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A first measurement is reported of the longitudinal proton structure function F L(x, Q 2) at the ep collider
HERA. It is based on inclusive deep inelastic e+ p scattering cross section measurements with a positron
beam energy of 27.5 GeV and proton beam energies of 920, 575 and 460 GeV. Employing the energy
dependence of the cross section, F L is measured in a range of squared four-momentum transfers 12 �
Q 2 � 90 GeV2 and low Bjorken x 0.00024 � x � 0.0036. The F L values agree with higher order QCD
calculations based on parton densities obtained using cross section data previously measured at HERA.
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1. Introduction

This Letter presents the first measurement of the longitudinal
structure function F L(x, Q 2) of the proton at low Bjorken x. The
inclusive deep inelastic ep scattering (DIS) cross section at low Q 2,
written in reduced form as

σr
(
x, Q 2, y

) = d2σ

dx dQ 2
· Q 4x

2πα2Y+

= F2
(
x, Q 2) − y2

Y+
· F L

(
x, Q 2), (1)

12 This project is co-funded by the European Social Fund (75%) and National Re-
sources (25%) – (EPEAEK II) – PYTHAGORAS II.
� Deceased.
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is determined by two structure functions, F2 and F L . Here,
Q 2 = −q2 is the negative four-momentum squared transferred be-
tween the electron13 and the proton, and x = Q 2/2qP denotes the
Bjorken variable, where P is the four-momentum of the proton.
The two variables are related through the inelasticity of the scat-
tering process, y = Q 2/sx, where s = 4Ee E p is the centre-of-mass
energy squared determined from the electron and proton beam en-
ergies, Ee and E p . In Eq. (1), α denotes the fine structure constant
and Y+ = 1 + (1 − y)2.

The two proton structure functions F L and F2 are of comple-
mentary nature. They are related to the γ ∗ p interaction cross sec-
tions of longitudinally and transversely polarised virtual photons,
σL and σT , according to F L ∝ σL and F2 ∝ (σL +σT ). Therefore the
relation 0 � F L � F2 holds. In the Quark Parton Model (QPM), F2
is the sum of the quark and anti-quark x distributions, weighted
by the square of the electric quark charges, whereas the value of
F L is zero [1]. In Quantum Chromodynamics (QCD), the longitu-
dinal structure function differs from zero, receiving contributions
from quarks and from gluons [2]. At low x and in the Q 2 region
of deep inelastic scattering the gluon contribution greatly exceeds
the quark contribution. Therefore F L is a direct measure of the
gluon distribution to a very good approximation. The gluon dis-
tribution is also constrained by the scaling violations of F2(x, Q 2)

as described by the DGLAP QCD evolution equations [3]. An in-
dependent measurement of F L at HERA, and its comparison with
predictions derived from the gluon distribution extracted from the
Q 2 evolution of F2(x, Q 2), thus represents a crucial test on the
validity of perturbative QCD at low Bjorken x.

The longitudinal structure function, or the equivalent cross sec-
tion ratio R = σL/σT = F L/(F2 − F L), was measured previously
in fixed target experiments [4] and found to be small at large
x � 0.2, confirming the QPM prediction in the Q 2 region of DIS.

From experimental determinations by H1 [5–7], which used
assumptions on the behaviour of F2 in extracting F L , and from
theoretical analyses of the inclusive DIS cross section data [8,9],
the longitudinal structure function at low x is expected to be sig-
nificantly larger than zero. This prediction relies on perturbative
QCD calculations of F L to next-to-leading order (NLO) [10] and
NNLO [11].

The measurement of F L requires several sets of DIS cross sec-
tions at fixed x and Q 2 but at different y. This was achieved at
HERA by variations of the proton beam energy whilst keeping the
lepton beam energy fixed. The sensitivity to F L is largest at high
y as its contribution to σr is proportional to y2. At low Q 2, high
y values correspond to low values of the scattered electron en-
ergy. Small energy depositions can also be caused by hadronic final
state particles leading to fake electron signals. These are domi-
nantly due to photoproduction processes at Q 2 � 0. The large size
of this background makes the measurement of F L(x, Q 2) particu-
larly challenging.

The present measurement of F L(x, Q 2) is based on data col-
lected with the H1 detector in e+p collisions from January to
June 2007 with a positron beam energy of 27.5 GeV. Three proton
beam energies were used, the largest, nominal energy of 920 GeV,
the smallest energy of 460 GeV and an intermediate energy of
575 GeV, chosen for an approximately equal span between the
three resulting cross section measurements in y2/Y+ (see Eq. (1)).
The integrated luminosities collected with H1 are 21.6 pb−1,
12.4 pb−1 and 6.2 pb−1, respectively. This Letter presents first

13 The term electron is used here to denote both electrons and positrons unless
the charge state is specified explicitely. The data analysed are from positron-proton
scattering, except for some measurements of background properties which addition-
ally include electron–proton scattering data.
results on F L in an intermediate range of Q 2, between 12 and
90 GeV2.

2. Data analysis

2.1. H1 detector

The H1 detector [12] was built and upgraded for the accurate
measurement of ep interactions at HERA. The detector components
most relevant to this measurement are the central jet drift cham-
ber (CJC), the central inner proportional chamber (CIP), the back-
ward lead-scintillator calorimeter (SpaCal) and the liquid argon
calorimeter (LAr). The CJC measures transverse momenta of tracks
with an accuracy of δpt/p2

t � 0.005/GeV. Complementary tracking
information is obtained from the backward silicon tracker (BST),
which is positioned around the beam pipe, and from the z drift
chamber COZ, which is located in between the two cylinders of
the CJC. The CIP provides trigger information on central tracks [13].
The SpaCal [14] has an energy resolution of δE/E � 0.07/

√
E/GeV

for electromagnetic energy depositions and is complemented by a
hadronic section. It also provides a trigger down to 2 GeV energy.
The LAr allows the hadronic final state to be reconstructed with an
energy resolution of about 0.50/

√
E/GeV.

Photoproduction events can be tagged with an electron calo-
rimeter placed at z = −6 m downstream in the electron beam
direction, which defines the negative z axis and thus the backward
direction. The luminosity is determined from the Bethe–Heitler
scattering process, which is measured using a photon calorimeter
at z = −103 m.

2.2. Kinematic reconstruction and event selection

The DIS kinematics at large y are most accurately reconstructed
using the polar angle, θe , and the energy, E ′

e , of the scattered elec-
tron according to

y = 1 − E ′
e

Ee
sin2(θe/2), Q 2 = E ′

e
2sin2θe

1 − y
, (2)

where x = Q 2/sy. The event signature of this analysis comprises
an electron scattered backwards and a well reconstructed event
vertex. The scattered electron energy is measured in the backward
calorimeter SpaCal. The polar angle is determined by the positions
of the interaction vertex and the electron cluster in the SpaCal.

In order to trigger on low energy depositions with a thresh-
old of 2 GeV, a dedicated trigger was developed based on the
SpaCal cell energy depositions. At small energies the SpaCal trigger
is complemented by the CIP track trigger which reduces the trig-
ger rate to an acceptable level. The efficiency of this high y trigger
is constant at around 98% above 3 GeV, as monitored with inde-
pendent triggers. At energies larger than 7 GeV no track condition
is used in the trigger and the efficiency, up to highest energies,
exceeds 99%.

The event selection is based on the identification of the scat-
tered electron as a localised energy deposition (cluster) of more
than 3.4 GeV in the SpaCal. Hadrons, dominantly from photopro-
duction but also from DIS, may also lead to such energy depo-
sitions. This fake electron background is reduced by the require-
ment of a small transverse size of the cluster, R log, which is es-
timated using a logarithmic energy weighted cluster radius. The
background is further reduced by the requirement that the energy
behind the cluster, measured in the hadronic part of the SpaCal,
may not exceed a certain fraction of E ′

e . For lower energies the
selected cluster must be linked to a track. If the highest energy
cluster fails to fulfill the selection criteria, the next to highest
energy cluster passing the selection criteria is considered. Alterna-
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Table 1
Criteria applied to select DIS events at high inelasticity y

Energy E ′
e of scattered electron candidate > 3.4 GeV

Transverse size R log of candidate cluster < 5 cm
Hadronic energy fraction behind the cluster < 15% of E ′

e
Transverse distance between cluster and linked track < 6 cm
E − pz > 35 GeV
z position of interaction vertex |zv | < 35 cm

tively ordering the SpaCal clusters according to the scattering angle
or transverse momentum gives consistent cross section results.

An additional suppression of photoproduction background is
achieved by requiring longitudinal energy–momentum conserva-
tion using the variable

E − pz =
∑

i

(Ei − pz,i) + E ′
e(1 − cos θe), (3)

which for genuine, non-radiative DIS events is approximately equal
to 2Ee . Here Ei and pz,i are the energy and longitudinal momen-
tum component of a particle i in the hadronic final state. This
requirement also suppresses events with hard initial state pho-
ton radiation. QED Compton events are excluded using a topo-
logical cut against two back-to-back energy depositions in the
SpaCal.

The selection is optimised to obtain large detection efficiency.
This required detailed studies which were also based on high
statistics event samples obtained in the years 2003–2006, corre-
sponding to 51 pb−1 of e+p and 45 pb−1 of e−p interactions taken
with a dedicated high y trigger at 920 GeV proton beam energy.
The event selection criteria for the high y region are summarised
in Table 1.

The extraction of F L also requires the measurement of cross
sections at lower y. The low y region is defined for the 460 and
575 GeV data with y < 0.38 and for the 920 GeV data with y <

0.5. The analysis uses a method based on the electron variables for
reconstruction and hence is limited to y � 0.1 for all data sets. The
data at low y involve large polar angles θe outside the acceptance
of the CJC. Therefore in this kinematic region no link to CJC tracks
is required. At low y the photoproduction background is small and
further reduced by a tightened cut on R log < 4 cm.

2.3. Background identification and subtraction

At low E ′
e , corresponding to high y, the remaining background

contribution after the event selection may be of a size compara-
ble to or even exceeding the genuine DIS signal. The method of
background subtraction relies on the determination of the electric
charge of the electron candidate from the curvature of the associ-
ated track.

Fig. 1 shows the E/p distribution of the scattered electron can-
didates from e+p interactions with the energy E measured in the
SpaCal and the momentum p of the linked track determined by
the CJC. The good momentum resolution leads to a clear distinc-
tion between the negative and positive charge distributions. The
smaller peak corresponds to tracks with negative charge and thus
represents almost pure background. These tracks are termed wrong
sign tracks. The higher peak, due to right sign tracks, contains the
genuine DIS signal superimposed on the remaining positive back-
ground. The size of the latter to first approximation equals the
wrong sign background. The principal method of background sub-
traction, and thus of measuring the DIS cross section up to y � 0.9,
consists of the subtraction of the wrong sign from the right sign
event distribution in each x, Q 2 interval.

The background subtraction based on the charge measurement
requires a correction for a small but non-negligible charge asym-
metry in the negative and positive background samples, as has
Fig. 1. Distribution of energy over momentum for tracks linked to clusters in the
SpaCal with energy from 3.4–10 GeV that pass all the cuts listed in Table 1. Tracks
with a negative charge are assigned a negative E/p.

been observed previously by H1[6]. The main cause for this asym-
metry lies in the enhanced energy deposited by anti-protons com-
pared to protons at low energies. The most precise measurement
of the background charge asymmetry has been obtained from com-
parisons of samples of negative tracks in e+p scattering with sam-
ples of positive tracks in e−p scattering. An asymmetry ratio of
negative to positive tracks of 1.057 ± 0.006 is measured using the
high statistics e±p data collected by H1 in 2003–2006. This result
is verified using photoproduction events, with a tagged scattered
electron, for which an asymmetry ratio of 1.06 ± 0.01 is measured.
The difference in the hadronic final state between low and high
proton beam energy data samples leads to an additional uncer-
tainty of 0.003 on the asymmetry ratio.

The photoproduction background to the E p = 920 GeV data,
which are analysed at lower y than the low E p data, is subtracted
using a PHOJET [15] simulation normalised to the tagged photo-
production data. This background estimate agrees well with the
corresponding result from the wrong sign analysis at high y.

2.4. Comparison of data with simulations

High statistics Monte Carlo (MC) simulations of DIS events are
performed for the three proton beam energies using the DJANGO
program [16], which includes leading order QED radiative correc-
tions. The hadronic final state is simulated using ARIADNE [17],
based on the Color Dipole Model, with subsequent fragmenta-
tion as described in JETSET [18]. The detector response is simu-
lated using a program based on GEANT [19]. The simulated events
are subject to the same reconstruction and analysis software as
the data. The MC simulation uses a QCD parameterisation of the
structure functions [7] normalised to the measured cross sec-
tion.

Fig. 2 shows, as an example, comparisons of the 460 GeV high
y data with simulated distributions, for the energy and the po-
lar angle of the scattered electron prior to and after subtraction of
the background which is determined using wrong sign data events.
The DIS MC simulation corresponds to correct sign events with
a small contribution from the wrong sign events subtracted. The
latter are caused by events from lower Q 2 which can mimic an
electron cluster at larger Q 2 and also by charge misidentification
for the DIS events at the appropriate Q 2. The electron energy dis-
tribution after background correction is almost uniform. A similarly
good agreement of the simulation with data has been observed for
all other physics and technical variable distributions of relevance
to this analysis, for all three data sets considered.
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Fig. 2. Top comparison of the correct sign data (points) with the sum (open histogram) of the DIS MC simulation and background, determined from the wrong sign data
(shadowed histogram), for the energy E ′

e (left) and the polar angle θe (right) of the scattered electron, for the 460 GeV data with E ′
e < 10 GeV. Bottom: as top but after

background subtraction.
3. Cross section measurement

The scattering cross section is measured in the range 12 �
Q 2 � 90 GeV2 for Bjorken x of 0.00024 � x � 0.015. The longi-
tudinal structure function F L(x, Q 2) is extracted from three mea-
surements of σr at fixed (x, Q 2) but different y = Q 2/sx. The data
at lower E p cover the higher y region. In the present analysis
the cross section measurement is restricted to 0.1 � y � 0.56 at
E p = 920 GeV and to 0.1 � y � 0.9 at 460 and 575 GeV.

The measurement of F L as described below relies on an accu-
rate determination of the variation of the cross section for a given
x and Q 2 at different beam energies. In order to reduce the un-
certainty related to the luminosity measurement, which presently
is known to 5% for each proton beam energy of the 2007 data
used here, the three data samples are normalised relatively to each
other. The renormalisation factors are determined at low y, where
the cross section is determined by F2(x, Q 2) only, apart from a
small correction due to R . Using weighted means of cross section
ratios, extended over bins at low y, relative normalisation factors
are derived to be 0.980, 0.995 and 1.010 for the 920, 575 and
460 GeV data, respectively. The relative normalisation is known to
within 1.6%. This uncertainty comprises a systematic error of 1.4%,
a statistical error of 0.6% and the residual influence of R is esti-
mated to be 0.3%.

After background subtraction the data are corrected for detector
efficiencies and for acceptances using the Monte Carlo simulations.
The measured differential cross sections are consistent with the
previous H1 measurement [6]. They are shown in Fig. 3. At large
x values σr ≈ F2 and the three measurements are in good agree-
ment. The cross sections rise towards low x but are observed to
flatten and eventually turn over at very low x, corresponding to
high values of y, where F L is expected to contribute. This be-
haviour is consistent with the expectation as is illustrated using
the cross section as implemented in the Monte Carlo simulation of
the data.
The systematic uncertainty on the cross section is derived from
various contributions, some of which depend on the y region. The
uncertainties leading to kinematic correlations are:

• The uncertainty on the SpaCal electromagnetic energy scale,
determined with the double-angle method, is 0.4% at large en-
ergies degrading to 1% at 3 GeV energy. This is verified at the
kinematic peak, where E ′

e has to be close to Ee , and at lower en-
ergies with π0 → γ γ , J/Ψ → e+e− decays and with elastic QED
Compton events.

• The uncertainty on the electron polar angle is 1 mrad, esti-
mated using independent track information from the BST, the COZ
and the CJC.

• The hadronic energy scale, calibrated using electron–hadron
transverse and longitudinal momentum balance, has an uncer-
tainty of 4%.

• The background charge asymmetry is known to 0.6% based
on studies of wrong charge data in e±p scattering and tagged pho-
toproduction events.

• The normalisation of the PHOJET simulation, used for back-
ground subtraction in the 920 GeV data, has a 30% uncertainty.

• The central track-cluster link efficiency is verified with an in-
dependent track reconstruction using BST and CJC hit information.
The uncertainty of this link efficiency combined with the interac-
tion vertex reconstruction efficiency is estimated to be 1.5%. At low
y, where no track link is required, the remaining uncertainty from
the vertex reconstruction is 0.5%.

The uncorrelated systematic uncertainties originate from the
Monte Carlo statistical errors and from the following sources:

• The uncertainty on the charge measurement is determined
from data to Monte Carlo comparisons at low y and cross checked
with radiative events which are background free in the low energy
region. As the charge misidentification causes signal events to be
subtracted as background, a 1% uncertainty on σr is obtained.
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Fig. 3. The reduced inclusive DIS cross sections measured at different Q 2 values and shown as a function of x for the data taken at the three proton beam energies, 920 GeV
(squares), 575 GeV (stars) and 460 GeV (points). The error bars represent the statistical and systematic errors added in quadrature. The absolute luminosity uncertainty of
the cross section measurement is not included in the error bars. Curves for σr as implemented in the Monte Carlo simulation of the data are shown as solid (920 GeV),
dashed–dotted (575 GeV) and dotted lines (460 GeV) while the dashed line represents F2(x, Q 2), which is independent of s.

Fig. 4. The reduced inclusive DIS cross section plotted as a function of y2/Y+ for six values of x at Q 2 = 25 GeV2, measured for proton beam energies of 920, 575 and
460 GeV. The inner error bars denote the statistical error, the full error bars include the systematic errors. The luminosity uncertainty is not included in the error bars. For
the first three bins in x, corresponding to larger y, a straight line fit is shown, the slope of which determines F L(x, Q 2).
• The radiative corrections are efficiently reduced to below 10%
by the E − pz constraint and the topological cut against QED Comp-
ton events. A comparison of calculations based on the Monte Carlo
simulation with the numerical program HECTOR [20] results in an
uncertainty on σr of 1% at high y and 0.5% at low y.

• The trigger efficiency, determined from independent monitor
triggers, is known to within 1% for the combined CIP–SpaCal trig-
ger and 0.5% for the inclusive SpaCal trigger.
• Comparisons between different electron identification algo-
rithms and between data and simulations yield an estimated un-
certainty of 1% (0.5%) on the electron identification at high (low)
y in the SpaCal calorimeter.

Further uncertainties, such as the effect of the LAr noise on the
cross section, have been investigated and are found to be negligi-
ble. The subtraction of background using wrong sign tracks causes



H1 Collaboration / Physics Letters B 665 (2008) 139–146 145
Fig. 5. The longitudinal proton structure function F L(x, Q 2). The inner error bars denote the statistical error, the full error bars include the systematic errors. The luminosity
uncertainty is not included in the error bars. The curve represents the NLO QCD prediction derived from the H1 PDF 2000 fit to previous H1 data.
an additional statistical uncertainty which is included in the sta-
tistical error. The correlated and uncorrelated systematic errors
combined with the statistical error lead to an uncertainty on the
measured cross sections at high y of 3–5%, excluding the common
luminosity error.

4. Measurement of F L(x, Q 2)

The longitudinal structure function is extracted from the mea-
surements of the reduced cross section as the slope of σr versus
y2/Y+ , as can be seen in Eq. (1). This procedure is illustrated in
Fig. 4. At a given Q 2 value, the lowest x values are generally ac-
cessed by combining only the 920 and the 575 GeV data. At larger
x, cross section measurements from all three data sets are avail-
able. These measurements are observed to be consistent with the
expected linear dependence.

The central F L values are determined in straight-line fits to
σr(x, Q 2, y) as a function of y2/Y+ using the statistical and un-
correlated systematic errors. The systematic errors on F L take the
correlations between the measurements into account using an off-
set method: all correlated error sources, including the uncertainty
from the relative normalisation of the cross sections which in the
extraction of F L is attributed to the 920 GeV cross sections, are
considered separately and added in quadrature to obtain the to-
tal systematic error due to correlated sources. This error is added
in quadrature to the statistical and uncorrelated systematic uncer-
tainties to obtain the total error on F L . The measurement is limited
to bins where the total error is below 0.6.

The measurement of F L(x, Q 2) is shown in Fig. 5. The result
is consistent with the prediction obtained with the H1 PDF 2000
fit [7], which was performed using only the H1 high energy cross
section data. The measurement is also consistent with previous de-
terminations of F L by H1 [6], which used NLO QCD to describe and
subtract the F2 term from the measured reduced cross section at
high y.

The values on F L(x, Q 2) resulting from averages over x at fixed
Q 2 are presented in Fig. 6 and given in Table 2. The average is
performed taking the x dependent correlations between the sys-
tematic errors into account. The measurement of F L(x, Q 2) is com-
pared with the H1 PDF 2000 fit and with the expectations from
global parton distribution fits at higher order perturbation the-
ory performed by the MSTW [8] and the CTEQ [9] groups. Within
Fig. 6. The longitudinal proton structure function F L shown as a function of Q 2 at
the given values of x. The inner error bars denote the statistical error, the full error
bars include the systematic errors. The luminosity uncertainty is not included in the
error bars. The solid curve describes the expectation on F L(x, Q 2) from the H1 PDF
2000 fit using NLO QCD. The dashed (dashed–dotted) curve is the expectation of the
MSTW (CTEQ) group using NNLO (NLO) QCD. The theory curves connect predictions
at the given (x, Q 2) values by linear interpolation.

Table 2
The longitudinal proton structure function F L(x, Q 2) measured at the given values
of Q 2 and x. The statistical, uncorrelated and correlated systematic uncertainties
are given as well as the total uncertainty

Q 2/GeV2 x F L Stat. Uncorr. Corr. Total

12 0.00028 0.22 0.06 0.05 0.08 0.11
15 0.00037 0.08 0.05 0.04 0.09 0.11
20 0.00049 0.24 0.04 0.04 0.09 0.10
25 0.00062 0.38 0.05 0.05 0.08 0.10
35 0.00093 0.24 0.06 0.06 0.09 0.13
45 0.0014 0.18 0.08 0.08 0.14 0.18
60 0.0022 0.33 0.13 0.13 0.19 0.27
90 0.0036 0.48 0.23 0.22 0.22 0.39

the experimental uncertainties the data are consistent with these
predictions. This consistency underlines the applicability of the
DGLAP evolution framework of perturbative QCD at low Bjorken
x at HERA.
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5. Summary

This Letter presents the first measurement of the longitudinal
proton structure function in deep inelastic scattering at low x. The
F L values are extracted from three sets of cross section measure-
ments at fixed x and Q 2, but different inelasticity y, obtained with
three different proton beam energies at HERA. The results confirm
DGLAP QCD predictions for F L(x, Q 2), determined from previous
HERA data, which are dominated by a large gluon density at low x.
At the current level of accuracy, for the covered Q 2 range between
12 and 90 GeV2, the data are thus consistent with perturbative
QCD.
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