Plot

constructed from a nominal data set posterior.
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6.4 Fake Data Set Fits

A series of 6 fake data sets (FDS) were produced by the VaLOR group and dis-
tributed to the joint oscillation analyzers. The parameter values used to generate
these data sets are denoted in Table 9. Best-fit points for T2K only fits are found
using the adaptive kernel density estimator method with J,, fixed at the VALOR
best fit value. When including the reactor constraint, the best fit is found in 4
dimensions. The sin®(613) — d¢, best fit line is drawn for fits without reactor con-
straint. It is constructed by finding the maximum density in 3D for steps along the

d¢p posterior.

Table 9: Table showing the configuration of the fake data sets provided by the VaLOR

group. Bold elements highlight the defining parameter value of that data set.

346

347

348

349

350

351

352

353

354

355

356

357

Fake Data Set | Mass Hierarchy | sin®(fa3) | Am2, | sin®(613) | 0ep Systematic
0 NH 0.513 2.4375 0.0251 0 Nominal
1 NH 0.37 2.4375 | 0.0251 0 Random Throws
2 NH 0.513 2.75 0.0251 0 Random Throws
3 NH 0.513 2.4375 0.04 0 Random Throws
4 NH 0.513 2.4375 0.0251 —7/2 Nominal
) IH 0.513 2.4375 0.0251 0 Nominal

6.4.1 T2K Only Fits

One example of the 2D contours in sin?(fa3)-Am32, and sin2(013)7(50p is shown in
Figure 25. The contours for all other datasets are contained in Appendix A. There
is generally good agreement between the two fitters, and between the fitters and
the input values, as shown in Table 10. Generally, the MaCh3 fitter finds a higher
value of sin?(f;3) than the VaLOR fit; this difference is consistent with the size of
shifts coming from the marginalization over spectral function.

There is an interesting discrepancy between the two fitters in FDS1, where the
input value was an off-maximal value of sin?fy3 = 0.37. MaCh3 finds the best fit
value in the lower octant, where VaLOR finds the best fit value in the upper octant.
This discrepancy is explained in Figure 26, which shows the full marginal posterior

in sin? fy3, and there is greater posterior density in the lower octant. However, if
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Figure 25: Fake Data Set 1

the posterior is restricted to a smaller window around the best fit points in sin? f;3
and Am3,—a technique similar to the profiling method of the minimizer fit—there
is greater posterior density in the upper octant. Thus, the difference in the best fit

points comes from the difference in the methods of the fitters.
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plots/fds/fdsl_diff-eps-converted-to.pdf

Figure 26: The full marginal posterior of sin?(fy3) for FDS1 (cyan) compared with a “re-
stricted posterior” constructed from MCMC steps taken only from a small region around
the best fit point of sin®(6;3) and Am2, (darker blue). Restricting the posterior to points
only around the most probable regions of the marginalized oscillation parameters is simi-
lar in approach to the frequentist profiling technique. Red arrows indicate the 1D poste-
rior mode for each distribution. This exercise highlights the difference in best fit points

between analyses.
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Table 10: Normal hierarchy best-fit comparison table between MaCh3 and Val.OR for
all fake data sets with no reactor constraint. MaCh3 values of Am3, have been rescaled

to enable comparison with the Fogli convention used by VaLOR.

FDS Am2, x 107 | sin?(fy3) | sin®(6;3) Oep
0 True 2.4375 0.513 0.0251 0
0 VALOR 2.413 0.513 0.0364 | -0.0825
0 MaCh3 2.419 0.522 0.0385 | -0.0825
1 True 2.4375 0.37 0.0251 0
1 VALOR 2.327 0.619 0.0152 1.585
1 MaCh3 2.268 0.409 0.0259 1.585
2 True 2.75 0.513 0.0251 0
2 VALOR 2.078 0.508 0.0185 | -0.0179
2 MaCh3 2.598 0.508 0.0200 | -0.0179
3 True 2.4375 0.513 0.04 0
3 VALOR 2.583 0.568 0.0572 1.087
3 MaCh3 2.578 0.535 0.0642 1.087
4 True 2.4375 0.513 0.0251 0
4 VALOR 2.466 0.526 0.0464 -2.564
4 MaCh3 2.468 0.526 0.0494 -2.564
5 True 2.4375 0.513 0.0251 0
5 VALOR 2.53 0.511 0.0246 2.367
5 MaCh3 2.56 0.511 0.0232 2.367
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6.4.2 T2K with Reactor Constraint

The application of a prior constraint from reactor experiments can provide increased
sensitivity to the oscillation parameters. For these toy datasets, the constraint was
applied as the true input sin? 26,3 constraint, +0.01, the PDG 2013 error. Figure 27
shows one example of this process, for FDS 0. The plots for the other FDS are in
Appendix A.

plots/fds/fds_0_reactor_contour_th23pdn23/éds/cdsverredctorpdbntour_th

(a) 1Ry, (b) 1Rv,

Figure 27: Fake Data Set 0

6.5 Comparison with BANFF Matrix Fit

The fitter can also be configured to constrain the SK flux and cross-section un-
certainties using the BANFF matrix instead of using the ND280 data directly. A
comparison of the contours and best fit points (Figure 28) produced with both meth-
ods when fitting fake data set 5 was made and the results show negligible difference

between the two results.
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Figure 28: The comparison of contours and best fit points between the BANFF extrap-
olation (red) and the simultaneous fit with ND280 data methods. The contours suggest
that the simultaneous fitting method yields a smaller uncertainty, however the difference

is considered negligible.

39



374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

7 Fit Results

This section details the results obtained from fitting simultaneously the SK and
ND280 Run 1-4 data, totalling 6.57 x 10?® and 5.9 x 10?° protons on target re-
spectively. For these fits, the solar sector oscillation parameters are sinf, =

0.311 £ 0.017 and Am3, = 7.5+ 0.2 x 1075 eVZ2.

7.1 T2K Run 1-4 Data Fit

The data samples were first fit using T2K data alone, with a Markov chain of
1.8 x 107 steps after burn-in. For this type of fit, since there is little constraint
in é.p, the best fit point is found by fixing ., at 21 steps in its range, and fixing
the parameter in the 4D adaptive kernel estimation to find the best fit in 3D for
the other oscillation parameters. Table 11 shows the best fit parameters in the
dep = 0 slice. Credible regions are produced in 2D for several different sets of
parameters; these contours are produced marginalized over all other parameters,
but constructed separately for normal and inverted hierarchies. Figure 7.1 shows
the contours in sin?(fa3)-Am2, space. Figure 30(a) shows the contours in sin?(6;3)—
d¢p space, where the best fit is shown as a line connecting the best fit values in the
slices of d.p. Figure 30(b) shows the contours in sin?(fa3)-sin®(613).

Figure 31 shows the 1D credible intervals for sin?(613), sin?(fa3), and Am32,,
where all other parameters are marginalized.

Figure 7.1 shows the best fit spectra of the Run 1-4 SK data constrained by
the ND280 data, for 1R, and 1R, samples. The best fit spectra is determined via
a marginalization method. The fit posterior is sampled randomly 2500 times, and
with each sample the parameter values are used to calculate the expected event rate
per bin of the energy spectra; this is essentially marginalizing over all parameters,
oscillation included, to find the posterior distribution in each energy bin. The com-
bination of all the samples creates a distribution of event rates for each bin. Finally,
for each bin, a gaussian is fitted around the peak of the event rate distribution, and
the mean of the fit is taken to be the predicted value for that bin. Most bins take
on a gaussian shape, but in some bins, especially near the oscillation maxima in
the 1R, sample, the distribution is non-gaussian, due to the influence of the nearby

physical boundary in sin? 63.
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Table 11: Best-fit values for oscillation parameters extracted from the marginal posterior

of the Run 1-4 data.

\Amng sin2(923) sin2(913) 5cp
Normal Hierarchy | 2.491 0.520 0.0377 | 0 (fixed)
Inverted Hierarchy | 2.571 0.520 0.0454 | 0 (fixed)

plots/rdf/contour_th23_dm23-eps-converted-to.pdf

Figure 29: Run 1-4 data fit 2D contours in sin®(fa3)-Am2, space.
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plots/rdf/contour_th13_dcp-eps-convepledsyedidfontour_th23_th13-eps-converted-to.pd:

(a) (b)

Figure 30: Run 1-4 data fit 2D contours in (a) sin®(6;3)—d,, space and (b) sin®(fa3)-

sin?(013) space.
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Figures 33 and 34 show the momentum and angle distributions for ND280 with
the pre-fit MC prediction and post-fit spectra, calculated in the same way as for the
SK spectra.

A goodness-of-fit is calculated as in [?], where at each chain sample used for
the best fit spectra, a fake dataset is thrown from the MC prediction for that
sample. The log likelihood ratio between the fake dataset and the MC prediction is
calculated, as is the log likelihood ratio between the real data and the MC prediction.
A p-value is calculated as the percentage of samples for which the data better fit
the MC prediction than the fake data. In order to have N > 10 in each bin,
a requirement for this method, the 1R, sample is rebinned into five bins (0-0.4;
0.4-0.7; 0.7-1.0; 1.0-2.0; and 2.0-30.0 GeV) and the 1R, sample is considered as
one bin only. The ND280 sample is considered in the bins used to fit the data.
This means that the overall p-value is completely dominated by the ND280 sample.
Figure 35 shows the ND280, 1R,, 1R., and total distributions for the quantity
In Lggtq —In Liprow; the p-value is the percentage of this distribution above zero. The
p-values are: ND280-only, 0.044; SK 1R., 0.32; SK 1R, 0.35; and all samples, 0.036.

These values indicate no disagreement with data for the SK samples. The value for
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plots/rdf/CredibleIntervalsiD-eps-converted-to.pdf

Figure 31: Credible intervals in 1D for sin?(;3), sin®(f3), and |Am2,|. The PDFs for
the angles are shown for normal hierarchy, inverted hierarchy, and marginalized over
the hierarchies. The PDF for the mass splitting is shown only for normal and inverted
hierarchies. The 90% credible intervals are shown by the dotted lines and given in the

plot legends.
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plots/rdf/bfs_rdfl_t2konly-eps-converted-to.pdf

Figure 32: Run 1-4 data best fit spectra for SuperK 1R, and 1R, samples.
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422 the ND280 samples is somewhat low, indicating some disagreement; however, this is
423 a known effect (see [9]), and the agreement between the results of the ND280 fits for
424 both MaCh3 and the minimizer BANFFv2 fit and the data are nearly equivalent.

plots/rdf/GOF-eps-converted-to.pdf

Figure 35: Goodness-of-fit distributions for the three different samples in the fit and the
summed total. The p-value is the percentage of each distribution which is greater than

Zero.
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7.2 T2K Run 1-4 Data Fit With Reactor Constraint

The data samples were then fit using T2K data in combination with the PDG 2013
reactor gaussian constraint of sin?(26;3) = 0.095 4 0.01, with a Markov chain of
3.168 x 107 steps after burn-in. For this type of fit, the best fit point is found with a
4D adaptive kernel estimate of the oscillation parameters of interest. Table 12 shows
the best fit parameters. Credible regions are produced in 2D for several different sets
of parameters; these contours are produced marginalized over all other parameters,
but constructed separately for normal and inverted hierarchies. Figure 36 shows the
contours in sin(fa3)-Am2, space. Figure 37(a) shows the contours in sin?(613)—6ep
space. Figure 37(b) shows the contours in sin®(fa3)-sin?(6;3).

Figure 38 shows the 1D credible intervals for sin?(6;3), sin?(fa3), and Am3,,

where all other parameters are marginalized.

Table 12: Best-fit values for oscillation parameters extracted from the marginal posterior

of the Run 1-4 data fit with reactor constraint.

]Am§2 ‘ sin2 (923) sin2 (913) 5cp
Normal Hierarchy | 2.510 0.527 0.0247 | -1.551
Inverted Hierarchy | 2.553 0.531 0.0249 | -1.596

Figure 36: Run 1-4 data fit with reactor constraint 2D contours in sin(fa3)-Am2, space.

The goodness-of-fit was repeated for the reactor constrained data. Figure 41
shows the ND280, 1R,, 1R., and total distributions for the quantity In Lggsq —
In Liprow; the p-value is the percentage of this distribution above zero. The p-values
are: ND280-only, 0.044; SK 1R., 0.44; SK 1R, 0.33; and all samples, 0.042. These
values indicate no disagreement with data for the SK samples. It is interesting that
the p-value for SK 1R, increases slightly for this fit as compared to the T2K-only
fit, despite the fact that the predicted number of events for the T2K-only fit is closer

to the number of data events. This is due to the fact that the reactor constraint
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plots/rdf/reactor_contour_th13_dcp-¢pieterrdfyedatsopdfontour_th23_thl3-eps-convert

(a) 1Rve (b) 1Ry,

Figure 37: Run 1-4 data fit with reactor constraint 2D contours in (a) sin®(6;3)-0,, space

and (b) sin?(fa3)-sin?(63) space.
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narrows the distribution of allowed events significantly, and therefore the predicted
spectra from the throws do not move as far from the data point as they do for the
T2K-only fit.

The addition of the reactor constraint to the T2K data also produces some sensi-
tivity in d.p. Figure 42 shows the d,, posterior for the normal hierarchy, considered
alone; the inverted hierarchy, considered alone; and marginalizing over the hierar-
chies. Figure 43 shows the d., posterior when considering the normal and inverted
hierarchies jointly. Each of these methods answers a slightly different question about
the preferred region for the value of 4., and caution should be used when using these
plots to describe them correctly. Table 13 enumerates the 90% allowed regions for
the different methods.

The constraint on ., can also be considered separating the lower and upper oc-
tant, as in Figure 4 of [?]. This is shown in Figure 44. Unlike the MINOS data, the
best fit point remains constant at ~ —m/2 for all of the choices of octant and hier-
archy. However, some are more preferred than others; the inverted hierarchy /lower
octant choice is excluded completely at the 68% level and nearly completely at the

90% level. By contrast, nearly all of the normal hierarchy/upper octant is allowed
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plots/rdf/CredibleIntervalsiDReactor-eps-converted-to.pdf

Figure 38: Credible intervals in 1D for sin?(0;3), sin®(6y3), and |Am2,|, using the reactor
constraint. The PDFs for the angles are shown for normal hierarchy, inverted hierarchy,
and marginalized over the hierarchies. The PDF for the mass splitting is shown only
for normal and inverted hierarchies. The 90% credible intervals are shown by the dotted

lines and given in the plot legends.
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plots/rdf/bfs_rdfl_reactor-eps-converted-to.pdf

Figure 39: Run 1-4 data best fit spectra for SuperK v, and v, samples with reactor

constraint.
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plots/rdf/bfs_overlay-eps-converted-to.pdf

Figure 40: Comparison of best fit spectra of T2K data with and without reactor constraint

applied.
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plots/rdf/GOF_R-eps-converted-to.pdf

Figure 41: Goodness-of-fit distributions for the three different samples in the fit and the
summed total. The p-value is the percentage of each distribution which is greater than

Zero.

plots/rdf/dcp_marg-eps-converted-to.pdf

Figure 42: The posterior probability for d.,, marginalized over all other parameters. The
red curve shows the posterior for the normal hierarchy only; the blue curve for the inverted
hierarchy only; and the black curve marginalized over the hierarchies. The grey bands

show the 68% and 90% credible intervals for the posterior marginalized over d,,.
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Figure 43: The posterior probability for J.,, for the normal and inverted hierarchies
considered jointly. The dotted lines show the 68% and 90% credible intervals, where the
allowed region is the region of the posterior above the line.

at the 90% level.

Table 13: The 90% allowed credible interval for different methods of constructing the J,,

posterior.
Method 90% Allowed Credible Interval
Normal Hierarchy ONLY [—7,0.45] U [2.66, 7]
Inverted Hierarchy ONLY [—m,0.15] U [3.04, 7]
Marginalized Hierarchy [—m,0.38] U [2.79, 7]
Joint Hierarchy [—7,0.68] (NH) U[2.49, 7] (NH) U[-2.99,—0.08] (IH)

The Markov chain also provides an interesting and natural way to compare the
mass hierarchies. Figure 45 shows the 1D posterior for Am§2. In this framework, the
integral of posterior where Am3, > 0 gives the probability that the true hierarchy
is normal; for this analysis, that probability is 69.1%, or about a 2.24:1 preference
of the data for the normal hierarchy. This is interesting, but not significant enough
to draw any firm conclusions. A similar number can be produced for the preference

of sin?(fa3) > 0.5 or < 0.5; the data prefers sin?(fz3) > 0.5 at 2.87:1. Again,
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Figure 44: The marginalized o, posteriors, for normal and inverted hierarchies, as well
as sin? @3 > 0.5 or < 0.5. The four choices are considered jointly for setting the credible

interval levels. The allowed region is the region of the posterior above the line.
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a70 interesting, but not significant.
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Figure 45: Marginalized Am3, posterior. Normal hierarchy is positive values and inverted

hierarchy is negative values; 69.1% of the probability lies in the normal hierarchy.
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403 A Additional Fake Data Set Plots

494 A.]. T2K Only

Contour comparison with VALOR analysis.

plots/fds/fds_0_cont_th23dm23-eps-copiersdddsd fadf 0_cont_th13dcp-eps-converted-to.p

(a) 1Ry, (b) 1Rv.
Figure 46: Fake Data Set 0

495

496 A.2 T2K with Reactor Constraint

407 MaCh3 only contours, both hierarchies.
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plots/fds/fds_2_cont_th23dm23-eps-coptersdddsd fodf 2_cont_thl3dcp-eps-gonverted-to.p:

(a) 1Ry, (b) 1Rv,

Figure 47: Fake Data Set 2

plots/fds/fds_3_cont_th23dm23-eps-coptersdddsd fodf 3_cont_thi13dcp-eps-gonverted-to.p:

(a) 1Ry, (b) 1Rv,

Figure 48: Fake Data Set 3
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plots/fds/fds_4_cont_th23dm23-eps-coptersdddsd fodf 4_cont_thl3dcp-eps-gonverted-to.p:

(a) 1Ry, (b) 1Rv,

Figure 49: Fake Data Set 4

plots/fds/fds_5_cont_th23dm23-eps-coptersdddsd fdf 5_cont_thi13dcp-eps-gonverted-to.p:

(a) 1Ry, (b) 1Rv,

Figure 50: Fake Data Set 5
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plots/fds/fds_1_reactor_contour_th
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pdn23/dpgs/cdsvdrredetorpdbntour_th

(a) 1Ry,

(b) 1Rv,

Figure 51: Fake Data Set 1

plots/fds/fds_2_reactor_contour_th

23

pdn23/éds/cdsy@rredctorpdbntour_th

(a) 1Ry,

(b) 1Rv,

Figure 52: Fake Data Set 2
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plots/fds/fds_3_reactor_contour_th
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(a) 1Ry,

(b) 1Rv,

Figure 53: Fake Data Set 3

plots/fds/fds_4_reactor_contour_th
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(a) 1Ry,

(b) 1Rv,

Figure 54: Fake Data Set 4
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plots/fds/fds_b_reactor_contour_th23pdn23/déds/fdsvérredctorpddntour_th13_dcp-eps-co:

(a) 1Ry,

(b) 1Rv,

Figure 55: Fake Data Set 5

A.3 Comparison with VALOR

plots/fds/compare_fds_0_reactor_co

ntptbt8dfgsépsmpaneefdeditvepdfor_co

(a) Fake Data Set 0 with Reactor Constraint.

(b) Fake Data Set 1 with Reactor Constraint.
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plots/fds/compare_fds_2_reactor_co

ntptht3d€gsdpempeneefded3tvepdfor_cont_thl3dcp-eps

(c) Fake Data Set 2 with Reactor Constraint.

(d) Fake Data Set 3 with Reactor Constraint.

plots/fds/compare_fds_4_reactor_co

ntptbt8dfgsépsmpaneefdedbtoepdfor_cont_th13dcp-eps

(e) Fake Data Set 4 with Reactor Constraint.

(f) Fake Data Set 5 with Reactor Constraint.
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