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Inversion of both the charge and the helicity of muon beams is considered as a poss1b111ty to determine the weak neutral-
current couplings of muons, in particular the right-handed weak charge / 1}(“) and sin’e without using the parton model.

Due to recently performed sensitive experiments,
the weak neutral-current interaction of neutrinos, va-
lence quarks and electrons is almost understood [1].
Different neutrino data have determined the vector
and axial-vector couplings of u and d quarks [2]. The
SLAC eD [3] and the Novosibirsk Bi experiments [4]
have resolved the V — A ambiguity of elastic neutrino—
electron scattering, thereby measuring the electron
couplings [5,6] . Nothing is known, however, about
the weak neutral-current couplings of muons. In this
note, the possibility is considered to extract these cou-
plings from deep inelastic polarized muon scattering at
momentum transfers Q2 = O(100 (GeV/c)?). The
muon couplings are of fundamental interest for neu-
tral-current ue universality, for the single Z-boson hy-
pothesis [7], for the existence of right-handed currents
and of muon-induced parity violation. The vector cou-
pling, if interpreted, e.g., in the Weinberg—Salam theo-
ry (WS), fixes the mixing angle sin2@. Three relations
for sin2@ are derived, two of them without using the
quark—parton model (QPM).

In deep inelastic muon scattering neutral currents
are expected to be of the order of k = Q2G/A/2 2na
=1.79 X 10—4 02 (in (GeV/c)?) resulting from the in-
terference of one-photon exchange with Z-boson ex-
change. Muons couple to the Z field by

g, V" v, — a7 Z,, )
with strength g2/M2 = 2G/z/2. In SU(2) X U(1) gauge
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theories the couplings are
v“=113‘+1§+2sin20, a, =15 - 1%, (2)

IY®) being the left-handed (rxght-handed) weak u—
charges. Neglecting radiative electromagnetic and weak
corrections we can calculate the deep inelastic cross
section of scattering muons, do*()\), with charge +

and helicity X off nucleons. Denoting the one-photon
contribution by do one gets [8,9]

do*/dog =1 — klv,VtaAd+Nta,V+vA)]. (3)

Here V(x, 02) and A(x, Q%) = A y(x, 02)g(y) are ra-
tios of interference to electromagnetic structure func-
tions depending on the dynamics and on the structure
of the hadronic neutral current with g(»)=(1 — (1
—3)2)/(1 + (1 —y)?)and ¥ and 4y defined as in ref.
[9].

For a given magnitude of beam helicity A there
exist three independent cross section asymmetries:
two parity violation asymmetries of the type measured
at SLAC [3] and Serpukhov [10]:

4t = do*(+N) —do* (=) _
do*(+N) + do*(=\)

and a third asymmetry to be measured by conjugation
of the muon beam:

~k7\(’_falu V+ v”A), 4)

B= do* (=) —do™(+N) _ k(>\v —a)A. (5)
do*(=\) +do~(+}) “u

The measurement of these asymmetries is an obvious

challenge for CERN SPS muon experiments reaching

large Q2 with high statistical accuracy *'.
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Below we concentrate on the beam conjugation
asymmetry B because (i) the statistical accuracy of
B()) for positive X is particularly high since it requires
the use of only the high intensity forward part of the
7(K) > uv decay spectrum; (ii) the only requirement
for extracting a, and v, from B would be to control
the axial-vector part of the hadronic current which is
independent of sin28; (iii) available neutral-current
data predict the largest effects just for B (6] . Accord-
ing to ref. [9] one estimates for sin20 = 1/4 in the WS
theory V'=4/5,4 = -9/5-g(»), a, = —1/2 and v, =0
giving at 02 = 200 (GeV/c)2: B(\) = 3.2 g(y)% inde-
pendently of A, and A* = +1.4 A%, independently of y.

The measurement of B(\) at two different helici-
ties *2 is complete in the sense that it fixes the muon
couplings. The vector coupling appears to be the slope
of

BOV(-kA) =4, 20, =208 +sn0), A=+,

(6)
= 42015 +sin%0), A=-1,

whereas the axial coupling is the intercept at A=0.
Eq. (6) makes clear that the experimentally preferred
helicity A = 1 implies sensitivity of B to the right-
handed muon coupling and to sin24. For illustration

a, — A, versus A is given in fig. 1 for standard / 13‘

= —1/2, keeping / g as a free parameter. Four different
assignments of IX are considered (~1,-1/2,0,+1/2)
corresponding to the right-handed multiplets [12,13]

vl (o) ()
MO ’ “-_ R> M—-_ R> (7)

KR
containing heavy leptons M. The solid (dashed) curves
in fig. 1 belong to sin20 = 0.2 (0.3). It is of importance

*1 Note that all definitions and subsequent arguments are not
only applicable to deep inelastic but also to elastic scatter-
ing if the ratios of structure functions V and A4 are re-
placed by ratios of form factors.

Charge conjugation maintains the beam charge dependent
part of the radiative corrections. The resulting electromag-
netic asymmetry Bely, has been calculated to be positive
and smaller than 1% below @2/s = 0.5 [11]. One gets rid of
Beim by subtracting B asymmetries at two different energies
Ey < Ej since Bgyy, is very likely to be scale invariant. This
subtraction at fixed (x, y) decreases the weak asymmetry by
afactor 1 — Eq[E,. '
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—s5in?@=02 |
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Fig. 1. - Avy, eq. (6), as a function of the »~ beam helicity
A for 13 = ~1/2 and I3 = (-1, -1/2, 0, +1/2). Solid (dashed)
curves belong to s1n20 0.2 (0.3).

that the variations at A near 1 due to /X 3 are dominant
as compared to what is expected from sin26. Thus,
using very forward produced muons, i.e., the standard
SPS muon beam, the right-handed weak charge can be
measured. Heavy leptons of a few GeV mass may also
give directly detectable signals [14].

From the present status [1] the WS theory would
be expected to be confirmed (Il—g = —1/2,1131 =0).
Then the next question would concern the details of
this theory, i.e. the mixing angle and the Higgs multx-
plet structure which affects the ratio [1] o = MW/MZ
X cos26. The asymmetry B(\) at A =0 is independent
of sin28 (eq. (5)). Thus p is fixed by

= M3,/M2 cos?0 = 2B(0)/kA. ®

Neutral-current neutrino data giving p =0.98 £ 0.05 in-
dicate a minimal Higgs structure [2]. Eq. (5) can be
rewritten to determine sin2 from the leptonic current
as

sin20 = 1/4 + [2BA\)/kA — 1] /4. ()]

A similar relation using both parity violation asymme-
tries (eq. (4)) has been derived in ref. [15]. One can
avoid the QPM calculation of 4 measuring B(A) at two
different helicities. Calculating By = B(\;) and B,
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= B(\,) at the same (Q2, x) one gets independently
of p

sin20 = 1/4 + [(By — By)/(B1Ny — ByA\)1 /4. (10)

This relation expresses sin2 in terms of measurable
quantities only and is free of any dynamical assump-
tion.

Recently it has been shown by several authors that
the hadronic axial-vector current can be related by iso-
spin invariance to the difference between antineutrino
and neutrino charged-current cross sections [15—17].
This allows one to introduce a neutrino beam conjuga-
tion asymmetry, B,,, being completely analogous to B
(eq. (5)):

B, =(do” — do?)/(do” + do”). (1)
B, is approximately [16] equal to 4-5/9, giving
B\ = k(?\v# - aM)BV'9/5. (12)

Therefore, the muon couplings and the parameters of
the WS theory are given by combining deep inelastic
muon and neutrino scattering data at the same (Q2, x).
A third possibility to calculate sin28 is then:

sin26 = 1/4 + [LOB(\)/9%B,, — 1] /4A. 13)

The present world average for sin26 is 0.23 £0.02 [1].
Thus almost equal beam conjugations are expected in
muon and neutrino scattering which differ only by the
corresponding coupling constants and propagators, re-
spectively:

B-2m0/Q? ~ B -G/\/2. (14)

A fundamental problem to be investigated with
charged lepton beams is parity violation. The natural
way to search for parity violation would be to mea-
sure the asymmetries A* (eq. (4)) containing only V
— A combinations. Nevertheless, one can ask how to
study parity violation when measuring B. The answer
is obvious after rewriting B for different u* helicities
as

B\, ) =(do*(A) — do~ (,))/(do” (X)) +do~ (A,)

= —k[a”A + v“A ‘A =02 - aMV'O\1 +A,)/2].
(15)
For large A; — A,, as considered above, the measure-

ment is sensitive to v“A. For electrons, this combina-
tion is suppressed in the heavy atom experiments. In
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the WS theory it is expected to be small. For large A,

+ A, the measurement is sensitive to @, V. This combi-
nation has been essentially observed at SLAC and
Novosibirsk. In the WS theory at sin20 = 1/4 one esti-
matesa, V' = —0.4 to be compared with the parity con-
serving contribution to B, a,4 = 0.9g(y). Note that
only a,,V should survive if B, A, ) is calculated for

y tending to zero.

" To summarize, the muon beam conjugation asym-
metry B, eq. (5), is of particular interest since it is
measurable rather accurately and promises to deter-
mine the weak neutral-current couplings of muons.
Helicity A near 1 (forward produced muons) implies
particular sensitivity of B to the right-handed weak
charge 1 I3{(1.1). Several relations for sin26 have been de-
rived which are based either on the parton model or,
independently of it, on two measurements of B(A) and
on a neutrino beam conjugation asymmetry, respective-
ly. The helicity and y dependence of B give insight into
the question of muon-induced parity violation in a new
range of momentum transfers.

We are deeply indebted to S.M. Bilenky, C. Rubbia
and N.M. Shumeiko for valuable discussions and sug-
gestions.
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