Tracker Upgrade for High Luminosity LHC (Phase-II)

- Layout and Simulation
- Sensor Radiation Tolerance
- Pixel Detector at Phase-II
- Strip-Tracker Upgrade
 - Stave/Petal Programme
 - Super-module R&D
- New Strip ASIC

Conclusions

ATLAS Tracker Upgrade Simulation

Radiation Background Simulation

1 MeV neutron eq fluence

At inner pixel radii - target survival to $1-2 \times 10^{16} n_{eq}/cm^2$

Numbers obtained 9/10/09 (corresponding t	o new layout)	assuming 3000fb-1 and 84.5mb	cm)			- 11			<u>, 1</u>	1		: (* 1)		Ē	
Strip barrel 1 (SS) (r=38cm; z=0cm)	4.4x10^14		Ť	100) - Landi	1 plat					-				4 0 17
(r=38cm; z=117cm)	4.9x10^14				-						الأخر		_	E	10''
Strip barrel 4 (LS) (r=74.3cm; z=0.0cm)	1.6x10^14										1		_	E	
(r=74.3cm; z=117cm)	1.8x10^14			8) – <u>Linni</u>				المقسى					2	
		For strips 3000tb ⁻⁺			-										1016
Strip Disc 1 (z=137.1, Rinner=33.6)	6.0x10^14			6										E	10
Strip Disc 2 (z=147.6, Rinner=33.6)	6.2x10^14	×2 implies survival						البليبال وال	الالالا						
Strip Disc 3 (z=174.4, Rinner=33.6)	5.8x10^14			(12)										- 2	
Strip Disc 4 (z=214.1, Rinner=33.6)	6.1x10^14	required up to		4)-										1015
Strip Disc 5 (z=279.1, Rinner=44.4)	5.8x10^14				-									E	10
Strip Disc 5 (z=279.1, Rinner=54.1)	4.4x10^14	$\sim 1.3 \times 10^{15} \text{ n}$ /cm ²		20)										
Strip Disc 5 (z=279.1, Rinner=61.7)	3.9x10^14			_	-									-	
new															10 ¹⁴
Strip Disc 5 (z=279.1, Rinner=73.6)	3.0x10^14													E	
Strip Disc 5 (z=279.1, Rinner=84.9)	2.7x10^14				U	50	100	150	200	250	300	350	400		
												z(c	:m)		

n-in-p Planar FZ Irradiations

Irradiated 3D & Diamond Sensors Test Beam Results

Signal of the channel closest to the track point of impact

Hamburg/EVO, April 21, 2010

Marko Mikuž: Small radius pixel sensors

Landau Most Probable Value as a function of bias voltage

SLHC Phase-II Pixels Outer Layer Stave Concept

- Prototype cables made
- Embedded (glued) into 1m long stave
- Thermal, mechanical electrical testing just starting

Possible Phase-II Pixel Mechanics

Independently Installable Pixels

Proposed All-silicon tracker layout showing radius of current pixel support tube.

z(cm)

Independently Installable Phase-II Pixel Design

Material Reduction

LBNL		Present detector + IBL	Double I-Beam	
	Number of channels	92 M	276 M	
	Global supports mass	8.3 kg	2.1 kg	
	Local supports mass	6.6 kg	5.6 kg (meas.)	

Silicon mass equivalent of all mechanics	5.7 kg	2.8 kg
Sensor + chip mass	2.9 kg	4.4 kg (*)

Total silicon equivalent	8.7 kg	7.2 kg
--------------------------	--------	--------

Micro-Strips: Stave+Petal Programme

- Designed to minimise material
- Requirements of automated assembly built in from the start
- Compatible with current services being reused or similar services cross-section
- Designs emphasises conservative assembly requirements assuming distributed production
- All component independentlytestable prior to construction
- Design aims to be low cost

Spain: Valencia, Barcelona

UK: Liverpool, RAL, Cambridge, Oxford, UCL, Sheffield, QMUL, Glasgow, ATC-Edinburgh, Lancaster

Germany: Freiburg, DESY, Berlin

Netherlands: NIKHEF

Czech Republic: Prague

USA: Brookhaven, Santa Cruz, SLAC, LBNL, Stonybrook,

Yale, NYU, Duke

The Petal Concept

 Follows quite closely the barrel stave concept

- 2 Carbon Facings + Honeycomb sandwich core
- CF tubes on sides
- Independent SS CO2 cooling pipe
- POCOFoam around SS pipe
- Independent e- services + Bus cable
- Control card on side
- Top-bottom closeouts + structure pos. Pins

Carlos Lacasta

6

Thermal Runaway

End-cap Petal Core Assembly

Metrology of first petal prototypes. Some twist observed which may be due to the use of 0-90-0 layup. Consider use of a quasi-isotropic layup to address this.

Development of services routing and disc support schemes for petal arrays.

Barrel Stave Core Assembly

Completed tube-foam subassy

Bottom facing with CF tubes, closeouts and BN loaded Hysol ready for tube-foam subassy.

Bottom facing/tube-foam ready for vacuum bagging 5/20/2010

CF honeycomb placed; ready for next vac. bagging

Full-length Thermal Prototype

Gluing Pocofoam on Skin

Stave Metrology

Cold Inlet Temperature: -33°C

Warm – Cold ($\Delta T=54^{\circ}C$) No significant distortion

BNL-Yale

Warm/Cold

Laser scanner

Warm: Inlet Temperature: 21°C

Stavelet Thermal Performance

NIVERSITY

- 2 stavelets run for several hours with CO2, in test chamber held at +20C (~60W into stave)
- Thermal imaging camera used to check for temperature non-uniformity which could indicate core/facesheet adhesion failure.

Full Stave Readout and Control Chain

BNL SLAC, LBNL Oxford, RAL UCL, Cambridge

HSIO + interface

End of Stave

Serial Power Protection

- A key goal of the stave programme is the development of a full scale readout and control chain, all components are delivered
- HSIO provides hard/firm/software for control, r/o, & analysis of the full stave load
- End-of-Stave provides interface, buffering, and temperature monitoring
- Bus Cable is a 1.3 m long low mass Cu-Kapton-Al fine pitch interconnection
- BCChip supports full multi-drop, parallel command, and multiplexed data out
- Serial Power Protection provides fast auto control and slow interface

RAL-LBNL HSIO/BCC Development

• HSIO Hardware +Firmware

-Communication over fibre or copper Ethernet. Receives packets from host, sends to "module". Receives data from "module", demultiplex, can histogram, send to host -Programmed to run ABCn-25

- SCTDAQ Software = Scan control, histogramming and analysis
- 80 MHz data clock, generated from 40 MHz BCO by BCC, fully read out
- We were able not only to read out the module with BCC V2 using 80 MHz dclk, but also to set the strobe delay, to trim it, and to record good quality 3PG results.
- Module operating conditions:

HV from SCTHV 100V 20uA (also ran up to 220V)

LV from Jan Stastny's (Prague) current source for serial powering operation

I = 5A (also ran with 4.5 and 5.5A) Hybrid temperature 22C

Barrel Hybrids and their features

- Hybrids are designed to come on a panel (8 per panel) first steps towards industrialisation
- · Designed for machine placement and solder re-flow of passive components (capacitors, resistors, etc.)

- Panel dimensions: 300mm x 200mm
 - Hybrid dimensions: 24mm x 107.6mm
- Hybrids + ASICs are electrically tested on panel

 With final ASIC set (ABCnext, MCC, power), we could test all hybrids in the panel with one connection for data I/O and two for SP power chain

• Finally, substrate-less hybrids are then picked out of panel with vacuum-jigging for module attachment

Hybrid Power and sensor HV filtering (spec'd to 500V)

We Received a batch of 23 (E-tested good) Hybrids about 5 weeks ago from Würth Elektronik:

Overall Yield ~ 85% (still about 20 E-tested good Hybrids in the company) First crude visual inspection (one PCB only) looks ok! No visible irregularities/defects or the like.

For Reference: PCB characteristics: 4-Layer Flex-PCB Photosensitive dry film (brownish) Coverlay adhesiveless single/double-sided ED Copper-Clad all-Polyimide Laminate Sheet Adhesive: Acrylic Surface finish: Electroless Nickel Immersion Gold (Ni/Au)

track width/separations Microvia: Drill/Pad 95μ/95μ {nominal 100μ/100μ (4mil)} 100μ/300μ (L1-L2) 125μ/350μ (L1-L3) 250μ/500μ (L1-L4)

Hybrid Dimensions/Weight: 130mmx25.5mm, 2.5g

Monday, 21. June 2010 ATLAS Endcap SCT Upgrade, CERN

Kambiz Mahboubi Albert-Ludwigs University Freiburg

- Single-sided module programme with substrateless hybrids glued directly to sensors
- Hybrids produced with 100% yeild (2 runs)

VERSITY

FRPO

- Large area sensor with bare hybrid under irradiation at PS (sensor strips wire bonded)
- Sensor behaviour does not show problems due to gluing although one module had sensor physically damaged during wire-bonding
- Tooling for mounting to staves at RAL undergoing final tests
- Expect to irradiate fully electrically working module with FZ1 sensor this Summer
- Expect to first construct two (4 module) stavelets
 - One with serial powering
 - One with DC-DC powering

(Both powering schemes already demonstrated on bench with single-sided modules)

• Main longer-term goal is to equip the 24 module double-sided stave

Module Mounting System

- Rotate stage

Module mounting frame

Features of the Strip <u>Super-Module</u> Concept

Key points:

- Modular concept. All the parts are decoupled from the module design and are modular. Assembled and functional modules are built and tested in early stage and will remain as built.
- Full module coverage in Z (shorter barrel structure)
- **Rework** is a strong point of the module concept –Possible up to the commissioning after integration
- Design includes hybrid bridge (which could be also glued as for stave modules)
- Thermal performance show a large safety regarding the thermal runaway
- End insertion give flexibility for assembly & rework Allows less commissioning steps
- 1m20 or even longer stiff LS allows for simpler support structure (compared with SCT)

Hybrid Design and Fabrication from Japan

3

Double-sided Super-Module Assembly Status & Pictures

ID	Assembly & Bonding	Electrical Tests	Location		
KEK #O	Completed in Sep 09 (half electrical)	Fully functional – Strip length tests	KEK lab in Japan		
KEK #1	Completed in Feb 10	Fully functional – Vcc, Vdd independent	KEK lab in Japan		
KEK #2	Completed in Apr 10	Fully functional – Vdd with FE regulator	KEK lab in Japan		
UniGe #0	Completed in Oct 09 (half electrical)	Irradiated in Nov 09 Fully functional before & after irradiation	Stored cold in bld 161 lab at CERN		
UniGe #1	Completed in Dec 09	Fully functional – Vcc, Vdd independent	Bld. 161 Lab at CERN		
UniGe #2	Completed on Apr 10	Fully functional – Vdd with FE regulator	Bld. 161 Lab at CERN		
UniGe #4	Completed on Apr 10	Fully functiona I– Vdd with FE regulator	Bld. 161 Lab at CERN		

3 to 4 modules will be additionally made in July : 2 at KEK and up to 2 at UniGe

Double-sided Super-Module Test Results

All modules produce so far either at KEK or at UniGe are working with consistent ENC noise of ~570e-The noise occupancy is below 10⁻⁷ at 80mV while 1 fC threshold is at ~120mV

Results from UniGe modules

Investigation on the irradiated module

Module irradiated in CERN-PS irradiaton facility in November 2009 • PS-T7 24 GeV proton beam (~1x1 cm2), flux ~ 1-3x10¹³ p/h/cm2

Module received a fluence of ~5x10¹⁴ 1MeV n_{en}

Noise Occupancy before & after irradiation \rightarrow No significant degradation

Super-Module Plans

Target is to test the 8 modules together on a realistic support before end of 2010:

- Design and fabrication of the service bus that include connectivity for the BCC chips
- Include adaptation of powering schemes DC-DC plug and Serial Powering
- DAQ to be used and adapted with the HSIO sets and BCC (from US & UK) and still to be supplied
- Cooling to be used: water, CO2 or C3F8
- Ideally compatible for stave and super-module DAQ readout in a same testing place at CERN
- A 12 module local support will be constructed which will fully implement the mechanical features

New ASIC (ABCN130) Read-Out Design

Conclusions

- Phase-II pixel programme benefitting from IBL activity but is now offering some very neat solutions for the full tracker upgrade
- Radiation issues at 3000fb⁻¹ becoming close to manageable at all radii but work needed on understanding the (highly quenched) charge multiplication
- Good performance large area sensors being manufactured by Hamamatsu
- 40 chip modules demonstrated on both bridged and bare kapton that work well. Module being used for ASIC and DAQ studies and to check noise with different powering schemes.
- Tooling for first substrate-less hybrid modules developed successfully
- Corresponding hybrid for forward modules constructed and being evaluated
- Tooling for assembly of modules to first prototype short staves (stavelets) prepared and first stavelets substrates manufactured and being evaluated
- Programme of sensors for forward modules and forward prototyping needs further effort but DESY's participation is a big boost
- Good experience with super-module irradiation and complementary programme of hybrid, support and module development
- R&D programme is progressing well and is reasonably compatible with the latest machine schedules (but time is still really tight)

Backup

Module Test Set-up

Test System with NI-DAQ (Fully functional)

- NI PXI-6562 X 4 cards
 - 16 channel digital WF 6562 Infiniband PCI-PXI generator/analyzer To IDC 200/400 Mbps per channel ٠ SDR/DDR USB-CAN LVDS signals, per-channel direction 0 Up to 8 LV 16 lvds lines NI-USB controle iSeg high-precision 6U PS card VME crate, USB CAN controller ۰ 4 twps μ 8 channels/card, V_{nom}=1000V, • NHS I_{nom}=8mA Fully controlled and monitored 8----LV laboratory power supply **Temperature readout with ADC NI-6009 Software** LabVIEW 8.6 ٠ configuration files through XML Plant or chilled Software on SVN repository ۰ water

Working DAQ systems at KEK , CERN & Krakow
 Can be used for single chip, single hybrid, module test and up to 4 combined module tests

Tentative Schedule

Milestone	Date
Straw Man & options fixed	Dec 2006
R&D towards inner detector conceptual design	2007-2011
Letter of Intent	Dec 2010
Technical Proposal, Initial MoU and Costing	April 2013
New Insertable B-layer Installation	End 2014
Inner Tracker TDR	Dec 2014
Production readiness reviews and ramp up production	2015
Procure parts, Component assembly	2015 - 2017
Surface assembly	September 2017 - end 2018
Surface testing	2019
LHC stop for accelerator upgrade	Dec 2019
Remove old detectors, install new ones	Jan 2020 - Mar 2021
Commission new detectors	Apr 2021 - Jun 2021
Take data	July 2021

Table from: http://atlas.web.cern.ch/Atlas/GROUPS/UPGRADES/

24/02/2010

CNM double-sided 3D detectors

DESY: Possible Involvement

- Sensor testing
- Hybrid testing (maybe also production)
- Module production
- Development of petal electronics (e.g. SMC and/or bus tape)
- Petal mechanics: design and production support possible
- System aspects; testing

Engineering, Prototyping and Assembly

- P-type 4 segment crystals
- ABC-next
- Kapton hybrid
- Embedded bus cable
- End of stave card
- FPGA based DAQ system
- Stave mechanical core
- Assembly and measurement fixtures

~ 1.2 meter

Module Construction Jigs

New Chip Gluing Jig

Stave Electrical Concepts

Need to bring in power at low current and high voltage but deep sub-micron ASICs operate at lower and lower voltages

Studies Using Full Module

- Demonstrator used to test various international powering options
 - No show stoppers
 - New understanding in shielding needs

Serial Powering (RAL/BNL)

Shield 20 µm Al Foil

Sensor 1 cm from Coil

Noise

NO change with Plug in card on top

DC-DC (CERN)

Stave Prototyping and Assembly Studies

Insertion mechanism

- Small section prototype complete
- Tested and fully working
- Efforts are underway to remove the long guide tube to drive down material (presently the largest constituent)

- A lot of work is underway understanding thermal performance of stave, specifically comparing hard bonded pipe to Pocofoam vs CGL
- This is being done with a CO2 cooling system and thermal imaging
- Naturally this requires a goods understanding of the build technique, so this is very well controlled
 - Glue layers are of particular interest in this as the performance is contingent upon this

Stavelet09 Core Assembly

Core prior to 2nd facing

Assembly of first core is complete.
Deliver to BNL 19th January 2010

Completed core on OGP for survey

Module to Stave Assembly Hardware

Frame mounted around the granite

General shot of the positioning stages 2 compete kits made in case we need to work on a stave and a stavelet in parallel

Module to Stave Gluing Trials

Now try on real stavelet with real kapton. Kapton stuck with 3M photomount. Mask also now includes areas for the hybrid support spacer

Adhesive being applied

Solid Model of Stavelet-09 Frame

Electrical Preparations for Full Length Stave

- Need to check data transmission for stave09 using BCC (prototype of Module Controller Chip, MCC).
 - Point to point data links
 - Multi-drop TTC: send TTC data to all 24 hybrids.
- BCC ASIC mounted on daughter/mother PCB bonded out to bus tape
- First bit error rate test (BERT) results encouraging BER < 10⁻¹².

