The LHeC Conceptual Design

Max Klein - University of Liverpool

A status report on behalf of the LHeC Study Group

2007 CERN SPC and [r]ECFA 2008 Divonne I, ICFA,ECFA 2009 Divonne II, NuPECC, ECFA

2010 Divonne III (28.-30.10.), ECFA → Conceptual Design Report

CERN Science Policy Committee 14.6.2010 http://cern.ch/lhec

Scientific Advisory Committee

Guido Altarelli (Rome) Sergio Bertolucci (CERN) Stan Brodsky (SLAC) Allen Caldwell -chair (MPI Munich) Swapan Chattopadhyay (Cockcroft) John Dainton (Liverpool) John Ellis (CERN) Jos Engelen (CERN) Joel Feltesse (Saclay) Lev Lipatov (St.Petersburg) Roland Garoby (CERN) Roland Horisberger (PSI) Young-Kee Kim (Fermilab) Aharon Levy (Tel Aviv) Karlheinz Meier (Heidelberg) Richard Milner (Bates) Joachim Mnich (DESY) Steven Myers, (CERN) Tatsuya Nakada (Lausanne, ECFA) Guenther Rosner (Glasgow, NuPECC) Alexander Skrinsky (Novosibirsk) Anthony Thomas (Jlab) Steven Vigdor (BNL) Frank Wilczek (MIT) Ferdinand Willeke (BNL)

http://cern.ch/lhec

Organisation for the CDR

Steering Committee

Oliver Bruening (CERN) John Dainton (Cockcroft) Albert DeRoeck (CERN) Stefano Forte (Milano) Max Klein - chair (Liverpool) Paul Laycock (secretary) (L'pool) Paul Newman (Birmingham) Emmanuelle Perez (CERN) Wesley Smith (Wisconsin) Bernd Surrow (MIT) Katsuo Tokushuku (KEK) Urs Wiedemann (CERN) Frank Zimmermann (CERN)

Working Group Convenors

Accelerator Design [RR and LR] Oliver Bruening (CERN), John Dainton (CI/Liverpool) Interaction Region and Fwd/Bwd Bernhard Holzer (DESY), Uwe Schneeekloth (DESY), Pierre van Mechelen (Antwerpen) **Detector Design** Peter Kostka (DESY), Rainer Wallny (UCLA), Alessandro Polini (Bologna) New Physics at Large Scales George Azuelos (Montreal) Emmanuelle Perez (CERN), Georg Weiglein (Durham) Precision QCD and Electroweak Olaf Behnke (DESY), Paolo Gambino (Torino), Thomas Gehrmann (Zuerich) Claire Gwenlan (Oxford) **Physics at High Parton Densities** Nestor Armesto (Santiago), Brian Cole (Columbia), Paul Newman (Birmingham), Anna Stasto (MSU)

"Now we are entering the post-TeV era, jumping not one but two orders of magnitude to a lab equivalent of order 50 TeV at HERA. If the LHC is successfully commissioned in the LEP tunnel in 1997, then we may hope to see collisions between electrons from LEP and protons from the LHC in the next millenium giving a lab equivalent around 10 TeV (1 PeV). "F.Close Singapor 1990

LEP*LHC (1984, 1990) - Lausanne, Aachen E.Keil LHC project report 93 (1997) Thera (2001), QCD explorer (2003) J.Dainton et al, 2006 JINST 1 10001

LHeC at DIS conferences since Madison 2005

Outline

Basic Project Considerations

Precision QCD and Electroweak Physics

New Physics with the LHeC and the LHC

High Density Matter (Low x and eA)

Detector Design

Accelerator: Ring-Ring

Accelerator: LINAC-Ring

Concluding Remarks

Please note: ALL plots and results are preliminary and being (re)done for the CDR

HERA - an unfinished programme

	Low x: DGLAP seems to hold though In: Gluon Saturation not proven	1/x is large							
High x: would have required much higher luminosity [u/d ?, xg ?]									
Neutron structure not explored									
	Nuclear structure not explored								
	New concepts introduced, investigation -parton amplitudes (GPD's, proton hold -diffractive partons -unintegrated partons	n just started: ogram)							
	Instantons not observed								
	Odderons not found 	*) For an experimental review see: M.Klein, R.Yoshida, "Collider Physics at HERA" arXiv 0805.3334, Prog.Part.Nucl.Phys.61,343(2008) HERA II analysis still ongoing							
	Fermions still pointlike Lepton-quark states (as in RPV SUSY) no	ot observed							

Precision QCD and Electroweak Physics

Based on weak = electromagnetic cross sections, p, d, e^{\pm} , P_a and high precision and full acceptance

Structure functions [F₂,F₁,xF₃^{gZ},F₂^{gZ}; F₂^{cc},F₂^{bb},F₂^{ss}] in p/d and A Quark distributions from direct measurements and QCD fits Strong coupling constant α_s to per mille accuracy Gluon distribution in full x range to unprecedented precision **Standard Model Higgs** Single top and anti-top quark production at high rate (5pb) Electroweak couplings (light and heavy quarks and mixing angle) Heavy quark fragmentation functions Charm and beauty below and way beyond threshold at per cent accuracy Heavy quarks in real photon-proton collisions [LR option] Jets and QCD in photoproduction and DIS Gluon structure of the photon

....

Strong Coupling Constant

Simulation of α_s measurement at LHeC

α_s least known of coupling constants

Grand Unification predictions suffer from $\delta \alpha_s$

DIS tends to be lower than world average

LHeC: per mille accuracy indep. of BCDMS. Challenge to experiment and to h.o. QCD

J.Bluemlein and H. Boettcher, arXiv 1005.3013 (2010)

Single top and anti-top Production in charged currents

CC events for 10 fb⁻¹

Electroweak Couplings

CDF: $qq' \rightarrow e+e-$ (Drell-Yan), A_{FB} Phys.Rev. D71 (2005) 052002, hep-ex/0411059 LEP/SLC: $ee \rightarrow qq(\gamma)$, $a^2_q + v^2_q$ Phys.Rept.427:257,2006, hep-ex/0509008

For H1, CDF, LEP cf Z.Zhang DIS10

Physics Beyond the Standard Model

Based on high energy, luminosity, e^{\pm} , P_e and high precision and full acceptance

Lepto-Quarks [E6, bound states of technifermions, squarks decaying by RP violation..] Contact Interactions [new physics at multiTev scale] Excited Fermions Higgs in SM and MSSM (in SM chapter) Heavy Leptons 4th generation quarks Z' SUSY

•••

New Physics at the LHeC

Divonne 08

- Lepto-Quark Production and Decay (s and t-channel effects)
- **Squarks and Gluinos** ٠

ZZ, WZ, WW elastic and inelastic collisions

- Technicolor •
- **Novel Higgs Production Mechanisms**
- **Composite electrons**
- **Lepton-Flavor Violation**
- QCD at High Density in ep and eA collisions ٠
- Odderon

LHeC Physics Overview

118

Stan Brodsky, SLAC

Broad physics goals (to be discussed at the Workshop)

- Proton structure and QCD physics in the domain of x and Q² of LHC experiments
- Small-x physics in eP and eA collisions

Maximum W < 1.4 TeV

for $E_e = 140$ GeV, $E_p = 7$ TeV

- Probing the e^{\pm} -quark system at ~TeV energy eg leptoquarks, excited e*'s, mirror e, SUSY with no R-parity.....
- Searching for new EW currents eg RH W's, G. Altarelli

effective eeqq contact interactions...

J.Bartels: Theory on low x

Contact Interactions

$$\mathcal{L} = \frac{4\pi}{2\Lambda^2} j^{(e)}_{\mu} j^{\mu(q)};$$

$$j^{(f=e,q)}_{\mu} = \eta_L \ \overline{f}_L \gamma_{\mu} f_L + \eta_R \ \overline{f}_R \gamma_{\mu} f_R + h.c.$$

$$\Rightarrow \text{ all combinations of couplings } \eta_{ii} = \eta^{(e)}_i \eta^{(q)}_i; \quad q = u, d$$

High luminosity vs high energy

CI study: LHeC freezes the pdfs which allows new physics to be revealed. HERA+BCDMS reshuffle the sea...

In MSSM Higgs production is b dominated

First measurements of b at HERA can be turned to precision measurement of b-df.

LHeC: higher fraction of b, larger range, smaller beam spot, better Si detectors

Beauty - MSSM Higgs

THE UNCONFINED QUARKS AND GLUONS

Abdus Salam

International Centre for Theoretical Physics, Trieste, Italy and Imperical College, London, England

1. Introduction

Leptons and hadrons share equally three of the basic forces of nature: electromagnetic, weak and gravitational. The only force which is supposed to distinguish between them is strong. Could it be that leptons share with hadrons this force also, and that there is just one form of matter, not two? Tbilissi 76

Surprises and Theory

Things may evolve differently than we think, but we may rely on the ingenuity of our theory colleagues to deal with the unexpected.

Design a maximum energy, high luminosity, affordable collider

E⁺ →e⁺g

S.Adler, arXiv:hep-th/9610104

In summary, we suggest that the production and decay of the excess HERA events, interpreted as leptogluons, could be accounted for in our model when augmented by either the assumption that the Z_6 condensate that breaks SU(4) to color SU(3) contains a small component that further breaks color SU(3) to glow SO(3), or by the assumption that color symmetry remains exact but that color neutralization is incomplete in hard processes.

Low x Physics: non-linear parton evolution (ep/eA)

Based on p/A [e[±],P_e] and high precision and full acceptance in forward and backward region

Extension of kinematic range by 3-4 orders of magnitude into saturation region (with p and A) Like LHeC ep without HERA.. (e.g. heavy quarks in A)

10-2

10-1

x

10⁻⁹

10

10⁻⁶

10⁻⁹

Rich Neutron Physics from eD

d/u at low x from deuterons

Neutron structure unknown in HERA range and below, yet crucial to resolve its partonic structure and to predict scattering on nucleons. Stabilizes QCD evolution (singlet – non singlet parts!)

Collider eD: low x: diffraction-shadowing, high : tag p spectator to en interaction

(13) There are five color-singlet combinations of the deuteron wavefunction in QCD, only one of which is the standard proton-neutron state. The "hidden color" [13] components will lead to high multiplicity final states in deep inelastic electron-deuteron scattering.

In eA at the collider, test Gribovs relation between shadowing and diffraction, control nuclear effects at low Bjorken x to high accuracy

Saturation of Gluon Density

 $d^2\sigma$ $dog_{10}(x) dog_{10}(Q^2)$ cm^2 kin. limit (y=1) $10^{-31.38}$ $Q^2 = M_W^2$ $Q^2 = M_W^2$ $10^{-31.3}$ $Q^2 = M_W^2$ $10^{-31.3}$ $10^{-31.3}$ $Q^2 = M_W^2$ $10^{-31.3}$ $Q_s^2(x)$ $Q_s^2(x)$

MUST show up as LHeC measures in unitarity limited region. Can be uniquely identified (inclusive F_2/F_L , diffraction, J/ψ).

With eA reach effectively x of 10^{-8} (UHEv)

J/ψ – golden channel

Quark-Gluon Dynamics - Diffraction and HFS (fwd jets) x bj small е evolution Sector of the se **(a)** from large to small x Mx m 'forward' jet x intlarge X_{IP} mm Understand multi-jet emission (unintegr. pdf's), tune MC's (qd) xp/o p Production of high mass 1⁻ states Events 10 8 Diffractive event yield ($x_{IP} < 0.05, Q^2 > 1 \text{ GeV}^2$) • LHeC (2 fb^{-1}) 10 ³ MEPS CDM 10 • HERA (500 pb⁻¹) CASCADE 10 10² $\Theta = 1^{\circ}$ 70 e x 7000 p 10 5 10 10 10 1 10 ⁻² 10⁻⁵ 10 ⁻³ 10 -4 **10**⁻¹ 1 X 50 150 250 100 200 0 At HERA resolved $\boldsymbol{\gamma}$ effects mimic non-kt ordered emission M_X / GeV

Detector Design

Based on HERA, LHC, ILC R&D

Large fwd acceptance and high luminosity

Forward tagging of p,n,d Backward tagging of e, γ Tagging of c and b in max. angular range High resolution final state (Higgs to bbar) High precision tracking and calorimetry

Largest possible acceptan	ce
1-179º	7-177º
High resolution tracking 0.1 mrad	0.2-1 mrad
Precision electromagnetic	calorimetry
0.1%	0.2-0.5%
Precision hadronic calorim	etry
0.5%	1%
High precision luminosity r	neasurement
0.5% ?	1%
LHeC	HERA

LHeC Detector: version for low x

Muon chambers (fwd,bwd,central)

Coil (r=3m l=11.8m, 3.5T) [Return Fe not drawn]

Central Detector

Pixels Elliptic beam pipe

Silicon (fwd/bwd+central)

[Strip or/and Gas on Slimmed Si Pixels] [0.6m radius for 0.03% * pt in 3.5T field]

El.magn. Calo (Pb,Scint. 30X₀) Hadronic Calo (Fe/LAr; Cu/Brass-Scint. 9-12λ)

Fwd Detectors

(down to 1°) Silicon Tracker [Pix/Strip/Strixel/Pad Silicon or/and Gas on Slimmed Si Pixels]

Calice (W/Si); dual ReadOut - Elm Calo FwdHadrCalo: Cu/Brass-Scintillator

Bwd Detectors

(down to 179°) Silicon Tracker [Pix/Strip/Strixel/Pad Silicon or/and Gas on Slimmed Si Pixels] Cu/Brass-Scintillator, Pb-Scintillator (SpaCal - hadr, elm)

Dimensions defined by beam pipe (Nomex/Be sandwich?) – work in progress.

The Detector - Low Q² Setup

Fwd/Bwd asymmetry in energy deposited and thus in technology [W/Si vs Pb/Sc..] Present dimensions: LxD =17x10m² [CMS 21 x 15m², ATLAS 25 x 45 m²]

28

The Detector - High Q² Setup

²⁹ Aim of current evaluations: avoid detector split in two phases: time and effort

Accelerator: Ring - Ring

Based on HERA, LEP and LHC Experience

Workpackages for CDR

Baseline Parameters and Installation Scenarios Lattice Design [Optics, Magnets, Bypasses, IR for high L and 1°] Rf Design [Installation in bypasses, Crabs] Injector Complex [Sources, Injector] Injection and Dump Beam-beam effects Impedance and Collective Effects Vacuum and Beam Pipe Integration and Machine Protection Powering Issues e Beam Polarization Deuteron and Ion Beams

BINP Novosibirsk BNL CERN Cockcroft Cornell DESY EPFL Lausanne KEK Liverpool U SLAC TAC Turkey

Cryo jumpers accounted for in FODO design. Further interferences mapped and being studied.

- No interference with LHC
- meets design parameters
- synchrotron radiation energy loss < 50 MW (maximum dipole filling)
- 2 quadrupoles families

 reasonable sextupole strength and length
 J.M. Jowett, LHeC Design Status, DIS2010, Florence, 22/4/2010

CERN: 40cm model design

Novosibirsk: Hysteresis loop measurements

Dipole Magnets

Accelerator	LEP	LHeC
Cross Section/ cm ²	50 x 50	20 x 10
Magnetic field/ T	0.02-0.11	<mark>0.01</mark> -0.10
Energy Range/GeV	20-100	<mark>10</mark> -80
Good Field Area/cm ²	5.9 x 5.9	6 x 3.8
FODO length/m	76	107 [double]
Magnet length/m	11.5	5.5
segmentation	8x31x6	8x23x15
Number of magnets	1488+192 [DS]	3080+320
Weight / kg/m	800	200

Fe based magnet prototypes [BINP-CERN] \rightarrow CDR

challenges:

compact design for installation good reproducibility at injection: 0.01T to $10^{-3.-4}$

Bypasses

Ring-Ring Parameters

$$L = \frac{N_p \gamma}{4\pi e \varepsilon_{pn}} \cdot \frac{I_e}{\sqrt{\beta_{px} \beta_{py}}}$$
$$L = 8.310^{32} \cdot \frac{I_e}{50mA} \frac{m}{\sqrt{\beta_{px} \beta_{pn}}} cm^{-2} s^{-1}$$

Luminosity safely 10³³cm⁻²s⁻¹ HERA was 1-5 10³¹

Table values are for 14 MW sync.rad loss (beam power) and 70 GeV on 7000 GeV.

$$I_e = 0.35 mA \cdot \frac{P}{MW} \cdot \left(\frac{100 GeV}{E_e}\right)^4$$

LHC upgrade: N_p increased. Need to keep e tune shift low: by increasing β_p , decreasing β_e but enlarging e emittance, to keep e and p matched.

Ring LHeC profits from LHC upgrade but not proportional to N_p **Crucial for LINAC**

Standard Parameter	Protons	Elektrons			
nb=2808	Np=1.15*10 ¹¹	Ne=1.4*10 ¹⁰			
	Ip=582 mA	Ie=71mA			
Optics	βxp=180 cm	βxe=12.7 cm			
	βyp= 50 cm	$\beta ye = 7.1 \text{ cm}$			
	εxp=0.5 nm rad	εxe=7.6 nm rad			
	εyp=0.5 nm rad	εye=3.8 nm rad			
Beamsize	σx=30 μm				
	σy=15.8 μm				
Tuneshift	$\Delta vx = 0.00055$	$\Delta vx = 0.0484$			
	Δvy=0.00029	Δvy=0.0510			
Luminosity	$L=8.2*10^{32}$				
Ultimate [ESP]					
nb=2808	Np=1.7*10 ¹¹	$Ne=1.4*10^{10}$			
	Ip=860mA	Ie=71mA			
Optics	βxp=230 cm	βxe=12.7 cm			
	βyp= 60 cm	$\beta ye= 7.1 \text{ cm}$			
	εxp=0.5 nm rad	εxe=9 nm rad			
	εyp=0.5 nm rad	εye=4 nm rad			
Beamsize	σx=34 μm				
	σy=17 μm				
Tuneshift	$\Delta v x = 0.00061$	∆vx=0.056			
	Δvy=0.00032	Δvy=0.062			
Luminosity	L=1.03*10 ³³				
Upgrade [LPA]					
nb=1404	Np=5*10 ¹¹	$Ne=1.4*10^{10}$			
	Ip=1265mA	Ie=71mA			
Optik	βxp=400 cm	βxe= 8 cm			
	βyp=150 cm	βye= 5 cm			
	εxp=0.5 nm rad	εxe=25 nm rad			
	εyp=0.5 nm rad	εye=15 nm rad			
Strahlgröße	σx=44 μm				
	σy=27 μm				
Tuneshift	$\Delta v x = 0.0011$	Δvx=0.057			
	Δvy=0.00069	Δvy=0.058			
Luminosität	L=1.44*10 ³³				

Accelerator: LINAC - Ring

Based on ILC, SLC and LHC Experience

Workpackages for CDR

Baseline Parameters [Designs, Real photon option, ERL] Sources [Positrons, Polarisation] Rf Design Injection and Dump Beam-beam effects Lattice/Optics and Impedance Vacuum and Beam Pipe Integration and Layout Interaction Region Powering Issues Magnets Cryogenics

BINP Novosibirsk BNL CERN Cockcroft Cornell DESY EPFL Lausanne KEK Liverpool U SLAC TAC Turkey

Table 2: Parameters of the first two proton quadrupoles [4].

LHC proton interaction-region optics for $\beta^*_{x,y}=0.1 \text{ m}$, scaled from the nominal IR optics (left) [5], and a new IR optics with $\beta^*_{x,y}=0.1 \text{ m}$ for protons [/*=10 m] (top right) and electrons [/*=20 m] (bottom right) [4]

LINAC-Ring Parameters

Table 4: Lepton beam	parameters and	lum inosity.
----------------------	----------------	--------------

	p-60	erl	p-140
e ⁻ energy at IP [GeV]	60	60	140
luminosity $[10^{32} \text{ cm}^{-2} \text{s}^{-1}]$	1.1	10.1	0.4
polarization [%]	90	90	90
bunch population $[10^9]$	4.5	2.0	1.6
e ⁻ bunch length [μ m]	300	300	300
bunch interval [ns]	50	50	50
transv. emit. $\gamma \epsilon_{x,y} [\mu m]$	50	50	100
rms IP beam size $[\mu m]$	7	7	7
hourglass reduction $H_{\rm hg}$	0.91	0.91	0.94
crossing angle θ_c	0	0	0
repetition rate [Hz]	10	CW	10
bunches/pulse [10 ⁵]	1	N/A	1
pulse current [mA]	16	10	6.6
beam pulse length [ms]	5	N/A	5
ER efficiency η	0	94%	0
total wall plug power [MW]	100	100	100

Table 2: SC linac parameters. *RT: room temperature.

	p-60	erl	p-140
RF frequency [MHz]	700	700	700
cavity length [m]	1	1	1
energy gain / cavity	31.5	18	31.5
$R/Q[\Omega]$	403	403	403
$Q_0 [10^{10}]$	1	2.5	1
power loss, stat [W/cav.]	5	5	5
power loss, RF [W/cav]	12.3	32	12.3
power loss, total [W/cav]	17.3	37.2	17.3
real-est. gradient [MeV/m]	17.8	10.26	17.8
length/GeV [m]	55.7	97.5	55.7
#cavities/(1 GeV)	31.8	55.6	31.8
power loss/GeV (2 K) [kW]	0.55	2.06	0.55
"W per W" (1.8 K to RT*)	600	600	600
power loss/GeV (RT*) [MW]	0.33	1.24	0.3
final energy [GeV]	60	60	140
# passes for acceleration	2	3	2
# passes for deceleration	0	3	0
total linac length [km]	1.67	1.95	3.90
tot. cryo power (RT) [MW]	9.9	24.75	23.1
av. beam current [mA]	0.74	6.6	0.27
beam power at IP [MW]	45	396	39
RF power [MW]	89	(22)	75.6
cryo + RF power [MW]	99	(47)	98.4

For ERL version: 2 x 560, 1m long cavities 25 MW cryo power

Cf recent papers to IPAC10 at Kyoto (from LHeC web page)

Project + Concluding Remarks

Proposal as endorsed by ECFA (30.11.2007)

As an add-on to the LHC, the LHeC delivers in excess of 1 TeV to the electronquark cms system. It accesses high parton densities 'beyond' what is expected to be the unitarity limit. Its physics is thus fundamental and deserves to be further worked out, also with respect to the findings at the LHC and the final results of the Tevatron and of HERA.

First considerations of a ring-ring and a linac-ring accelerator layout lead to an unprecedented combination of energy and luminosity in lepton-hadron physics, exploiting the latest developments in accelerator and detector technology.

It is thus proposed to hold two workshops (2008 and 2009), under the auspices of ECFA and CERN, with the goal of having a Conceptual Design Report on the accelerator, the experiment and the physics. A Technical Design report will then follow if appropriate.

Unanimously supported by rECFA and ECFA plenary in November 2007 NuPECC: Long Range Plan being finalised: LHeC listed there (Madrid 5/10)

Schedule+Remarks

If the LHeC is to be realised it has to start operation by 2020/22 [programme, effort]

this is possible:

HERA: Proposal 1984 – Operation 1992. LEP: Proposal 1983 – Operation 1989 The major technologies for the accelerator and the detector exist. **It can be built.**

Steps: CDR 2010/11 [15.9. – Divonne III 28.10.-30.10. – ECFA – Referees/SAC - Printed Spring 2011] Evaluation. When positive: set up professional project structure for TDR by end of 2013 for either Ring or LINAC [charge, pol, L, cost, IR, Det, LHC interference ..]

Crucial for CDR: Concluding the work (IR \rightarrow Detector, writing the chapters -70 authors)

A detailed installation plan is being worked out for the Accelerator and the Detector in order to understand the interference with the LHC developments.

The high luminosity ingredients for the LINAC would require to strongly couple R&D with ongoing developments (Nb₃ Sn, positron sources, ERL, crab cavities).

In the long term perspective a 140 GeV electron beam coupled with a 16 TeV LHC' beam would mean that this field can be brought to 3 TeV cms and x $^{-7}$

The TeV Scale [2010-2035..]

Deep Inelastic Scattering

Fig. 1. Distance scales resolved in successive lepton–hadron scattering experiments since the 1950s, and some of the new physics revealed.

http://cern.ch/lhec

SLAC 69: 2m LINAC: a "bold extrapolation of existing technology" to "collect data which may be of future use..."

CERN – Mecca of pp [SppS] and DIS [μ ,v]

50 000 times Q² possibly with 10 times the accelerator length when comparing with SLAC69! It would be a waste not to exploit the 7 TeV beams for eP and eA physics at some stage during the LHC time

> G. Altarelli Divonne 08

Many thanks to too many people to be named here..

backup

The Fermi Scale [1985-2010]

Physics Programme of the LHeC

- + Unfolding completely the parton structure of the proton (neutron and photon) and search for sub-substructure down to ten times below HERA's limit
- + Sensitive exploration of new symmetries and the grand unification of particle interactions with electroweak and strong interaction measurements of unprecedented precision.
- + Search for and exploration of new, Terascale physics, in particular for singly produced new states (RPV SUSY, LQ, excited fermions) complementary to the LHC
- + Exploration of high density matter [low x physics beyond the expected unitarity limit for the growth of the gluon density]
- + Unfolding the substructure and parton dynamics inside nuclei and the study of quark-gluon plasma matter by an extension of the kinematic range by four orders of magnitude.

It would be a waste not to exploit the 7 TeV beams for eP and eA physics at some stage during the LHC time

G. Altarelli Divonne 08

Lepton-Proton Scattering Facilities

Can tunnel for LHeC Linac be build as first part of a LC tunnel at CERN ?

Tunnel studies for CLIC and ILC at CERN both have tunnels which are deeper underground than LHC and seen from top they both pass close to LHC ring center. Therefore they are not suited to send e⁻ beam tangential to LHC ring.

LHeC – HERA - Kinematics

Low x,Q² requires small angle acceptance for both e and hadronic final state. Large x requires small angle acceptance for hadronic final state. TeV energies in forward p direction

Light Quark Distributions

d and u at high x: a longstanding puzzle NC/CC: free of HT, nuclear corrections. Essential for predictions at high x

LHeC is an electroweak machine. e.g.: Charge asymmetry in NC measures valence quarks down to x ~10⁻³ at high Q²

 $xF_{3}^{\not\!\!\!/ Z}(x)$

Anti-Strange Quark Distribution

Supersymmetry (R-parity conserved)

Pair production via t-channel exchange of a neutralino. Cross-section sizeable when ΣM below ~ 1 TeV. Such scenarios are "reasonable".

E.g. global SUSY fit to EW & B-physics observables plus cosmological constraints (O. Buchmueller et al, 2008), within two SUSY models (CMSSM & NUHM) leads to masses of ~ (700, 150) GeV.

SUSY cross-section at LHeC: about 15 fb for these scenarios.

Added value w.r.t. LHC to be studied :

- could extend the LHC slepton sensitivity
- precise mass measurements
- relevant information on χ^0 sector

In-medium Hadronisation

The study of particle production in eA (fragmentation functions and hadrochemistry) allows the study of the space-time picture of hadronisation (the final phase of QGP).

Low energy (v): need of hadronization inside. Parton propagation: pt broadening Hadron formation: attenuation

High energy (v): partonic evolution altered in the nuclear medium.

W.Brooks, Divonne09

LHeC:

- + study the transition from small to high energies in much extended range wrt. HERMES, Jlab
- + testing the energy loss mechanism crucial for understanding of the medium produced in HIC
- + detailed study of heavy quark hadronisation ...

Nuclear Physics with the LHeC

Saturation (low x, nonlinear QCD) Y = $\ln 1/x$ $\ln Q_s^2(Y) = \lambda Y$

Quark Gluon Plasma, its initial and final states

QGP

Reconfinement

Quark Gluon Plasma

Landau 1953. **RHIC**: QGP strongly coupled plasma with liquid behaviour instead of weakly interacting gas of partons

Related to cold atoms and to

M.Tannenbaum, Rept.Prog.Phys 65 (2006) 2005

Collective flow in non-central collisions anisotropic

Anisotropy proportional to 1/viscosity of fireball, dominantly elliptic ("v₂" coefficient)

QGP most perfect liquid – smallest shear viscosity/entropy

Conclusions depend on initial fireball eccentricity

eA to measure the initial conditions of QGP.

superstring theory [AdS/CFT]

Colour Glass Condensate - Saturation

Perturbatively calculable via non-linear evolution equations

HERA: Quark and gluon densities in p rise towards low Bjorken x. Gluon dominant but no clear proof of nonlinear effects.

Expect saturation of rise at $Q_s^2 \approx xg \alpha_s \approx c x^{-\lambda}A^{1/3}$

Qualitative change of scattering behaviour:

- Saturation of cross sections amplified with A^{1/3} (A wider than p)
- Rise of diffraction to 50% of cross section
- hot spots of gluons or BDL?

The LHeC is bound to discover saturation in DIS both in ep and in eA in a region where α_s is small

\rightarrow A complete determination of nPDFs in grossly extended range, into nonlinear regime

	p-6 0	erl	p-140
RF frequency [MHz]	700	700	700
cavity length [m]	1	1	1
energy gain / cavity	31.5	18	31.5
$R/Q \left[\Omega ight]$	403	403	403
$Q_0 [10^{10}]$	1	2.5	1
power loss, stat [W/cav.]	5	5	5
power loss, RF [W/cav]	12.3	32	12.3
power loss, total [W/cav]	17.3	37.2	17.3
real-est. gradient [MeV/m]	17.8	10.26	17.8
length/GeV [m]	55.7	97.5	55.7
#cavities/(1 GeV)	31.8	55.6	31.8
power loss/GeV (2 K) [kW]	0.55	2.06	0.55
"W per W" (1.8 K to RT*)	600	600	600
power loss/GeV (RT*) [MW]	0.33	1.24	0.3
final energy [GeV]	60	60	140
# passes for acceleration	2	3	2
# passes for deceleration	0	3	0
total linac length [km]	1.67	1.95	3.90
tot. cryo power (RT) [MW]	9.9	24.75	23.1
av. beam current [mA]	0.74	6.6	0.27
beam power at IP [MW]	45	396	39
RF power [MW]	89	(22)	75.6
cryo + RF power [MW]	99	(47)	98.4

Table 2: SC linac parameters. *RT: room temperature.

Optics: $\beta^* \sim 0.1 \text{ m}$ by combination of 3 ingredients:

(1)A shorter free length to the interaction point, *I** of 10 m, instead of 23 m for the LHC pp collisions, eases the requirements on the magnet aperture (~/*) and reduces the chromaticity (~/*/ β *). (2) The triplet aperture must accommodate only one squeezed proton beam, instead of two for pp collisions, which **increases** the aperture available for the single main beam by some 50%. By itself this would allow decreasing β^* by more than a factor of 2 aperture-wise. (3) Changing the superconductor material **from Nb-Ti to Nb₃Sn** may increase the maximum field and/or aperture by up to a factor of 2 [11]. Since (1) and (2) together can already achieve $\beta^{*} 0.1$ m, the new superconductor is not strictly necessary for reaching $\beta^*=0.1$ m, but it provides additional safety margin, e.g. for a thicker beam screen and cold bore or for spurious dispersion.

Conceptual Design Report Large Hadron Electron Collider (LHeC) at CERN

DRAFT - February 2009

1. Introduction

2. Particle Physics and Deep Inelastic Lepton-Nucleon Scattering

DIS from 1 to 100 GeV
 Status of the Exploration of Nucleon Structure
 Tera Scale Physics

3. The Physics Programme of the LHeC

New Physics at Large Scales
 Precision QCD and Electroweak Physics
 Physics at High Parton Densities

4. Design Considerations

Acceptance and Kinematics
 A Series of Measurements
 Compatibility with the LHC
 Proton, Deuteron and Ion Beams

5. A Ring-Ring Collider Concept

Injector
 Lepton Ring
 Synchrotron Radiation
 Interaction Region
 Installation
 Infrastructure and Cost

6. A Linac-Ring Collider Concept

- 1. Electron and Positron Sources, Polarisation
- 2. Linac
- **3. Interaction Region**
- 4. Beam Dump
- 5. Infrastructure and Cost

7. A Detector for the LHeC

- 1. Dimensions and General Requirements
- 2. Coil
- 3. Calorimeters
- 4. Tracking
- 5. Options for the Inner Detector Region
- 6. Detector Simulation and Performance

8. Summary

- 1. Physics Highlights 2. Parameters
- 3. Concluding Remarks

Appendix

Tasks for a TDR
 Building and Operating the LHeC

	protons	electrons
energy [GeV]	7000	60
Lorentz factor γ	7460	117400
tr. norm. emittance $\gamma \epsilon_{x,y} [\mu m]$	3.75	50
tr. geom. emittance $\epsilon_{x,y}$ [nm]	0.50	0.43
IP beta function $\beta_{x,y}^*$ [m]	0.10	0.12
rms IP beam size $\sigma_{x,y}^*$ [μ m]	7	7
rms IP divergence $\sigma_{x,y}^{/*}$ [µrad]	70	58
disruption parameter D	$2 imes 10^{-6}$	6.0
disruption angle θ_0 [µrad]	0.06	572
beam current [mA]	430–580	6.6

Table 1: IP beam parameters of protons and electrons.

assumptions: $\sigma_p^* = \sigma_e^*$ LHC design emittance and bunch length. proton IP beta function $\beta^*=0.1$ m

disruption angle θ_0 : conservative upper bound for largest deflection angle in collision [6]. Its numerical value for electrons ~ times the rms divergence of a non-colliding beam. \rightarrow 10 σ beam minimum stay clear to extract e- beam from IP

NuPECC – Roadmap 5/2010: New Large-Scale Facilities

			201 0					201 5					202 0					202 5	
FAIR	PANDA	R&D Construction Commissioni					זg			Exploit	ation								
	CBM	R&D Construction Commissioning									Exploitation SIS300								
	NuSTAR	R&D Construction Commissioning									Exploit		NESR	FLAIR					
	PAX/ENC	Design Study R&D Tests Construction/Cor								ion/Comı	missioning Collider								
SPIRAL2		R&D Constr./Commission. Exploitation									150 MeV/u Post-accelerator								
HIE-ISOLDE		Constr./Commission. Exploitation													Injecto	r Upgrade	e		
SPES		Constr./Commission. Exploitation																	
EURISOL		Design Study R&D Preparatory Phase / Site Decision Engineering Study Construction																	
СНеС		Design Study R&D Engineering Study									Cc	onstructio	n/Comm	issioning					

G. Rosner, NuPECC Chair, Madrid 5/10 - DRAFT