Some Basics

Kinematics Cross Section Lifetimes Spectroscopies

Particle Kinematics E. Byckling and K. Kajantie Wiley&Sons 1973

Introduction to Particle Physics - Max Klein - Lecture 2 - Liverpool University 25.2.13

Organisation

- 1. Four tutorials in week 6,8,10,11 Thursday afternoons, held by Carl Gwilliam, Barry King, Jan Kretzschmar, Steven Maxfield.
- 2. All lecture slides will be posted. There are no hand outs, please take notes.
- 3. Exam in May: 1.5 hours. Please consult Martin&Shaw, and also join the tutorials with solved exercises. The course has 7 double lectures, probably the last two will be devoted to summaries and exercises.

Tutorial for Thursday, 7th of March

- 1. How large is the Thompson scattering cross section in barn?
- 2. Hofstatter used an electron beam of $E_e = 188$ MeV, how large is $\beta_e = velocity/c$?
- 3. In an experiment a particle decay at rest is observed into a muon and a neutrino. The mass of the muon is known to be M_μ=106 MeV and the kinetic energy of the muon is measured to be T=4.4 MeV. Determine the mass of the parent particle and identify it with a known particle.
- 4. The lifetime of the muon is given as $\tau_{\mu} = 192\pi^3/G_F^2 M_{\mu}^{-5}$. $(M_{\mu}=0.11 \text{GeV}, G=1.17 \ 10^{-5} \text{GeV}^{-2})$. Calculate τ_{μ} in seconds. How large is the tau lifetime $(M_{\tau}=1.78 \text{ GeV})$?
- 5. The LHC operated at E_p = 3.5 TeV proton beam energy. How large is the cms energy in a pp collision? In Drell Yan Scattering at the LHC, a quark and an anti-quark of momentum fractions x_1 and x_2 interact to form a new state Y. What is the electric charge of Y? What is the mass of Y as functions of E_p , x_1 and x_2 ?
- 6. How was the muon neutrino discovered?

Hand in please latest by Wednesday, 6th of March

Units

Convention in particle physics:

h = one unit of action (ML²/T), c = one unit of velocity (L/T) mass (m), momentum (mc), energy (mc²) are of dimension [GeV] length (h/mc), time (h/mc²) are of dimension [GeV⁻¹]

Conventional Mass, Length, Time Units, and Positron Charge in Terms of $\hbar = c = 1$ Energy Units		
Conversion Factor	$\hbar = c = 1$ Units	Actual Dimension
$1 \text{ kg} = 5.61 \times 10^{26} \text{ GeV}$	GeV	$\frac{\text{GeV}}{c^2}$
$1 \text{ m} = 5.07 \times 10^{15} \text{ GeV}^{-1}$	GeV ⁻¹	$\frac{\hbar c}{\text{GeV}}$
$1 \sec = 1.52 \times 10^{24} \text{ GeV}^{-1}$	GeV ⁻¹	$\frac{\hbar}{\text{GeV}}$
$e = \sqrt{4\pi\alpha}$	—	$(\hbar c)^{1/2}$

Units

Thompson scattering $e\gamma \rightarrow e\gamma$ cross section:

$$\sigma = \frac{2}{3}\alpha^2 4\pi R_e^2$$
$$R_e = \frac{\hbar}{m_e c}$$
$$\alpha = 4\pi e^2 \approx \frac{1}{137}$$
$$\sigma = \frac{8\pi}{3}\alpha^2 \frac{\hbar^2}{m_e^2 c^2}$$

$$\sigma = \frac{8\pi}{3} \left(\frac{\alpha}{m_e}\right)^2$$

$$[\sigma] = m^2$$

$$\sigma = \frac{8\pi}{3} \left(\frac{\alpha}{m_e}\right)^2 \cdot \hbar^a c^b$$

$$a = +2$$

$$b = -2$$

$$\sigma = \frac{8\pi}{3} \alpha^2 \frac{(\hbar c)^2}{(m_e c^2)^2}$$

$$m_e c^2 = 0.51 \cdot 10^{-3} GeV$$

$$\hbar c = 2 \cdot 10^{-16} m \cdot GeV$$

$$GeV^{-2} = 0.4mb, 1b = 10^{-28} m^2$$

Formulae are usually written in 'natural units'. However, in practical calculations, decay times are in seconds or cross sections in m². A procedure is to reintroduce powers of h and c which can be determined from dimensional counting.

Scattering Kinematics

a+b → 1+2+..+n exclusive (e.g.: pp→pp elastic) a+b→1+X inclusive (ep→eX deep inelastic) a+b→ 1+2+3+X semi-inclusive (π p→ $\pi\pi$ pX)

$$\begin{split} & E_a + E_b = \Sigma \ E_i \\ & \textbf{energy conservation} \\ & E = M + T \\ & rest \ energy + \ kinetic \\ & (c=1) \\ & (p_a + p_b)^2 = (\Sigma \ p_i)^2 \\ & \textbf{4 momentum conservation} \\ & p_i^2 = E_i^2 - \Sigma(k_i)^2 = m_i^2 \end{split}$$

if (neutrino, e) m is small: energy=|3 momentum|

Conservation laws determine **phase space** of reaction (3n-4) variables in 2 \rightarrow n scattering

 $c \rightarrow 1+2+...+m$

 $E_c = \Sigma E_j$

at rest: $\mathbf{k}_c = 0$: $E_c = m_c$

"crossing" relates decay to scattering: $p_a=p_c, p_b=-p_m$

Examples for Decays and the Conservation of Quantum Numbers $\mu^{-} \rightarrow \nu_{\mu} e^{-} \overline{\nu}_{e} \qquad ^{100\%}$ $\tau^{-} \rightarrow \nu_{\tau} e^{-} \overline{\nu}_{e} \qquad ^{17\%}, \text{ branching ratio}$ $n \rightarrow p e^{-} \overline{\nu}_{e} \qquad ^{\beta} \text{ decay}$

Four-vectors (an example)

Decay at rest: $A \rightarrow B + e$ Calculate the electron energy as a function of the masses of A,B and e

$$\begin{split} \vec{p}_{A} &= 0 \\ \vec{p}_{B} &= -\vec{p}_{e} \\ E_{e}^{2} &= M_{e}^{2} + \vec{p}_{e}^{2} \\ E_{e}^{2} &= M_{e}^{2} + \vec{p}_{B}^{2} = M_{e}^{2} - M_{B}^{2} + E_{B}^{2} \\ E_{B}^{2} &= (E_{A} - E_{e})^{2} = (M_{A} - E_{e})^{2} \\ E_{e}^{2} &= M_{e}^{2} - M_{B}^{2} + M_{A}^{2} - 2M_{A}E_{e} + E_{e}^{2} \\ E_{e}^{2} &= \frac{M_{A}^{2} - M_{B}^{2} + M_{e}^{2}}{2M_{A}} \end{split}$$

The energy of the decay electron is exactly determined by the kinematics of the decay.

In the β decay, however, a continuous energy distribution, was measured.

This was one of the major puzzles in particle physics in the early thirties

Bohr: no energy conservation
-Heisenberg: space-time modifications
-Pauli: n → p e + neutron(neutrino)

Mandelstam Variables

 $p^2=M^2$ if the masses are negligible, these variables become 4-vector products:

$$s=2p_1p_2=2p_3p_4$$
 $t=-2p_1p_3=-2p_2p_4$ $u=?$

Calculate the sum s+t+u=?

Frames of Reference – The Quest for Colliders

Laboratory system

Example: lepton-proton scattering (neutrino, muon, electron beams off stationary target)

Lepton beam:

$$p_l = (E_l, 0, 0, k_z)$$

 $p_l^2 = m_l^2 = E_l^2 - k_z^2 \rightarrow E_l \approx |k_z|$
 $p_l = (E_l, 0, 0, k_z)$

Proton fixed target:

$$p_p^2 = E_p^2 = M_p^2$$

 $p_p = (M_p, 0, 0, 0)$

 $p_{n} = (E_{n}, 0, 0, 0)$

 $Energy^2 = s = (p_l + p_p)^2 = m_l^2 + M_p^2 + 2E_l M_p \approx 2E_l M_p$

Example: lepton-proton collider:

 $p_l = (E_l, 0, 0, k_{z,l}), k_{z,l}^2 = E_l^2 - m_l^2$ $p_{\rm p} \!=\!\! (E_{\rm p},\!0,\!0,\!k_{z,p}) \hspace{0.1in} k_{z,p}^{-2} \!=\! E_{\rm p}^{-2} \!\!-\! M_{\rm p}^{-2}$ [Centre of mass system: k_l=-k_p] $s=m_l^2+M_p^2+2E_lE_p-2\cos(k_l,k_p)k_lk_p$ $s=m_1^2+M_p^2+2E_1E_p+2k_{z_1}k_{z_2}\approx 4E_1E_p$ HERA: $E_e = 27.5 \text{ GeV}$ $E_p = 920 \text{ GeV}$ $s=1.01 \ 10^5 \ GeV^2$ equivalent fixed target energy: $E_l^* = 2E_e E_p / M_p = 53.9 \ 10^3 \text{ GeV} = 53.9 \text{ TeV}$

Particle Physics needs colliders to reach highest energies Famous hadron-hadron colliders: (ISR, SPS, Tevatron, LHC, ?)

Cross Section \rightarrow |....| beam I_0 target z $I = I_0 \exp(-z/\lambda)$ density $\rho = n/Vol$ N interactions I = number of beam particles surviving without any interaction $N \sim I_0 \rho z = L$ $\lambda = 1/\rho\sigma$ mean free path length $N = L \sigma A$ $N = I_0 - I$

- L Luminosity
- A- Acceptance of process reconstruction - requires Monte Carlo simulations!
- σ Cross section = N/(A L)

 $\mathbf{N} = \mathbf{I}_0 \left(1 - \mathbf{e}^{-\boldsymbol{\rho}\boldsymbol{\sigma}\mathbf{z}}\right)$

for small $\rho\sigma z$:

 $N = I_0 \rho z \sigma$

Cross section = $1/(\rho\lambda)$

Cross Section Examples

$$[\sigma] = m^{2}$$

$$1barn = 10^{-28}m^{2}$$

$$[L] = m^{-2}$$
units
$$[L] = pb^{-1}$$

A cross section of 1pb when measured with a luminosity of 1pb⁻¹ in a certain time interval leads to 1 scattering event.

Feynman Diagram for Thompson Scattering

$$\sigma = \frac{2}{3} \cdot \alpha^2 \cdot 4\pi R_e^2$$

Liquid hydrogen ionization bubble chamber (2m HBC, CERN)

Anti-proton beam of E=2.5 GeV

Photograph reveals 15 incoming tracks and 4 interactions, how large is the scattering cross section?

$$\rho = 4 \cdot 10^{28} p/m^{3}$$

$$\frac{N}{I_{0}} = 1 - e^{-\rho\sigma \cdot z}$$

$$-\ln(1 - \frac{N}{I_{0}}) = \rho\sigma \cdot z$$

$$z = 2m$$

$$N = 4$$

$$I_{0} = 15$$

$$\sigma = 0.04 \cdot 10^{-28} m^{2}$$

calculation belongs to next picture \rightarrow

Bubble Chamber Picture c 1966: Anti-protons, \overline{p} , of momentum 2.5 GeV/c travel through liquid hydrogen. The picture covers a length of ~1.5 m. At point A a \overline{p} interacts with a proton to produce 2 charged mesons and a neutral K⁰. This travels to point B where it decays $K^0 \rightarrow \pi^+ \pi^-$. The π^+ travels upwards, bounces off a proton in the hydrogen and at point C decays $\pi^+ \rightarrow \mu^+ \upsilon_{\mu}$. After travelling a few cms, the muon decays $\mu^+ \rightarrow e^+ \upsilon_e \overline{\upsilon_{\mu}}$. The positron spirals around, loosing energy until it annihilates with an electron, $e^+e^- \rightarrow 2\gamma$, which leave the chamber.

M.Houlden

Figure 41.11: Total and elastic cross sections for pp and $\overline{p}p$ collisions as a function of laboratory beam momentum and total center-of-mass energy. Corresponding computer-readable data files may be found at http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS group, IHEP, Protvino, August 2005)

With enlarged statistics get accurate measurements

Decay Width and Branching Ratio

Decay width

Heavy quark states decay after $O(300) \mu m$ \rightarrow modern particle physics experiments are equipped with Silicon strip (or pixel) detectors of typically 20 (5) μm resolution to detect heavy particles and for precision tracking near the interaction point. Branching ratio

$$b_{f} = \frac{\Gamma_{f}}{\Gamma} = \frac{\tau}{\tau_{f}}$$

$$\mu^{-} \rightarrow \nu_{\mu} e^{-} \overline{\nu_{e}} \qquad \text{b=100\%}$$

$$\tau^{-} \rightarrow \nu_{\tau} e^{-} \overline{\nu_{e}} \qquad \text{b=17\%}$$

Lifetime

long lived: > 10⁻¹⁶s

Measure decay lengths with high resolution detectors

short lived: determine width of resonant state from invariant mass distribution of decay particle momenta \rightarrow lieftime

Lifetime τ

Interaction	lifetime [s]
Strong	10 ^{-23±1}
Electromagnetic	10 ^{-19±2}
Weak	10 ^{-10±3}

neutron β decay: n \rightarrow p e⁻ $\overline{\nu}_{e}$

neutron lifetime is (885.7 ± 0.8) s

In some theories (grand unified theories GUTs) the proton is not stable.

A lifetime of order 10³⁵ years corresponds to a mass scale of order 10¹⁶ GeV - the "Planck mass"

Resonances

 $\Delta^{**} \Rightarrow \pi^* p$

quark decay diagram

The delta resonance decays in about 10⁻²³s

 $E_{cm}^2 = M^2(\pi p) = (p_{\pi} + p_p)^2$

Colour degree of freedom:

Pauli statistics: $\mathbf{u}_{r}\mathbf{u}_{b}\mathbf{u}_{g}$

Production of the Δ resonance in pion-proton scattering ("formation"). $M(\Delta) = 1.232 \text{ GeV}$

Breit-Wigner formula to determine width ($\Gamma=1/\tau$) cf B.Martin, G.Shaw "Particle Physics" M.Klein 25.2.2013 L2

Summary

- 1. Kinematics determines event configuration.
- 2. Conservation of energy, 3-momentum, 4-momentum
- 3. $P=(E,p), P^2=M^2-p^2$
- 4. Highest energies in accelerators are reached with colliders, luminosity a challenge.
- 5. The observed number of events is proportional to the luminosity, and $\sigma = N/LA$
- 6. The strong, electromagnetic and weak interactions have increasing lifetime 10^{-24} .. $^{-13}$ s.
- 7. Typical weak decay lengths of 200µm have lead to a revolution of tracking (Silicon!)
- 8. The proton is stable, we think, $\tau > 2 \ 10^{29}$ years. The neutron decays after 886s.
- 9. Hadronic resonances such as the Δ decay after 10⁻²³s (reconstruction through decays).

History of Particle Physics could be taught as a sequence of spectroscopies, but no sub-quark or high mass (SUSY) spectroscopy has yet been discovered..

Particle Physics - a Sequence of Spectroscopies

- "Excitation of the 2536 Å Resonanc Line of Mercury" Franck /Hertz 1914 $Bohr \rightarrow ATOMIC SPECTROSCOPY$
- "Disintegration of Elements by High Velocity Protons"

Cockcroft / Walton 1932

 $pLi \rightarrow \alpha \alpha$: <u>NUCLEAR SPECTROSCOPY</u>

- "Total Cross-Sections of Positive Pions in Hydrogen" Anderson/Fermi/Long/Nagle 1952 $\Delta^{++} \rightarrow p\pi$: <u>HADRON SPECTROSCOPY</u>
- The charming "November Revolution" Ting et al., Richter et al. 11.11.1974 $\mathcal{J}/\Psi \rightarrow c\bar{c}$: QUARK SPECTROSCOPY

Gustav Hertz: Nobel 1925

John Cockroft and Ernest Walton: Nobel 1951

Enrico Fermi: Nobel 1935

Sam Ting and Burt Richter: Nobel 1976