Towards a novel ERL Facility - PERLE at Orsay

Max Klein

for the PERLE Collaboration Achille Stocchi and Walid Kaabi (Orsay)

based on the CDR [→] and the TDR kickoff meeting held in February 2017 at Orsay

https://indico.lal.in2p3.fr/event/3428/

FCC Week Berlin 1.6.2017

PERLE

Powerful Energy Recovery Linac for Experiments

Conceptual Design Report

to be published in J.Phys.G

arXiv:1705.08783v1 [physics.acc-ph]

CELIA Bordeaux, MIT Boston, CERN, Cockcroft and ASTeC Daresbury, TU Darmstadt, U Liverpool, Jefferson Lab Newport News, BINP Novosibirsk, IPN and LAL Orsay

May 13th, 2017

PERLE Intention

D. Angal-Kalinin³, G. Arduini¹, B. Auchmann¹, J. Bernauer¹⁰, A. Bogacz⁴, F. Bordry¹,
S. Bousson⁹, C. Bracco¹, O. Brüning¹, R. Calaga¹, K. Cassou², V. Chetvertkova¹, E. Cormier⁶,
E. Daly⁴, D. Douglas⁴, K. Dupraz², B. Goddard¹, J. Henry⁴, A. Hutton⁴, E. Jensen¹,
W. Kaabi², M. Klein⁵, P. Kostka⁵, F. Marhauser⁴, A. Martens,², A. Milanese¹, B. Militsyn³,
Y. Peinaud², D. Pellegrini¹, N. Pietralla⁸, Y.A. Pupkov⁷, R. A. Rimmer⁴, K. Schirm¹,
D. Schulte¹, S. Smith³, A. Stocchi², A. Valloni¹, C. Welsch⁵, G. Willering¹, D. Wollmann¹,
F. Zimmermann¹, F. Zomer²

Authors of the CDR, but many further colleagues attended the TDR kickoff

The CDR is an expression of interest in: ERL, low energy electron and photon physics, technology development (high quality SCRF), development of the LHeC/FCC-eh etc

It is considered to be a technical facility first but has the potential to become a major user physics and technology development facility then with unique parameters, such as the orders of magnitude increased photon beam intensity wrt ELI now.

Other Facilities

Also: **CEBAF** (single pass, 5 GeV, ...

CBETA (50mA, 3 pass, FFAG, 1.3GHz)

Strong possibilities for collaboration (ERL workshop 19-23.6.2017 at CERN, E Jensen et al)

Powerful ERL for Experiments (ep,γp): PERLE at Orsay

PERLE at Orsay (LAL/INP) Collaboration: BINP, CERN, Daresbury/Liverpool, Jlab, Orsay +

3 turns, 2 Linacs, 400 MeV, 15mA, 802 MHz, Energy Recovery Linac facility

-Demonstrator of ERL for ep at LHC/FCC -SCRF Beam based development facility -Low E electron and photon beam physics -High intensity: O(100) x ELI

5.5 x 24m²

CDR to appear in J Phys G [arXiv:1705.08783]

A.Bogacz

See also https://indico.lal.in2p3.fr/event/3428/

Energy Recovery – Green Accelerators

M Tigner Nuovo Cimento 1.6.1965

CDR of LHeC: Goal now is 10³⁴ could NOT pay for power and not realise high lumi w/o ERL

Frequency Choice

Cost, dynamic heat losses, resistance, Q₀... point to f < 1 GHz (F Marhauser, Orsay 2/17) Beam beam interactions unstable for f > 1 GHz (D Schule, D Pellegrini March 2013) Compatibility with LHC: **Decision for 802 MHz** (E Jensen CI Workshop 1/2015, FM input)

Programme	Frequencies				
CERN frequencies (SPS, LHC, L4, FCC)	200.4 MHz, 352.2 MHz, 400.8 MHz, 704.4 MHz, 801.6 MHz				
ILC, E-XFEL, LCLS-II, CBETA	1,300 MHz				
PIP-II	325 MHz, 650 MHz				
ESS	352.2 MHz, 704.4 MHz				
eRHIC	647.7 MHz				
JLAB MEIC	953 MHz				
JAERI	500 MHz				

E Jensen: use flexibility of laser driven photocathode \rightarrow sub-harmonics: test of various cavities

Many other technical applications: beam tests of quench behaviour (CDR), detector test ...

Technical Mission Summary for LHeC:

- -high current (25mA / 0.7nC) multi-turn (3) ERL operation
- -Energy recovery efficiency
- -SRF LLRF feedback and control
- -Failure scenarios and transients in multi turn ERL operation
- -Beam stability (Beam Breakup and filling schemes)
- -Demonstration / specification of required HOM damping
- -Transverse / longitudinal stability for bunch passage @ high energy
- -Beam halo formation and dump-line acceptance
- -Beam instrumentation (minimum requirements)
- -Build up operational experience
- -Source and injector validation

ep Physics with PERLE – proton radius

$$Q^2 = \frac{2ME^2(1-\cos\theta)}{M+E(1-\cos\theta)} \qquad E' = \frac{E}{1+\frac{E}{M}(1-\cos\theta)}$$

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{[E(1-\cos\theta)]^2} \cdot \cos^2\frac{\theta}{2} \cdot \frac{1}{1+\frac{E}{M}(1-\cos\theta)} \cdot f(G_E, G_M, \theta)$$

$$f(G_E, G_M, \theta) = \frac{G_E^2 + \tau G_M^2}{1 + \tau} + 2\tau G_M^2 \tan^2 \frac{\theta}{2}$$

p radius from Q^2 dependence of G, $Q^2=0$

- thin target (gas jet), high current
- angular scan with different E_e < 400MeV
- electric and magnetic radius
- h.o. QED corrections

elastic ep \rightarrow ep

CDR

Further ep Physics with PERLE

sin²O_W

Measurement of electroweak asymmetries (charge and polarisation) Weak neutral current quark couplings [cf MK, T Riemann PL85B(79)385]

Confinement scale QCD

escape traditional, thick targets. It is thus possible to measure the reactions $\gamma p \rightarrow \pi^0 p, \pi^+ n$, $\gamma n \rightarrow \pi^0 n, \pi^- p$ and $\gamma D \rightarrow \pi^0 D$. Coherent π^0 production in *D* and ³*He* measure relative signs of the $\gamma p \rightarrow \pi^0 p, \gamma n \rightarrow \pi^0 n$ amplitudes.

Such an experiment requires beam energies of 300 MeV or more. Depending on the

Dark photons

 $e^-p \rightarrow e^-pA'(\rightarrow e^-pe^+e^-)$

new "dark" Abelian forces with a new dark gauge field A'

Higher luminosity than DarkLight (Jlab)

cf CDR

Electron-proton physics: high current, polarisation, positrons, energy > 300 MeV

PERLE Photon Physics (Compton Backscattering)

CDR: Photonuclear reactions, Nuclear Structure, Neutrino Physics, Nuclear Astrophysics \rightarrow High energy, high intensity (100-1000 x ELI) – next generation photon physics facility

N Pietralla (TU Darmstadt)

Gamma beams at the PERLE Facility									
lr e	ncident lectron beam	E _e	w.mm	θ_{L}	Incident laser bea	am			
ELECTRO		TEDC	E		LASER BEAM PARAMETERS				
ELECTRON BEAM PARAMETERS		ETERS		X	Wavelength	515 nm - 1	030 nm		
Energy 900 MeV		900 MeV		T	Average Power	300kW - 6	00 kW		
charge 320 pc		320 pc		1	Dulas la sath				
Bunch Spacing 25 ns		25 ns		1	Pulse length	3 ps (can b	e reduced)		
Spot size 30 um		30 um			Pulse energy	7.5mJ - 15	mJ		
Norm. Trans. Emittance 5 um		5 um			Spot size	30 µm (car	be reduced)		
Energy Spread 0.1 %		0.1 %			Bandwidth	0.02 %			
	GAMMA BEAM	PARAMETERS (f	or λ=51	l5nm)					
	Energy Spectral density Bandwidth		30 MeV						
			9*10 ⁴ ph/s/eV						
			< 5%						
Flux within FWHM bdw ph/e ⁻ within FWHM bdw		bdw	7*10 ¹⁰ ph/s (total flux 9*10^12)						
		M bdw	10 ⁻⁶			A. Valloni			
	Peak Brilliance		3*10 ²¹ ph/s*mm ^{2*} mrad ² 0.1%bdw						
3-24 February 2	2017	PERLE WORK	SHOP - ORSA	Y (FRANCE) - K. DUPRA	Z - CNRS / LAL		5		

Work in progress as electron energy will be 400 MeV and parameters evolve

Site description:

- The experimental hall is equipped with crane, electricity and partially shielded
- Water cooling circuit could be shared with other machines nearby.
- Possibility to install the RF source and power supplies in a different level than the accelerator
- A large area of ground have the required resistance to allow installation of PERLE.
- A control room that overlooks the hall could be used for PERLE.
- No Cryogenic plant around, has to be built.
- Space available for experiments.
- Support for the infrastructure is fully assured.

10

Hosting PERLE@Orsay:

PERLE:

Target Parameter Values:

- Injection Energy: 5 MeV
- RF Frequency: 802 MHz.
- CW mode.
- Beam current: 6-15 mA.
- 4 CMs: 4 cavities (5 Cells) @ 15-20 MeV
 - → ≈ 300 MeV/tour.
- 3 passes → ≈ 900 MeV.

PERLE@Orsay:

Target Parameter Values:

- Injection Energy: 5 MeV
- RF Frequency: 802 MHz.
- CW mode.
- Beam current: 6-15 mA.
- 2 CMs: 4 cavities (5 Cells) @ 15-20 MeV
 → ≈150 MeV/tour.
- 3 passes → ≈ 450 MeV.

W. KAABI-LAL/Orsay

February, 23rd 2017

Study of First Stage (single pass)

Figure 3.10: The lattice functions for the complete 80 MeV arc. β_x is given by the red line, β_y by the green line and the x dispersion by the blue line.

Independent design study: 6.2 x 20.9 m²

Matched optics, momentum compaction

46 dipoles and quadrupoles

Linear Optics Study of PERLE, Ben Hounsell (Master Thesis 5/17) U Liverpool (MK and AB/AV)

PERLE 3 turn optics (80 MeV Arc)

70 Dipoles and 114 Quadrupoles footprint 22 x 5.5 m2

Footprint of PERLE@Orsay (tentative)

A. Bogacz (24.5.17)

5 x 2 cavities: 16.5 MeV/cavity (17.5/m) \rightarrow 165 MeV per pass \rightarrow 395 + 5 \rightarrow E_e=400 MeV

Vertical Switchyards

A Bogacz (24.5.17)

PERLE Magnets

70 dipoles 0.45-1.29 T

+- 20 mm aperture, l=200,300,400 mm

May be identical for hor+vert bend

7A/mm2 (in grey area) water cooled

114 quadrupoles max 28T/m

Common aperture of 40mm all arcs

Two lengths: 100 and 150mm

DC operated

P Thonet, A Milanese (CERN), C Vallerand (LAL), Y Pupkov (BINP)

802 MHz Cavity Fabrication Status

802 MHZ Nb and Cu prototype cavities progressing well

802 MHz deep-drawing die set and machinin fixtures (completed)

F. Marhauser Status 05-25-2017

Deep-drawn 802 MHz Nb and Cu half-cells (Status April '17)

NbTi flanges (completed)

 \bigcirc

Rolling of beam tubes and EBW before machining (completed), beam tubes are being machined (to be completed soon, 05/17) RF test hardware for OD = 6.5" flanges available

Cryomodule requirements for Perle

Several cryomodule requirements could be listed for PERLE, and some of them are very challenging. They are of two types:

- 1. The classical challenges imposed by SRF:
 - Limit as much as possible heat transfer
 - Take into account all mechanical constraints
 - Design allowing an easy assembly procedure
 - ... and as usual, optimize for cost !

2. The aditionnal constraints coming from the cavities operated in the ERL mode and CW/high current operation mode:

- High CW cryo loads
- Low level of vibration, and damping of them
- Excellent magnetic shielding (high Qo)
- Accurate cavity alignment

S. Bousson, Perle Workshop, Orsay, 24th Feb. 2017

Expertise on Cryomodules

Plan for production of PERLE cryomodules (2) by IPN Orsay in collaboration with Jlab+CERN

HOM Assessment

Impedance of cavities + oscillating modes (F Marhauser) ≠ Spectral content of PERLE beam (D Pellegrini)

Source

Material	Typical oper. λ	Work function	Observed Q.E.	Laser power for 20 mA	Observed max current	Obs. lifetime
Sb-based unpolarised	532 nm	1.5-1.9 eV	4-5%	4.7 W at Q.E.=1%	65 mA [Cornell]	Days rep.
GaAs-based polarised	780 nm	1.2 eV at NEA state	0.1-1.0%	31.8 W at Q.E.=0.1%	5-6 mA [JLAB]	Hours

Table 4.1: Characteristics of photocathode materials available for PERLE

← Boris Militsyn's home

GaAs photocathode preparation facility designed for 4GLS and ALICE gun upgrade.

Summary

CDR of PERLE

PERLE has the opportunity to be a clean-sheet globally optimised design for a new generation of high average power efficient ERL based machines, a novel testing ground for far reaching experiments with electron and photon beams of unique quality and, not least, to become a prime technical base for an electron beam upgrade of the LHC, i.e. a new generation of deep inelastic scattering experiments entailing the precision study of the Higgs boson and the exploration of new physics at TeV energies.

PERLE is a novel project and still to be established. It calls for and is open for a wide collaboration to make it a success for accelerator, particle and nuclear physics. For the FCC developments at large it has a strong value as a test bed for SCRF development.

Special thanks to Erk Jensen, Achille Stocchi and many more people than I can list here.

No backup