Some Basics

Kinematics
 Cross Section
 Lifetimes
 Spectroscopies

Particle Kinematics E. Byckling and K. Kajantie Wiley\&Sons 1973

Introduction to Particle Physics - Max Klein - Lecture 2 - Liverpool University 25.2.13

Organisation

1. Four tutorials in week $6,8,10,11$ Thursday afternoons, held by Carl Gwilliam, Barry King, Jan Kretzschmar, Steven Maxfield.
2. All lecture slides will be posted. There are no hand outs, please take notes.
3. Exam in May: 1.5 hours. Please consult Martin\&Shaw, and also join the tutorials with solved exercises. The course has 7 double lectures, probably the last two will be devoted to summaries and exercises.

Tutorial for Thursday, $7^{\text {th }}$ of March

1. How large is the Thompson scattering cross section in barn?
2. Hofstatter used an electron beam of $\mathrm{E}_{\mathrm{e}}=188 \mathrm{MeV}$, how large is $\beta_{\mathrm{e}}=$ velocity/c?
3. In an experiment a particle decay at rest is observed into a muon and a neutrino. The mass of the muon is known to be $\mathrm{M}_{\mu}=106 \mathrm{MeV}$ and the kinetic energy of the muon is measured to be $\mathrm{T}=4.4 \mathrm{MeV}$. Determine the mass of the parent particle and identify it with a known particle.
4. The lifetime of the muon is given as $\tau_{\mu}=192 \pi^{3} / \mathrm{G}_{\mathrm{F}}{ }^{2} \mathrm{M}_{\mu}{ }^{5}$. $\left(\mathrm{M}_{\mu}=0.11 \mathrm{GeV}, \mathrm{G}=1.1710^{-5} \mathrm{GeV}^{-2}\right)$. Calculate τ_{μ} in seconds. How large is the tau lifetime ($\mathrm{M}_{\tau}=1.78 \mathrm{GeV}$)?
5. The LHC operated at $\mathrm{E}_{\mathrm{p}}=3.5 \mathrm{TeV}$ proton beam energy. How large is the cms energy in a pp collision? In Drell Yan Scattering at the LHC, a quark and an anti-quark of momentum fractions x_{1} and x_{2} interact to form a new state Y . What is the electric charge of Y ? What is the mass of Y as functions of E_{p}, x_{1} and x_{2} ?
6. How was the muon neutrino discovered?

Units

Convention in particle physics:

$\mathrm{h}=$ one unit of action $\left(\mathrm{ML}^{2} / \mathrm{T}\right), \quad \mathrm{c}=$ one unit of velocity $(\mathrm{L} / \mathrm{T})$ mass (m), momentum (mc), energy $\left(\mathrm{mc}^{2}\right)$ are of dimension $[\mathrm{GeV}]$ length $(\mathrm{h} / \mathrm{mc})$, time $\left(\mathrm{h} / \mathrm{mc}^{2}\right)$ are of dimension $\left[\mathrm{GeV}^{-1}\right]$

Conventional Mass, Length, Time $\hbar=c=1$ Energy Units	$\hbar=c=1$ Units	Actual Dimension
Conversion Factor	GeV	$\frac{\mathrm{GeV}}{c^{2}}$
$1 \mathrm{~kg}=5.61 \times 10^{26} \mathrm{GeV}$	GeV^{-1}	$\frac{\hbar c}{\mathrm{GeV}}$
$1 \mathrm{~m}=5.07 \times 10^{15} \mathrm{GeV}^{-1}$	GeV^{-1}	$\frac{\hbar}{\mathrm{GeV}}$
$1 \mathrm{sec}=1.52 \times 10^{24} \mathrm{GeV}^{-1}$	-	$(\hbar c)^{1 / 2}$
$e=\sqrt{4 \pi \alpha}$		

Units

Thompson scattering $e_{\gamma} \rightarrow$ er cross section:

$$
\alpha=4 \pi e^{2} \cong \frac{1}{137}
$$

$$
\begin{aligned}
& \sigma=\frac{8 \pi}{3}\left(\frac{\alpha}{m_{e}}\right)^{2} \\
& {[\sigma]=m^{2}} \\
& \sigma=\frac{8 \pi}{3}\left(\frac{\alpha}{m_{e}}\right)^{2} \cdot \hbar^{a} c^{b} \\
& a=+2 \\
& b=-2
\end{aligned}
$$

Formulae are usually written in 'natural units'. However, in practical calculations, decay times are in seconds or cross sections in m^{2}. A procedure is to reintroduce powers of h and c which can be determined from dimensional counting.

$$
\begin{array}{l|l}
\sigma=\frac{2}{3} \alpha^{2} 4 \pi R_{e}^{2} & \sigma=\frac{8 \pi}{3}\left(\frac{\alpha}{m_{e}}\right)^{2} \cdot \hbar^{a} c^{b} \\
R_{e}=\frac{\hbar}{m_{e} c} & a=+2 \\
& b=-2
\end{array}
$$

$$
\sigma=\frac{8 \pi}{3} \alpha^{2} \frac{\hbar^{2}}{m_{e}^{2} c^{2}}
$$

$$
\sigma=\frac{8 \pi}{3} \alpha^{2} \frac{(\hbar c)^{2}}{\left(m_{e} c^{2}\right)^{2}}
$$

$$
m_{e} c^{2}=0.51 \cdot 10^{-3} \mathrm{GeV}
$$

$$
\hbar c=2 \cdot 10^{-16} m \cdot G e V
$$

Scattering Kinematics

$\mathrm{a}+\mathrm{b} \rightarrow 1+2+. .+\mathrm{n}$
exclusive (e.g.: pp \rightarrow pp elastic)
$a+b \rightarrow 1+X$
inclusive (ep $\rightarrow \mathrm{eX}$ deep inelastic)
$\mathrm{a}+\mathrm{b} \rightarrow 1+2+3+\mathrm{X}$
semi-inclusive $(\pi p \rightarrow \pi \pi \mathrm{pX})$
$\mathrm{E}_{\mathrm{a}}+\mathrm{E}_{\mathrm{b}}=\sum \mathrm{E}_{\mathrm{i}}$
energy conservation
$\mathrm{E}=\mathrm{M}+\mathrm{T}$
rest energy + kinetic

$$
(c=1)
$$

$\left(p_{a}+p_{b}\right)^{2}=\left(\sum p_{i}\right)^{2}$
4 momentum conservation
$\mathrm{p}_{\mathrm{i}}{ }^{2}=\mathrm{E}_{\mathrm{i}}{ }^{2}-\Sigma\left(\mathrm{k}_{\mathrm{i}}\right)^{2}=\mathrm{m}_{\mathrm{i}}{ }^{2}$
if (neutrino, e) m is small: energy $=\mid 3$ momentum \mid

Conservation laws determine phase space of reaction

$$
\begin{aligned}
& \text { Decay } \\
& c \rightarrow 1+2+\ldots+\mathrm{m} \\
& \mathrm{E}_{\mathrm{c}}=\Sigma \mathrm{E}_{\mathrm{j}} \\
& \text { at rest: } \mathbf{k}_{\mathrm{c}}=0: \mathrm{E}_{\mathrm{c}}=\mathrm{m}_{\mathrm{c}} \\
& \text { "crossing" relates decay to } \\
& \quad \text { scattering: } \\
& \mathrm{p}_{\mathrm{a}}=\mathrm{p}_{\mathrm{c}}, \mathrm{p}_{\mathrm{b}}=-\mathrm{p}_{\mathrm{m}}
\end{aligned}
$$

Examples for Decays and the Conservation of Quantum Numbers

$$
\begin{array}{ll}
\mu^{-} \rightarrow \nu_{\mu} e^{-\bar{\nu}_{e}} & 100 \% \\
\tau^{-} \rightarrow \nu_{\tau} e^{-\bar{\nu}_{e}} & 17 \%, \text { branching ratio } \\
n \rightarrow p e^{-\bar{v}_{e}} & \beta \text { decay }
\end{array}
$$

Four-vectors (an example)

Decay at rest: $\mathrm{A} \rightarrow \mathrm{B}+\mathrm{e}$
Calculate the electron energy
as a function of the masses of A, B and e

$$
\begin{aligned}
& \vec{p}_{A}=0 \\
& \vec{p}_{B}=-\vec{p}_{e} \\
& E_{e}^{2}=M_{e}^{2}+\vec{p}_{e}^{2} \\
& E_{e}^{2}=M_{e}^{2}+\vec{p}_{B}^{2}=M_{e}^{2}-M_{B}^{2}+E_{B}^{2} \\
& E_{B}^{2}=\left(E_{A}-E_{e}\right)^{2}=\left(M_{A}-E_{e}\right)^{2} \\
& E_{e}^{2}=M_{e}^{2}-M_{B}^{2}+M_{A}^{2}-2 M_{A} E_{e}+E_{e}^{2} \\
& E_{e}=\frac{M_{A}^{2}-M_{B}^{2}+M_{e}^{2}}{2 M_{A}}
\end{aligned}
$$

The energy of the decay electron is exactly determined by the kinematics of the decay.

In the β decay, however, a continuous energy distribution, was measured.

This was one of the major puzzles in particle physics in the early thirties
-Bohr: no energy conservation
-Heisenberg: space-time modifications -Pauli: $\mathrm{n} \rightarrow \mathrm{pe}+$ neutron(neutrino)

Mandelstam Variables

s-channel

$\mathrm{s}=\mathrm{cms}$ energy squared
$s=\left(p_{1}+p_{2}\right)^{2}=\left(p_{3}+p_{4}\right)^{2}$
t-channel

$\mathrm{t}=4$-momentum transfer squared

$$
\mathrm{t}=\left(\mathrm{p}_{1}-\mathrm{p}_{3}\right)^{2}=\left(\mathrm{p}_{2}-\mathrm{p}_{4}\right)^{2}
$$

Feynman Diagrams
$u=\left(p_{1}-p_{4}\right)^{2}=\left(p_{2}-p_{3}\right)^{2}$
$p^{2}=M^{2}$ if the masses are negligible, these variables become 4-vector products:

$$
s=2 p_{1} p_{2}=2 p_{3} p_{4} \quad t=-2 p_{1} p_{3}=-2 p_{2} p_{4} \quad u=?
$$

Calculate the sum $\mathrm{s}+\mathrm{t}+\mathrm{u}=$?

Frames of Reference - The Quest for Colliders

Laboratory system

Example: lepton-proton scattering (neutrino, muon, electron beams off stationary target)

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{l}}=\left(\mathrm{E}_{\mathrm{l}}, 0,0, \mathrm{k}_{\mathrm{z})}\right. \\
& \mathrm{p}_{\mathrm{l}}^{2}=\mathrm{m}_{\mathrm{l}}^{2}=\mathrm{E}_{\mathrm{l}}^{2}-\mathrm{k}_{\mathrm{z}}^{2} \rightarrow \mathrm{E}_{\mathrm{l}} \approx\left|\mathrm{k}_{\mathrm{z}}\right| \\
& \mathrm{p}_{\mathrm{l}}=\left(\mathrm{E}_{\mathrm{l}}, 0,0, \mathrm{k}_{\mathrm{z}}\right)
\end{aligned}
$$

Example: lepton-proton collider:

$$
\begin{array}{ll}
\mathrm{p}_{\mathrm{l}}=\left(\mathrm{E}_{\mathrm{l}}, 0,0, \mathrm{k}_{\mathrm{z}, \mathrm{l}}\right), & \mathrm{k}_{\mathrm{z}, \mathrm{l}}{ }^{2}=\mathrm{E}_{\mathrm{l}}{ }^{2}-\mathrm{m}_{\mathrm{l}}{ }^{2} \\
\mathrm{p}_{\mathrm{p}}=\left(\mathrm{E}_{\mathrm{p}}, 0,0, \mathrm{k}_{\mathrm{z}, \mathrm{p}}\right) & \mathrm{k}_{\mathrm{z}, \mathrm{p}}{ }^{2}=\mathrm{E}_{\mathrm{p}}^{2}-\mathrm{M}_{\mathrm{p}}^{2}
\end{array}
$$

Lepton beam:
[Centre of mass system: $\mathbf{k}_{1}=-\mathbf{k}_{\mathrm{p}}$]

$$
\begin{aligned}
& \mathrm{s}=\mathrm{m}_{\mathrm{l}}^{2}+\mathrm{M}_{\mathrm{p}}^{2}+2 \mathrm{E}_{\mathrm{l}} \mathrm{E}_{\mathrm{p}}-2 \cos \left(\mathrm{k}_{\mathrm{l}}, \mathrm{k}_{\mathrm{p}}\right) \mathrm{k}_{\mathrm{l}} \mathrm{k}_{\mathrm{p}} \\
& \mathrm{~s}=\mathrm{m}_{\mathrm{l}}^{2}+\mathrm{M}_{\mathrm{p}}^{2}+2 \mathrm{E}_{\mathrm{l}} \mathrm{E}_{\mathrm{p}}+2 \mathrm{k}_{\mathrm{z}, \mathrm{l}} \mathrm{k}_{\mathrm{z}, \mathrm{p}} \approx 4 \mathrm{E}_{\mathrm{l}} \mathrm{E}_{\mathrm{p}}
\end{aligned}
$$

HERA: $\mathrm{E}_{\mathrm{e}}=27.5 \mathrm{GeV} \quad \mathrm{E}_{\mathrm{p}}=920 \mathrm{GeV}$
$\mathrm{s}=1.0110^{5} \mathrm{GeV}^{2}$
equivalent fixed target energy:

$$
\mathrm{E}_{1}^{*}=2 \mathrm{E}_{\mathrm{e}} \mathrm{E}_{\mathrm{p}} / \mathrm{M}_{\mathrm{p}}=53.910^{3} \mathrm{GeV}=53.9 \mathrm{TeV}
$$

Energy ${ }^{2}=s=\left(p_{1}+p_{p}\right)^{2}=m_{1}{ }^{2}+M_{p}{ }^{2}+2 \mathrm{E}_{\mathrm{l}} \mathrm{M}_{\mathrm{p}} \approx 2 \mathrm{E}_{\mathrm{l}} \mathrm{M}_{\mathrm{p}}$

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{p}}=\left(\mathrm{E}_{\mathrm{p}}, 0,0,0\right) \\
& \mathrm{p}_{\mathrm{p}}^{2}=\mathrm{E}_{\mathrm{p}}^{2}=\mathrm{M}_{\mathrm{p}}^{2} \\
& \mathrm{p}_{\mathrm{p}}=\left(\mathrm{M}_{\mathrm{p}}, 0,0,0\right)
\end{aligned}
$$

Particle Physics needs colliders to reach highest energies Famous hadron-hadron colliders: (ISR, SPS, Tevatron, LHC, ?)

Cross Section

beam I_{0} target z
density $\quad \rho=n / \mathrm{Vol}$
N interactions
$\mathrm{N} \sim \mathrm{I}_{0} \rho \mathrm{z}=\mathrm{L}$
$\mathrm{N}=\mathrm{L} \sigma \mathrm{A}$
L-Luminosity
A- Acceptance of process reconstruction - requires Monte Carlo simulations!
$\sigma-$ Cross section $=\mathrm{N} /(\mathrm{A} \mathrm{L})$
$\mathrm{I}=\mathrm{I}_{0} \exp (-\mathrm{z} / \lambda)$
$\mathrm{I}=$ number of beam particles surviving without any interaction
$\lambda=1 / \rho \sigma$ mean free path length
$\mathrm{N}=\mathrm{I}_{0}-\mathrm{I}$
$\mathrm{N}=\mathrm{I}_{0}\left(1-\mathrm{e}^{-\rho \sigma \mathrm{z}}\right)$
for small $\rho \sigma z$:
$\mathrm{N}=\mathrm{I}_{0} \rho \mathrm{z} \sigma$

Cross section $=1 /(\rho \lambda)$

Cross Section Examples

$[\sigma]=m^{2}$
1barn $=10^{-28} \mathrm{~m}^{2}$
$[L]=m^{-2}$
units
$[L]=p b^{-1}$
A cross section of 1 pb when measured with a luminosity of $1 \mathrm{pb}^{-1}$ in a certain time interval leads to 1 scattering event.

$$
\sigma=\frac{2}{3} \cdot \alpha^{2} \cdot 4 \pi R_{e}^{2}
$$

Liquid hydrogen ionization bubble chamber ($2 \mathrm{~m} \mathrm{HBC}, \mathrm{CERN}$)

Anti-proton beam of $\mathrm{E}=2.5 \mathrm{GeV}$

Photograph reveals 15 incoming tracks and 4 interactions, how large is the scattering cross section?

$$
\begin{aligned}
& \rho=4 \cdot 10^{28} p / m^{3} \\
& \frac{N}{I_{0}}=1-e^{-\rho \sigma \cdot z} \\
& -\ln \left(1-\frac{N}{I_{0}}\right)=\rho \sigma \cdot z \\
& z=2 m \\
& N=4 \\
& I_{0}=15 \\
& \sigma=0.04 \cdot 10^{-28} m^{2} \\
& \hline
\end{aligned}
$$

calculation belongs to next picture \rightarrow

Bubble Chamber Picture c 1966: Anti-protons, \bar{p},of momentum $2.5 \mathrm{GeV} / \mathrm{c}$ travel through liquid hydrogen. The picture covers a length of $\sim 1.5 \mathrm{~m}$. At point A a \bar{p} interacts with a proton to produce 2 charged mesons and a neutral K^{0}. This travels to point \mathbf{B} where it decays $K^{0} \rightarrow \pi^{+} \pi^{-}$. The π^{+}travels upwards, bounces off a proton in the hydrogen and at point \mathbf{C} decays $\pi^{+} \rightarrow \mu^{+} v_{\mu}$. After travelling a few cms , the muon decays $\mu^{+} \rightarrow e^{+} v_{e} \bar{v}_{\mu}$. The positron spirals around, loosing energy until it annihilates with an electron, $e^{+} e^{-} \rightarrow 2 \gamma$, which leave the chamber.

Figure 41.11: Total and elastic cross sections for $p p$ and $\bar{p} p$ collisions as a function of laboratory beam momentum and total center-of-mass energy. Corresponding computer-readable data files may be found at http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS group, IHEP, Protvino, August 2005)

Decay Width and Branching Ratio

Decay width

$$
\begin{aligned}
& \Gamma=\frac{\hbar}{\tau} \quad \text { lifetime at rest } \\
& \Gamma=\frac{1}{\tau} \\
& \Gamma=\sum_{f=1}^{n} \Gamma_{f} \quad \text { n decay channels }
\end{aligned}
$$

Branching ratio

$$
\begin{array}{rl}
b_{f} & =\frac{\Gamma_{f}}{\Gamma}=\frac{\tau}{\tau_{f}} \\
\mu^{-} & \rightarrow v_{\mu} e^{-} \overline{v_{e}} \\
\tau^{-} & \rightarrow v_{\tau} e^{-}-100 \% \\
v_{e} & \mathbf{b}=17 \%
\end{array}
$$

Lifetime

long lived: $>\mathbf{1 0}^{-\mathbf{- 1 6}} \mathrm{s}$

Measure decay lengths with high resolution detectors
short lived: determine width
of resonant state from invariant mass distribution of decay particle momenta \rightarrow lieftime

Lifetime τ

Interaction	lifetime $[\mathrm{s}]$
Strong	$10^{-23 \pm 1}$
Electromagnetic	$10^{-19 \pm 2}$
Weak	$10^{-10 \pm 3}$

neutron β decay: $\mathrm{n} \rightarrow \mathrm{pe}^{-} \overline{\mathrm{v}}_{\mathrm{e}}$
neutron lifetime is $(885.7 \pm 0.8) \mathrm{s}$

Is the proton a stable particle (?)

In some theories
(grand unified theories GUTs) the proton is not stable.

A lifetime of order 10^{35} years corresponds
to a mass scale of order $10^{16} \mathrm{GeV}$ - the "Planck mass"

Resonances

$$
\Delta^{++} \Rightarrow \pi^{+} p
$$

quark decay diagram
The delta resonance
decays in about $10^{-23} \mathrm{~s}$
$\mathrm{E}_{\mathrm{cm}}{ }^{2}=\mathrm{M}^{2}(\pi \mathrm{p})=\left(\mathrm{p}_{\pi}+\mathrm{p}_{\mathrm{p}}\right)^{2}$
Colour degree of freedom:

Pauli statistics: $\mathrm{u}_{\mathrm{r}} \mathrm{u}_{\mathrm{b}} \mathrm{u}_{\mathrm{g}}$

Production of the Δ resonance in pion-proton scattering ("formation").

$$
\mathrm{M}(\Delta)=1.232 \mathrm{GeV}
$$

Breit-Wigner formula to determine width ($\Gamma=1 / \tau$) cf B.Martin, G.Shaw "Particle Physics"

Summary

1. Kinematics determines event configuration.
2. Conservation of energy, 3-momentum, 4-momentum
3. $\mathrm{P}=(\mathrm{E}, p), \mathrm{P}^{2}=\mathrm{M}^{2}-p^{2}$
4. Highest energies in accelerators are reached with colliders, luminosity a challenge.
5. The observed number of events is proportional to the luminosity, and $\sigma=\mathrm{N} / \mathrm{LA}$
6. The strong, electromagnetic and weak interactions have increasing lifetime $10^{-24} \ldots-13$ s.
7. Typical weak decay lengths of $200 \mu \mathrm{~m}$ have lead to a revolution of tracking (Silicon!)
8. The proton is stable, we think, $\tau>210^{29}$ years. The neutron decays after 886s.
9. Hadronic resonances such as the Δ decay after 10^{-23} (reconstruction through decays).

History of Particle Physics could be taught as a sequence of spectroscopies, but no sub-quark or high mass (SUSY) spectroscopy has yet been discovered..

Particle Physics - a Sequence of Spectroscopies

- "Excitation of the 2536 A Resonanc Line of Mercury" Franck /Hertz 1914

Bohr \rightarrow ATOMIC SPECTROSCOPY

- "Disintegration of Elements by High Velocity Protons"
Cockcroft / Walton 1932
$\mathrm{pLi} \rightarrow \alpha \alpha:$ NUCLEAR SPECTROSCOPY
- "Total Cross-Sections of Positive Pions in Hydrogen" Anderson/Fermi/Long/Nagle 1952 $\Delta^{++} \rightarrow p \pi:$ HADRON SPECTROSCOPY
- The charming "November Revolution" Ting et al., Richter et al. 11.11.1974 $\mathcal{J} / \Psi \rightarrow c \bar{c}: \underline{\text { QUARK SPECTROSCOPY }}$

Gustav Hertz: Nobel 1925

John Cockroft and Ernest Walton: Nobel 1951

Enrico Fermi: Nobel 1935

Sam Ting and Burt Richter: Nobel 1976

