W,Z, pdf's and the strange quark distribution

Max Klein, Uta Klein, Jan Kretzschmar

QCD Fit assumptions and pdf's Measurement Quantities Effects from a strange strange Effects from ū/đ asymmetries

A case study (using numerical and MC calculations) to investigate the sensitivity of W,Z to pdf's in discussions with DESY, HH, Mainz, Oxford \rightarrow note on W,Z studies in preparation.

WZ Meeting, CERN 23.10.2009

QCD Fit Assumptions on pdf's

Require $\mathbf{\bar{u}}=\mathbf{d}$ at low x (only constraint is HERA $F_2^p = 2x[4\bar{u}+d+..]$) At larger x ~ 0.1 they differ (Exxx) Testing the low x symmetry assumption would have required deuteron scattering at HERA.

Charm is generated dynamically. Usually $Q_0^2 > m_c^2$. Some 5-10% constraints from F_2^{cc} at H1/ZEUS

Beauty is generated dynamically above threshold and ~20% constraints from F_2^{bb} at H1/ZEUS

The high x region is not too well constrained (low HERA luminosity, nuclear corrections), which results in larger pdf uncertainties at high x (large |rapidity|).

A stranger is the **strange quark distribution**. Some hints for $s \neq sbar$. Some constraints from K, Φ .

Usual assumption

$$s + \overline{s} = (\frac{1}{2} + \epsilon) \cdot (\overline{u} + \overline{d})$$

³The evolution of $s + \overline{s}$ in DGLAP QCD is found to yield a linear dependence of ϵ on $\ln Q^2$ which is used to extrapolate the NuTeV result [84], obtained at 16 GeV^2 , to $Q^2 = Q_0^2$.

C. Adloff et al. [H1], Eur. Phys. J. C19, 269 (2001), [hep-ex/0012052].

Recent H1pdf2009 and HERApdf1.0 [D=d+s]

$$\varepsilon = -0.08$$

 $x\bar{s} = f_s x\bar{D} \text{ at } Q_0^2.$
 $f_s = \frac{1+2\varepsilon}{3+2\varepsilon} = 0.296$

F. Aaron et al. [H1 Collaboration] (2009), [hep-ex/0904.3513]

HERAPDF1.0 release imminent

Cross Sections – Drell-Yan (photon exchange)

ALL cross sections are for the lepton decays $Z \rightarrow ee$ or $W \rightarrow ev$

$$\frac{d^2\sigma}{dMdy} = \frac{4\pi\alpha^2(M)}{9} \cdot 2M \cdot P(M) \cdot \Phi(x_1, x_2, M^2) \quad \text{[nb GeV}^{-1]}$$
$$x_1 = \sqrt{\tau}e^y \quad x_2 = \sqrt{\tau}e^{-y} \quad \tau = \frac{M^2}{s} \quad s = 4E_p^2$$
$$P_\gamma(M) = \frac{1}{M^4} \qquad \Phi_\gamma = \sum_q e_q^2 F_{qq}$$
$$F_{qq} = x_1 x_2 \cdot [q(x_1, M^2)\overline{q}(x_2, M^2) + \overline{q}(x_1, M^2)q(x_2, M^2)]$$

Note that $\tau = x_1 x_2$ and often one gets confused as the quark distribution term is often written without $x_1 x_2$ but the LHAPDF delivers xq which we term pdf.

With NLO corrections the cross section depends on the gluon distribution too.

Cross Sections – y and Z exchange and interference

$$\begin{aligned} \frac{d^2\sigma}{dMdy} &= \frac{4\pi\alpha^2(M)}{9} \cdot 2M \cdot P(M) \cdot \Phi(x_1, x_2, M^2) \quad \text{[nb GeV}^{-1]} \\ x_1 &= \sqrt{\tau}e^y \quad x_2 = \sqrt{\tau}e^{-y} \quad \tau = \frac{M^2}{s} \quad s = 4E_p^2 \\ P_{\gamma}(M) &= \frac{1}{M^4} \qquad \Phi_{\gamma} = \sum_q e_q^2 F_{qq} \\ F_{qq} &= x_1 x_2 \cdot [q(x_1, M^2)\overline{q}(x_2, M^2) + \overline{q}(x_1, M^2)q(x_2, M^2)] \\ P_{\gamma Z} &= \frac{\kappa_Z v_e(M^2 - M_Z^2)}{M^2[(M^2 - M_Z^2)^2 + (\Gamma_Z M_Z)^2]} \qquad \Phi_{\gamma Z} = \sum_q 2e_q v_q F_{qq} \\ v_f &= I_3^f - e_f \sin^2 \Theta, \quad a_f = I_3^f \quad [f = e, q] \qquad \kappa_z = \frac{1}{4\sin^2 \Theta \cos^2 \Theta} \quad \cos \Theta = \frac{M_W}{M_Z} \\ P_Z &= \frac{\kappa_Z^2 (v_e^2 + a_e^2)}{(M^2 - M_Z^2)^2 + (\Gamma_Z M_Z)^2} \qquad \Phi_Z = \sum_q (v_q^2 + a_q^2) F_{qq} \end{aligned}$$

Interference must change sign at M_z and is in itself small as $v_e = -1/2 + 2 \sin^2 \Theta \approx 0$

Cross Sections - W^{+/-}

$$\frac{d^2\sigma}{dMdy} = \frac{4\pi\alpha^2(M)}{9} \cdot 2M \cdot P(M) \cdot \Phi(x_1, x_2, M^2) \quad \text{[nb GeV}^{-1]}$$

$$P_{W} = \frac{\kappa_{W}^{2}}{(M^{2} - M_{W}^{2})^{2} + (\Gamma_{W}M_{W})^{2}}$$

$$\Phi_{W^{+}} = x_{1}x_{2}[U_{ud}^{2}(u_{1}\overline{d}_{2} + u_{2}\overline{d}_{1}) + U_{cs}^{2}(c_{1}\overline{s}_{2} + c_{2}\overline{s}_{1}) + U_{us}^{2}(u_{1}\overline{s}_{2} + u_{2}\overline{s}_{1}) + U_{cd}^{2}(c_{1}\overline{d}_{2} + c_{2}\overline{d}_{1})]$$

$$\Phi_{W^{-}} = x_{1}x_{2}[U_{ud}^{2}(\overline{u}_{1}d_{2} + \overline{u}_{2}d_{1}) + U_{cs}^{2}(\overline{c}_{1}s_{2} + \overline{c}_{2}s_{1}) + U_{us}^{2}(\overline{u}_{1}s_{2} + \overline{u}_{2}s_{1}) + U_{cd}^{2}(\overline{c}_{1}d_{2} + \overline{c}_{2}d_{1})]$$
for 4 flavours and $\kappa_{W} = \frac{1}{4\sin^{2}\Theta}$ $q_{i} = q(x_{i}, M^{2})$

 $U_{ud}^2 = U_{cs}^2 = 0.94$, $U_{us}^2 = U_{cd}^2 = 0.05$

y Distributions and Asymmetries W^{+/-}

What constrains F_2 ?

$$F_{2}(x,Q^{2}) = x(e_{u}^{2}[U + \overline{U}] + e_{d}^{2}[D + \overline{D}])$$

$$U = u_{v} + u_{s} + c$$

$$\overline{U} = \overline{u} + \overline{c}$$

$$D = d_{v} + d_{s} + s$$

$$\overline{D} = \overline{d} + \overline{s}$$

$$u_{s} = \overline{u}, d_{s} = \overline{d}, s = \overline{s}, c = \overline{c}$$

$$\overline{s} = f_{s} \cdot (\overline{u} + \overline{d}), \overline{u} = \overline{d}$$

IF s was very different at lowish x, yet F_2 is to be kept constant (just now measured to 1% accuracy in relevant x range). Thus then d or u .. have to compensate this

Deuteron data, as from BCDMS, provide some information on u-d Further constraints exist from DY and dimuon data, Gottfried sum rule... The HERMES result will have to be confronted with world data on pdf's. Here study only W,Z and keep F_2 fixed as we are interested in lower x.

W[±] Rapidity Cross Section s

Possibly significant strange-down effects in W⁺ some in W⁻

Different sensitivity of W⁺ vs W⁻ can be traced back to flavour contributions

W^{\pm} Cross Section in η_e

Similar observation would be made in pseudo-rapidity distribution

Z Rapidity Cross Section

A reduced strange density and enlarged down sea would enhance the Z cross section [50% reduced s would enlarge cross section by 20%, enlarged s would be rather hidden] [Z cross sections and ratios still being checked with MC calculation]

The cross section ratios may come out different than predicted, due to pdf variations. A change of s would increase the $2Z/(W^++W^-)$ ratio, but the sign may be deduced from W^+/W^- .

A change in s which would modify \bar{u} would be difficult to monitor. A conventional result on W/Z would thus not imply necessarily that the strange was conventional too..

Significant effects would occur if $d \neq \bar{u}$ to a large extent [50% gives 10% in W⁺/W⁻]

$$s \rightarrow s \cdot (1 + \delta_{sd})$$
$$d \rightarrow d - s \cdot \delta_{sd}$$

Direct Effects on pdfs

Summary

The current pdf measurements have some freedom, which leads to simplifying QCD fit assumptions.

The W and Z cross sections and their ratios may provide further constraints on this.

If indeed the strange quark distribution was much larger than hitherto assumed, and if that was balanced by an reduced down sea, for example, then the Z/(W⁺+W⁻) and the W⁺/W⁻ ratios would allow tagging such an effect (50% change of s roughly corresponding to 5-10% asymmetry effects).

The rapidity (x) dependence is of interest, and the η_e dependence leads to similar effects as y.

The variations as studied are to set a scale, not to indicate that so large variations are to be considered. Some checks are still being done and an NLO study may be of interest.

It is possible, that the W, Z cross sections and their ratios as functions of the rapidity may deviate from the canonical predictions as most of these use common assumptions in the Bjorken x range of interest.

In particular, the famous W/Z ratio may turn out to look different and this may not hint to an ATLAS problem.. A differential, accurate measurement of W⁺, W⁻ and Z cross sections and their ratios is important.

backup

Max Klein LHeC pdf DIS07 18.4.07

Strange quark distribution

Max Klein LHeC pdf DIS07 18.4.07

Max Klein LHeC pdf DIS07 18.4.07

Anti-Strange quark distribution

Max Klein LHeC pdf DIS07 18.4.07