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Particles of definite initial energy and direction penetrating into a solid have, in a given depth, 
a certain distribution with respect to energy loss and scattering angle. This energy-angle distribu- 
tion is calculated in small angle approximation for heavy low energy particles, taking scattering 
and nuclear stopping into account on the basis of a Thomas-Fermi potential and electronic stopping 
with a definite dependence on scattering angle. Introducing reduced values of energy loss, scat- 
tering angle, and thickness of the penetrated layer, it is found, that it is possible to get a general 
solution independent of particle and target type and of energy. The result is given by a combination 
of two functions which are tabulated. The most probable encrgy losses of the total energy dist,ribu- 
tion and of the distribution of the particles scattered in forward direction as well as the half-widths 
of these distributions are given. The results show, that stopping and scattering cannot be con- 
sidered independently for heavy low energy particles. In  particular the conception of 'stopping 
cross section' a t  low energies essentially looses its meaning. 

Teilchen einer gegebenen EinschuDenergie und -richtung haben nach Durchdringen einer Fest- 
korperschicht gegebener Dicke eine bestimmte Verteilung in bezug auf ihren Energieverlust, und 
Streuwinkel. Diese Energie-Winkel-Verteilung wird unter Beriicksichtigung der Streuung und der 
Kernbremsung bei Verwendung des Thomas-Fermi-Potentials sowie der elektronischen Bremsung 
mit einer eindeutigen Abhiingigkeit vom Streuwinkel fur niederenergetische schwere Teilchen in 
Kleinwinkelnaherung berechnet. Es zeigt sich, daB bei Einfuhrung reduzierter Variabler fur 
Energieverlust, Streuwinkel und Schichtdicke eine allgemeine Losung moglich ist, die nicht. von 
Teilchen- und Targettyp oder der EinschuDenergie abhiingt. Die Verteilung ist als Kombination 
zweier tabellierter Funktionen dargestellt. Weiterhin sind Tabellen fur den wahrscheinlichsten 
Energieverlust der Gesamtenergieverteilung und der Verteilung von in Vorwiirtsrichtung gestreu- 
ten Teilchcn sowie fur die Halbwertsbreiten dieser Verteilungen gegeben. Die Ergebnisse zeigen, 
daB fur nicderenergetische schwere Teilchen Bremsung und Streuung nicht als unabh&ngig von- 
einander angesehen werden konnen. Insbesondere verliert deshalb die Konzeption von ,,Brems- 
querschnitten" bei geringen Encrgien ihren Sinn. 

1. Introduction 
Particles of given energy and direction which penetrate into a solid are deflected 

and lose energy. Having passed a definite layer of matter they have a certain distri- 
bution with respect to  energy and direction which in the following is called energy- 
angle distribution. Its calculation is of fundaniental importance for the investigation 
of the penetration process of heavy particles. This importance relates only in minor 
degree to  the determination of the spatial distribution of implanted ions but mainly 
concerns the fundamental characteristics of the stopping process and its experimental 
investigation. This interrelation can be explained considering, e.g. the stopping cross- 
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section of low-energy heavy particles and its experimental determination. Usually 
this quantity is determined as follows. First the energy loss in a thin layer of matter 
is measured for those particles which have been scattered in forward direction. 
Analyzing the data it is generally assumed that these particles suffered complete 
electronic stopping, whereas nuclear stopping was only effective by a certain part 
which is subtracted by means of more or less motivated corrections (see e.g. 111). 
It is assunled then that the quantity determined in this way is an electronic stopping 
cross-section S ,  which can be compared with theoretical values of 

Here qe is the energy transferred to electrons in a collision with a target atom and da 
is the differential cross-section for this energy transfer. 

The opinion just described is motivated by the assumption that the electronic 
stopping is a quasi-continuous process which does not essentially depend on the 
scattering angle. The same idea is inherent in a method developed by Hogberg [ 2 ] .  
This author measures energy losses a t  zero scattering angle for different thicknesses t 
of material and by extrapolating the measured ‘stopping cross-sections’ to  t = 0 
he means to separate nuclear stopping from the electronic one. Indeed, this procedure 
excludes all particles which suffered a substantial deflection (and therefore nuclear 
stopping). But naturally their electronic stopping is also eliminated. Therefore, the 
procedure of Hogberg yields a stopping cross-section S* which is attained by limiting 
the integration in (1) to the range of scattering angles defined by the detector. This 
stopping cross-section S* is characteristic of electronic stopping only in the case, 
where the neglected scattering processes do not essentially contribute to (1). this 
means if qe da  sufficiently rapidly vanishes with increasing scattering angle. Measure- 
inents of the energy loss in single scatterings (see e.g. [3, 4]), however, show, that the 
energy transfer t o  electrons is rapidly increasing with increasing scattering angle. 

2. Calculation of the Energy-Angle Distribution 

Therefore, the interpretation of stopping cross-sections determined according to 
the procedures explained above is an open question. To clarify this question a detailed 
analysis of the energy-angle distribution is necessary. 

The analytic calculation of the energy-angle distribution is taken from an un- 
published investigation [ 5 ]  which is based on the same fundamental assumptions as 
the theory of ordinary niultiple scattering of low-energy heavy particles [6], which 
has proved its usefulness in many experimental investigations. This calculation 
starts froin the interaction potential 

and t>he resulting differential scattering cross-section given in the form originally 
used by Lindhard et al. [ 7 ]  

Here Zl and 2, are the atomic numbers of the incident and target particles. The 
function p and the screening parameter a serve to characterize the screening effect 
of the electron shells. The characteristic function f (q )  of the cross-section has been 
tabulated in [ G ,  71 for several screening functions. The reduced scattering angle q in 
small-angle approximation is related to  the scattering angle x in the laboratory frame 
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Here m, and rnz are the masses of the projectile and target particles, respectively. 
The reduced energy F is proportional to the energy E of the incident particles according 
to  

m2 E ,  a 
& =- 

ZlZ2e2 m1 + rn2 (5) 

where e is the elementary charge. 
The process of penetration into the solid is considered to be a sequence of two- 

particle collisions. Therefore, as was done in [C;], the effect of the potential (2) or more 
precisely the scattering cross-section (3) in a solid of atomic number density N is 
confined to a spherical volume of radius r,, which is given by 

This limitation determines a minimum single-scattering angle qo by the relation 
E 

?I 0 

From the total scattering cross-section mi we get the mean number of collisions n in 
a layer of t'hickness t of an amorphous or very finely crystalline solid 

As 2ro corresponds to  the distance of neighbouring atoms and as the density in a 
solid even in inicroscopically small dimensions hardly fluctuates (in contrast to the 
behaviour of a gas), the fluctuations of the collision number around the mean value (8) 
arc very sniall. 

The energy loss q ( x )  can easily be calculated from energy-momentum conserv a t' ion. 
I n  small-angle approximation follows 

where 

c (9b) 
E m,+m, a 

For. the electronic energy loss ascribed to  a single collision the following ansatz is 
used : 

q e ( ~ )  = reo  + ceSq2  + c ~ ~ v ~  + * * .  * (10) 

In  continuation of the small-angle approximation the following calculation is restricted 
to the first two terms of (10). The first term ceo corresponds to  the stopping a t  zero 
scattering angle typical for solids. Odd powers of 7 in (10) are neglected for symmetry 
reasons. From (9) and (10) we get the total energy loss in a single collision 

U(X) = Y ~ ( x )  + qn(x) = re, + (ce2 + ~ n )  q2 + * (11) 
30 physica (b) S3/'7 
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I n  the following calculation it is assumed that the energy loss q(x )  is uniquely 
determined by the scattering angle, i.e., (11) is valid not only in the average but in 
every single collision. This assumption is certainly justified with respect to the 
elastic energy loss q(x) .  For the electronic energy loss i t  is, however, only an ap- 
proximation which is satisfied the better the more electrons take part in the energy 
exchange. Measurements of Bierman et al. [8, 41, for example, have shown that the 
electronic energy loss in a single collision of different incident particles with neon and 
argon atonis a t  fixed scattering angle is not uniquely defined, but its dispersion 
remains smaller than the total energy loss and the average electronic energy loss is 
a monotonously increasing function of the scattering angle. The same state of affairs 
can also be seen from the measurements of Kessel and Everhart [9]. 

Denoting by Fl(x, 9) the probability distribution after one collision of a particle 
with the deflection x in the solid angle d w  and an energy loss between q and q + dq 
we have 

Fl( x, q )  d w  d q  = dw dg { j'd ;ios(q d w  - dx)) 7 2 7 0  7 (12) 
7 5 7 0 ,  

where 8(q - q ( x ) )  is Dirac's delta function. 
For the differential cross-section da/dw we get from (3) and (4) 

The energy losses qz(x) and the deflections xs of the subsequent collisions (i = 1, 3 ,  
... , n) yield the total energy loss 

n 

i = l  
Q = S q a  

and the total scattering angle 
12 

6 = SX6. 
i = l  

Here the different azimuthal directions of the scattering angles xi are taken into 
account in small-angle approximation by vector addition of the scattering angles in 
a plane perpendicular to the initial direction. 

Now, the energy-angle distribution after n collisions is related to the distribution 
after n - 1 collisions by the equation 

m 2n m 

The integration is extended over the elements of area dw, pertaining to  the angle x 
in the plane of the X-vectors and over the corresponding energy losses g .  From this 
expression we get, using a Hankel-Fourier transformation (see [5]) and negleet'ing 
the energy dependence of doldw and q(x )  

+m M 
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where 

7jo 

J, is the Bessel function of zero order and 

are reduced scattering angle and reduced energy loss, respectively. As in the theory 
of multiple scattering [C,] we define a function 

W 

p [ l -  

' io  

I n  this integral the integrand behaves like f (q )  [z2/4 - i w ]  for small values of q- 
Therefore, as with the angular distribution [GI,  the lower limit of integration 11, can 
be replaced by zero. This is correct up to large values of z and w ( z  > 50, Iw] > 500). 
which are important only at  extremely small thicknesses of material. I n  this region 
of not extremely large values of z and zu the relation holds Ia2/ri A(z,  u>)I < 1. There- 
fore, we can expand [l - a2/ri illw in series and get from (20) 

where 

is the reduced thickness. 
z = na2Nt 

Thus we finally get bhe energy-angle distribution 

where 

and 
w + w  

An estimation of the integrals f l  and f2  (see [lo]) shows that, as with the pure angular 
distribution [GI,  (a2/r i )  fi is only a small correction to fi, which is only of importance a t  
very small thicknesses (see [lo]). 

In  [ 101 it has been verified that in the limiting case of large values of z energy and 
angle distributions become independent of each other and both have a Gaussian 
behaviour. 
30' 
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Integrating the distribution Fn(6, Q) over all scattering angles one gets the tota,l 
energy distribution 

where 

(34a) 

The corresponding integration of Fn(8,  Q) (33) over the energy losses results in the 
tot,al angle distribution already calculated in [ O ] .  

Equations (23) and (24) allow to draw some general conclusions: The shape of the 
energy distribution (at a fixed scattering angle by integrating over all angles) and 
the position of its maximum, represented by the reduced variable 0, do not depend 
on energy, mass and atomic nuniber of the particles and are essentially determined 
by the reduced thickness T and the scattering angle 6. The experimentally measured 
most probable energy loss 

consists of two terms with different functional dependence on the thickness of material. 
Thus i t  should be possible to  separate both terms experimentally and to determine 
the constants c,, and ce,. I n  the case of ce, < c, this separation is simultaneously a 
separation of nuclear stopping and electronic stopping. The part of the measured 
most probable energy loss Q,, which is determined by the nuclear stopping Q,, = 

- cnGm - = E < -  Q ,  is proportional to the inverse of the energy of the 

incident particles in contrast to  the so-called nuclear stopping cross-section S, = 
= J p, do which has a slightly different energy dependence (see [ll]). This difference 
is explained by the deviating energy dependence of the tail of the energy distribution 
which is not included in the preceding calculation. The experimentally measured 
half-width of the energy distribution 

4 m1 ZIZ,ez - 
a 

is also proportional to E-l in the case c,, < en, whereas the average square fluctuation 
of the energy loss (Ntn")1/2 = ( N t  J qi do)lr' has a different dependence on the energy. 
Corresponding general conclusions concerning the angular distribution have already 
been given in [GI. 

3. Xumerical Results 

Excluding extremely small reduced thicknesses z the energy-angle distribution is 
mainly determined by the function fi(7, 5, G )  (23a). This function has been calculated 
numerically in the region 0.6 5 z 5 15. 

Starting from the scattering cross-section (3) with f(7) calculated for the Thomas- 
Yermi screening function, a t  first the real and imaginary parts of the function A(z,  w) 
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were determined according to (20). Then as a first step in the calculation of fi according 
to  (23a) the integration over w was done, thereby getting the function 

m 
~ ( z ,  2, Q", = 2 J e--rEed cos (z Iin A + wQ) dw . 

A detail examination of this function [lo] revealed that it can be approximated by 

0 

H ( T ,  z ,  Q) = A(z,  Q )  e--B(T,IQ)T2 (37) 

up to a maximum value G,, x 5"&(0) where "Q,,(O) is the most probable energy loss at 
19 = 0. 

The total energy distribution according to (34a) t,urns out to he 

(29) 

The coefficients A(z,  0) and B(z,  6) have been calculated by a fit to the numerically 
given function a(?, x ,  0). The result is given in Table 1, 2, and 3. For simplicity the 
coefficients were normalized to  the values A(%, s), = A,(z) and B(%, &,) = B,(T) 
at the most probable energy loss &. 

The Gaussian behaviour of the angular distribution (28) a t  relatively sinall values 
of Q, and therefore the possibility of the approximation (27 ) ,  can be explained as 

- 

Table  1 

The ratio A(T, G)/An,(~)  as a function of the reduced thickness z and the normalized energy 
loss G/Q, 

T 

2.0 
- 
8.0 3.0 4.0 6.0 10 15 1 .o 0.6 0.8 1.5 

0.0 
0.1 
0.3 
0.56 
0.73 
0.86 
0.94 
1 .oo 
0.98 
0.92 
0.86 
0.80 
0.74 
0.60 
0.49 
0.41 
0.35 

0.1 
0.2 
0.41 
0.60 
0.75 
0.87 
0.95 
1 .oo 
0.98 
0.92 
0.87 
0.80 
0.75 
0.61 
0.50 
0.42 
0.36 

0.1 
0.22 
0.41 
0.61 
0.76 
0.87 
0.95 
1.00 
0.98 
0.92 
0.87 
0.80 
0.74 
0.60 

0.03 
0.16 
0.35 
0.57 
0.74 
0.86 
0.95 
1 .00 
0.97 
0.91 
0.85 
0.78 
0.72 
0.57 

0.02 
0.11 
0.29 
0.52 
0.72 
0.85 
0.95 
1.00 
0.97 
0.91 
0.84 
0.76 
0.69 
0.54 
0.43 
0.34 
0.29 

0.01 
0.07 
0.24 
0.47 
0.69 
0.85 
0.94 
1 .oo 
0.97 
0.89 
0.81 
0.73 
0.65 
0.49 
0.38 
0.30 
0.24 

0.01 
0.05 
0.22 
0.45 
0.67 
0.84 
0.94 
1 .oo 
0.96 
0.88 
0.79 
0.70 
0.62 
0.46 
0.34 
0.26 
0.21 

0.00 
0.04 
0.19 
0.41 
0.65 
0.83 
0.93 
1 .oo 
0.96 
0.86 
0.75 
0.66 
0.57 
0.40 
0.30 
0.22 
0.17 

0.00 
0.03 
0.17 
0.39 
0.63 
0.82 
0.93 
1.00 
0.95 
0.84 
0.73 
0.63 
0.54 
0.37 
0.26 
0.19 
0.14 

0.00 
0.02 
0.15 
0.37 
0.61 
0.81 
0.93 
1.00 
0.95 
0.83 
0.71 
0.60 
0.51 
0.34 
0.24 
0.16 
0.12 

0.00 
0.01 
0.13 
0.34 
0.59 
0.80 
0.92 
1.00 
0.94 
0.80 
0.67 
0.56 
0.46 
0.29 
0.20 
0.12 
0.08 

0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
1 .o 
1.2 
1.4 
1.6 
1.8 
2.0 
2.5 
3.0 
3.5 
4.0 

0.49 
0.41 ",:: 
0.35 1 0.32 
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Table  2 
The ratio B(r, Q)/B,(z) as a function of the normalized 

energy loss 616, 

0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 

0.2 
0.40 
0.60 
0.80 
1 .oo 
1.21 
1.43 

1.6 
1.8 
2.0 
2.5 
3.0 
3.5 
4.0 

1.66 
1.88 
2.10 
2.67 
3.24 
3.77 
4.25 

Table  3 

The quantities Qm, A,, and B,  as functions of the reduced thickness, complemented by values 
of Gi/z, Gm(O), and Q;p(o). 4, most probable reduced energy loss of the total energy distribution, A ,  = A%,), B, = 

= B(Q,), Q",(O) most probable: energy loss a t  the scattering angle $ = 0, &/z  reduced half- 
width of the total energy distribution, &/z(O)  reduced half-width of the energy distribution 

a t  the scattering angle 6 = 0 

- 

- 

z 

0.6 
0.7 
0.8 
1.0 
1.2 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
5.0 
6.0 
7.0 
8.0 

10 
12 
14 
15 

6 m  

0.036 
0.047 
0.059 
0.090 
0.125 
0.188 
0.321 
0.470 
0.645 
0.840 
1.05 
1.52 
2.03 
2.59 
3.16 
4.40 
5.65 
7.00 
7.65 

40 
30 
24 
16.2 
12.1 
8.50 
5.50 
4.05 
3.16 
2.56 
2.11 
1.56 
1.24 
1.02 
0.865 
0.672 
0.555 
0.474 
0.448 

B m  

0.010 
0.013 
0.017 
0.026 
0.037 
0.056 
0.093 
0.136 
0.184 
0.237 
0.294 
0.426 
0.569 
0.720 
0.896 
1.29 
1.70 
2.13 
2.39 

0.089 
0.118 
0.150 
0.226 
0.307 
0.440 
0.693 
0.960 
1.26 
1.68 
1.91 
2.63 
3.37 
4.14 
4.93 
6.51 
8.04 
9.56 

10.3 

Qrn(0) 

0.023 
0.029 
0.037 
0.057 
0.080 
0.123 
0.217 
0.327 
0.455 
0.598 
0.754 
1.10 
1.48 
1.90 
2.34 
3.28 
4.25 
5.28 
5.80 

0.040 
0.052 
0.067 
0.102 
0.140 
0.205 
0.341 
0.489 
0.658 
0.848 
1.06 
1.49 
1.96 
2.48 
3.01 
4.10 
5.20 
6.37 
6.94 

follows: According to (19) 6 is a measure of the angle-dependent part of the energy 
loss. In  a single collision small contributions to this part of the energy loss are connected 
to small-angle deflections. As the total energy loss is given by the sum of the absolute 
values of the single energy losses, small total energy losses Q can only be a result of 
small single deflections which yield a Gaussian angular distribution. Because the angle- 
independent part of the electronic stopping is generally larger than the angle-depend- 
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Fig. 1. Energy-angle distributions fi(t, 6, G) for the reduced 1 '' 
thickness z = 10 at the reduced scattering angles 8 = 0, ,a' - -  15- I I  

i 8 = 6112 = 1.99 and 6 = 281p = 3.98 as a function of 4) 

I 

- -  
L 

L!- 

04 

02 

J as- 

ent part at small scattering angles, real angular distributions are expected to  have 
such a Gaussian behaviour up to higher total energy losses. This expectation is con- 
firmed, e.g., by experiments of Hogberg et al. [12]. 

The half-width of the angular distribution a t  a given energy loss Q can easily be 
calculated from (28) 

&/2(z, 6) = 2 ( ~ ( z ,  Q1 1n2)1/2 . (30) 
- - 

This means that, a,,,(&) is approximately proportional to  because according to  
Table 2,  B(t ,  a) is linearly increasing with increasing energy loss. Thus the restriction 
of the Gaussian approximation to 6 values smaller than 5Gm(O) corresponds to  an 
upper limit for the half-width 5 2[B(z, 5Qm(0)) 1n2]lI2. Within this [&, 61-region 
(28) is a useful approximation of f,(z, 6, @) with an error restricted to  loo/, a t  the 
ends of the considered region. 

As an example the energy-angle distribution for z = 10 is represented in Fig. 1 by 
a family of energy distributions at  different constant scattering angles. With using 
scattering angle the maximum of the energy distribution is shifted to larger values of 
&, and a t  the same time the half-width is considerably increasing. 

As can be seen from Table 3, the most probable energy loss am of the total energy 
distribution is increasing with rising thickness z. This increasc is, especially at small 
thickness, very much stronger than linear. The same is true for the most probable 
energy loss am(0) a t  the constant scattering angle 6 = 0. Thus, according to the present 
calculation, it is impossible on the basis of the most probable energy losses to  get a 
stopping cross-section which is independent of the thickness z in the range of thick- 
nesses considered here. 

4. Comparison with Other Calculations 

Recently Hvelplund [ 131 calculated energy distributions for pure nuclear stopping 
on the basis of Landau's method of calculation [ 141, using, however, Lindhard's 
scattering cross-section (3) as has been done in the present calculation. He arrives a t  
a total energy distribution in the form 

fE (z , y --& Y - zC,(y)]dy , (31) 
6) d (f a) = 

0 
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where 
E 

This distribution is identical with the total energy distribution (24) of the present 
calculation, if electronic stopping is neglected (ce0 = c,, = 0), if the term a2/ir; f i (z, Q )  
is neglected, and if the upper limit of integration F in (31a) and (Slb) is replaced by 
m. In this case the following equations are valid: 

A,,(y) = Re d (0, y) and C,,(y) = - In1 A 

The essential difference between the energy distributions (23) and (31) is therefore 
the different choice of the upper limit of integration in the function O(0, w) (20). In  
the present calculation the limit F was replaced immediately by 00 because, in con- 
sequence of the rapide decrease of the differential scattering cross-section, there is 
generally only a negligible contribution to the integral (20) from the region q > E. 

Only this replacement gives the possibility for a general computation of the energy- 
angle distribution which is valid for all energies, as the remaining energy dependence 
can he expressed by the reduced energy loss and the reduced scattering angle. Hvel- 
plund’s paper [13] however calls attention to the fact, that in the special case of 
heavy ions penetrating hydrogen, such extremely small values of F may be of practical 
importance, that the replacement of the upper limit of integration by m will cause 
substantial errors. We have therefore, examined a t  which energy E = e l o x  the replace- 
ment discussed above will cause a deviation of lOnlO in the intensity of the maximum 
of the total energy distribution. The result is given in Table 4. 

Table 4 
610% as a function of T 

T 1 0 . 6  1 0 . 8  1 1 . 0  1 2  1 4  1 6  1 8  1 1 0  1 1 5  

&loo,; 1 1.0 1 1.2 j 1.3 1 2.0 1 2.9 3.7 I 4.3 1 4.8 1 6 

For F > eloy0 the deviations in the vicinity of the maximum are smaller than lo:/,. 
For E < ~~~y~ a t  first the intensity a t  the maximum of the energy distribution (31) 
further increases a t  the expense of the intensity in the tail, and for still further decreas- 
ing F the maximum is finally shifted to smaller energy losses and the half-width 
diminishes. The values of Table 4, however, show that these deviations only occur a t  
such low energies, which in general are already excluded by the presumption of small 
energy losses (in relation to the primary energy) in the case of solid targets. 

Similar deviations a t  low energies also occur in the angular distributions. The 
corresponding energies elo%, a t  which the intensity in the maximum of the total 
angular distribution deviates by l O q G  from the values calculated in [6], nearly coin- 
cide with the values given in Table 4. 
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5. Comparison with Experimental Results 

The calculation given above contains the constants ce, and c,,, which at present 
can only be determined from experiment. Thus a comparison with single energy 
distributions is not very affirmative. We therefore restrict the comparison to ex- 
periments which include the angular dependence of the energy distributions. 

Hogberg, et al. [ 121 investigated the energy distributions of nitrogen ions of 40 keV 
initial energy having passed a carbon layer of 5.7 pg/cm2 (z = 2.8) a t  the scattering 
angles 6 = 0" and 6 = 9' (6 = 0.79). Fig. 2 shows the experimental distributions in 
coniparison with theoretical curves determined from (28) and Tables 1, 2, and 3. 
The mean energy of the particles was assumed to be 34.5 keV ( F  = 4.66). The constants 
ceo and ceZ were determined by fitting the theoretical energy distribution at 6 = 0 to 
the experimental most probable energy loss and to the experimental half-width. ?'he 
result was ceo = 0.081 keV and c,, = 3.02 keV. 

According to  (9b) the nuclear stopping constant c, is equal to 1.56 keV. As shown 
in Fig. 2 the theoretical calculation reproduces the niost probable energy loss a t  
B = go,  i.e. the shift of the distribution to  higher energy losses a t  increasing angles. 
However, the relative intensity and the shape of the distributions significantly deviate. 
This deviation may partially be due to the energy dependence of the detector used 
by Hiigberg and coworkers (current measurement with an open Bendix multiplier) 
which is responsible for an intensity too small a t  lower and too high a t  higher energies. 

In  the same experiment Hogberg and coworkers also investigated the angular 
distributions a t  fixed energy loss, which are of Gaussian shape with the half-width's 
given in Table 5 .  For comparison the theoretical values according to (30) are included, 

T a b l e  5 

C? I 10keV 1 10.9keV i 11.3keV 
I I 
, 

6112 exp. 7.5" ' S.6" 
61 p theor. 6.4" I 7.8" 

using the constants c,, and c,, determined above. All theoretical half-widths are 
slightly snialler than the experimental values. 

In  another work [2] Hogberg investigated "stopping cross-sections" of particles 
scattered in forward direction in dependence on the thickness of the penetrated layer. 
For the case of S+ ions with 34.5 keV mean energy penetrating carbon layers of 

<- 

Fig. 2. Energy distributions of nitrogen ions with initial energy 
of 40 keV after penetrating a carbon layer of a thickness of 
5.7 pg/cm2 a t  the scattering angles 8 = 0" and 9". Experimental 
results (dashed curves) from Hogberg et  al. [12], theoretical 

curves (solid) from (28) 5 ?a 15 
Q /keVi-- 
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different thicknesses, his results are given in Fig. 4 together with a theoretical curve 
computed froin the most probable energy loss am(0) of Table 3 using the constants 
ce0 and c,, determined above. The curves agree very well up to a thickness of 7 pglcm'. 
A t  this thickness the experimental curve shows a kink and remains constant for 
larger thicknesses whereas the theoretical curve continues to increase. The reason 
for this kink in the experimental curve is not clear. It should be mentioned, however, 
that the theoretical curve refers to the most probable energy loss whereas Hogberg 
uses the mean energy loss which, on account of the uncertainties in the tail of the 
energy distribution, is difficult to determine experimentally. 

In  the same paper [2] Hogberg presents an energy-angle distribution for the same 
projectile-target coinbination at approximately the same mean energy. This distri- 
bution cannot be reproduced satisfactorily from the present theory using the constants 
ceo and c,, determined above. It is, however, a striking feature of this distribution 
(Fig. 1 in [2]) that its corresponding mean energy loss in forward direction is incompat- 
ible with the "stopping cross-section" at  zero scattering angle and the corresponding 
thickness as follow froin Fig. 2d  of the same work. Thus, the presentation of Hogbergs 
results seems to be incorrect. 

Ormrod and Duckworth 1151 measured the energy distributions of neon ions with 
35 keV initial energy having passed a 3.36 pg/cm2 carbon layer (t = 1.46) at four 
scattering angles (6 = 0.075, 0.125, 0.175, 0.225). The results are coinpared with 
the theoretical curves according to (23) and Table 1, 2, and 3 in Fig. 3, assuming the 
mean energy of particles to be 32.5 keV ( E  = 2.38). The constants of electronic stop- 
ping ce, and ces were determined to be ceO = 0.045 keV and c,, = 3.65 key  whereas 
c, according to (9b) is equal to 5.51 keV. With these constants the shape of the ex- 

c ?? -0.075 1 

E IkeV) - pf ipg/rmzi- 

Fig. 3 Fig. 4 

Fig. 3. Energy distributions of neon ions with initial energy of 35 keV after penetration through 
e carbon layer of 3.36 pg/cms t.hickness at the scattering angles 8 = 0.075, 0.125, 0.175, 0.225. 

Experimental points from Ormrod and Duckworth [MI, theoretical curves from (28) 

Fig. 4. Dependence of the stopping cross sections S(0) on the thickness for particies, scattered 
in the forward direction in the case of penetration of 34.5 keV nitrogen ions and of 32.5 keV neon 
ions through carbon layers. Experimental curves (dashed) from Hogberg [21 theoretical curves 

from Table 3 
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perimental distributions and the shift of the most probable energy loss is reproduced 
quite well. Unfortunately the experimental distribut,ions at  different angles are not 
normalized to the same number of incident particles. Thus the theoretical curves had 
to be additionally fitted to the height of the maximal experimental value. 

For the case 32.5 keV Ne+ + C just discussed we have also calculated the “stopping 
cross-section” in forward direction, using the constants ce0 and ce, determined above. 
The comparison with experimental results of Hogberg [2] is shown in Fig. 4. At small 
thicknesses the theoretical curve is below the experimental one. This should be ex- 
pected because the theoretical “stopping cross-section” was calculated with the 
most probable energy loss in contrast to Hogberg who uses the mean energy loss. 
The bend of the experimental curve at t = 8 pg/cm2, however, is also in this case 
difficult to  understand. 
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