70000 £

Project Status Physics Programme Technical Concept Towards a TDR UK and the LHeC

The LHeC

R 1000000

Max Klein, University of Liverpool - PPAP Meeting at Birmingham, 17.09.2012

60 GeV electron beam energy, L= 10^{33} cm⁻²s⁻¹, \sqrt{s} =1.3 TeV: Q²_{max} 10^{6} GeV², 10^{-6} < x< 1 Recirculating linac (2 * 1km, 2*60 cavity cryo modules, 3 passes, P < 100 MW, ERL)

LHC Schedule for the coming decade

Figure 11.1: CERN medium term plan (MTP), draft as of July 2011 as shown by S. Myers at EPS 2011 Grenoble - Principal guidance of CDR

High Precision DIS

Q² >> M_{Z,W}², hi luminosity, large acceptance Unprecedented precision in NC and CC Contact interactions probed to 50 TeV Scale dependence of sin²θ left and right to LEP

ightarrow A renaissance of deep inelastic scattering \leftarrow

fine structure 25.6 Weak 25.4 25.2 25 stong 24.8 24.6 15.2 15.4 15.6 15.8 16 15 16.2 $\log_{10}(Q/GeV)$

> Solving a 40 year puzzle: α_s small in DIS or high with jets? Per mille measurement accuracy Testing QCD lattice calculations Constraining GUT (CMSSM40.2.5) Charm mass to 3MeV, N³LO

With high energy and luminosity, the LHC search range will be extended to high masses, up to 5 TeV in pair production. At correspondingly high x (> 0.5) the PDFs are unknown to a considerable extent [cf gg luminosity \rightarrow ğğ and gluon density from LHeC (10% at x=0.6)]

The HL-LHC (search) programme requires a much more precise understanding of QCD, which the LHeC provides (strong coupling, gluon, valence, factorisation, saturation, diffraction..)

PDFs from HERA+LHC and LHeC

DIS is the appropriate process to determine PDFs (just compare HERA – Tevatron PDF constraints)

LHeC: first time ever to fully determine PDFs, free of symmetry and ad hoc assumptions in huge and unexplored kinematic range

LHC: precision Drell-Yan data provide constraints (cf for example the ATLAS determination of s/d) Yet, high precision (<1%) only achievable at W,Z scale (miss the evolution) and large eweak-QCD theory uncertainties complicate interpretation

Direct strange measurement from charged current Ws \rightarrow c in ep \rightarrow vcX [high lumi, large range, small spot ~7µm²]

Higgs and LHeC

Precision measurements of couplings in WW and ZZ production (so far: bb in CC to 4%) Measurement of CP properties (J^{PC}=0⁺⁺ in SM; MSSM has 2 CP-even and 1 CP-odd states) Reduction of theoretical uncertainties for pp measurements

Initial study of WW \rightarrow H \rightarrow bb

PGS for detector, cut based analysis, S/N =1, 500 H-bb events for 100fb⁻¹

$$\Gamma_{\mu\nu}^{(\text{BSM})}(p,q) = \frac{-g}{M_W} [\lambda (p.q g_{\mu\nu} - p_\nu q_\mu) + i \lambda' \epsilon_{\mu\nu\rho\sigma} p^\rho q^\sigma]$$

$$0.06 \qquad \lambda = +1 ; \lambda' = 0$$

$$\lambda = -1 ; \lambda' = 0$$

$$\lambda = 0 ; \lambda' = +1$$

$$----- \lambda = 0 ; \lambda' = -1$$

$$E_e = 50 \text{ GeV}$$

$$0 \qquad 1 \qquad 2 \qquad 3$$

$$\Delta \phi_{\text{MET J}} [\text{rad}]$$

ICHEP12: J Campbell: ultimate limitation of Higgs measurements from LHC by PDFs/QCD

With high luminosity the LHeC has a huge potential for precision Higgs physics, which is being further evaluated.

Heavy Ion Physics

eA physics is essentially not done yet (no eA at HERA) **LHeC has huge discovery potential for new HI physics** (bb limit, saturation, deconfinement, hadronisation..) It will put nPDFs on completely new ground and constrain the initial conditions of the Quark-Gluon Plasma

Saturation – Low x Physics

New phase of matter: small coupling but non-linear parton-parton interactions:

- End of DGLAP ? BFKL?
- Access to 10 TeV scale SUSY via BFKL ("DP") arXiv:1205.6713 Kowalski, Lipatov, Ross
- Restauration of unitarity?
- Relevant for UHE neutrino scattering

Precision Measurements of crucial observables (F_2 , F_L , J/ψ ..

Summary of LHeC Physics [Cracow paper 147]

The LHeC represents a new laboratory for exploring a hugely extended region of phase space with an unprecedented high luminosity in high energy DIS. It builds the link to the LHC and a future pure lepton collider, similar to the complementarity between HERA and the Tevatron and LEP, yet with much higher precision in an extended energy range. Its physics is fundamentally new, and it also is complementary especially to the LHC, for which the electron beam is an upgrade. Given the broad range of physics questions, there are various ways to classify these, partially overlapping. An attempt for a schematic overview on the LHeC physics programme as seen from today is presented in Tab. 3. The conquest of new regions of phase space and intensity has often lead to surprises, which tend to be difficult to tabulate.

QCD Discoveries	$\alpha_s < 0.12, q_{sea} \neq \overline{q}$, instanton, odderon, low x: (n0) saturation, $\overline{u} \neq \overline{d}$
Higgs	WW and ZZ production, $H \to b\overline{b}$, $H \to 4l$, CP eigenstate
Substructure	electromagnetic quark radius, e^* , ν^* , W ?, Z ?, top?, H ?
New and BSM Physics	leptoquarks, RPV SUSY, Higgs CP, contact interactions, GUT through α_s
Top Quark	top PDF, $xt = x\overline{t}$?, single top in DIS, anomalous top
Relations to LHC	SUSY, high x partons and high mass SUSY, Higgs, LQs, QCD, precision PDFs
Gluon Distribution	saturation, $x \equiv 1, J/\psi, \Upsilon$, Pomeron, local spots?, F_L, F_2^c
Precision DIS	$\delta \alpha_s \simeq 0.1 \%, \delta M_c \simeq 3 \text{MeV}, v_{u,d}, a_{u,d} \text{ to } 2 - 3 \%, \sin^2 \Theta(\mu), F_L, F_2^b$
Parton Structure	Proton, Deuteron, Neutron, Ions, Photon
Quark Distributions	valence $10^{-4} \leq x \leq 1$, light sea, d/u , $s = \overline{s}$?, charm, beauty, top
QCD	N ³ LO, factorisation, resummation, emission, AdS/CFT, BFKL evolution
Deuteron	singlet evolution, light sea, hidden colour, neutron, diffraction-shadowing
Heavy Ions	initial QGP, nPDFs, hadronization inside media, black limit, saturation
Modified Partons	PDFs "independent" of fits, unintegrated, generalised, photonic, diffractive
HERA continuation	$F_L, xF_3, F_2^{\gamma Z}$, high x partons, α_s , nuclear structure,

Table 3: Schematic overview on key physics topics for investigation with the LHeC.

Top Quark and Leptoquarks

The LHeC is a (single) top quark production factory, via Wb \rightarrow t. Top was never observed in DIS. With ep: top-PDF \rightarrow 6 flavour VFNS, precision M_t direct and from cross section, anomalous couplings

Leptoquarks (-gluons) are predicted in RPV SUSY, E6, extended technicolour theories or Pati-Salam.

The LHeC is the appropriate configuration to do their spectroscopy, should they be discovered at the LHC.

ISSN 0954-3899

Journal of Physics G

Nuclear and Particle Physics

Volume 39 Number 7 July 2012 Article 075001

A Large Hadron Electron Collider at CERN

Report on the Physics and Design Concepts for Machine and Detector LHeC Study Group

CERN Referees

Ring Ring Design Kurt Huebner (CERN) Alexander N. Skrinsky (INP Novosibirsk) Ferdinand Willeke (BNL) Linac Ring Design Reinhard Brinkmann (DESY) Andy Wolski (Cockcroft) Kaoru Yokoya (KEK) **Energy Recovery** Georg Hoffstaetter (Cornell) Ilan Ben Zvi (BNL) Magnets Neil Marks (Cockcroft) Martin Wilson (CERN) **Interaction Region** Daniel Pitzl (DESY) Mike Sullivan (SLAC) **Detector Design** Philippe Bloch (CERN) Roland Horisberger (PSI) **Installation and Infrastructure** Sylvain Weisz (CERN) New Physics at Large Scales Cristinel Diaconu (IN2P3 Marseille) Gian Giudice (CERN) Michelangelo Mangano (CERN) Precision QCD and Electroweak Guido Altarelli (Roma) Vladimir Chekelian (MPI Munich) Alan Martin (Durham) **Physics at High Parton Densities** Alfred Mueller (Columbia) Raju Venugopalan (BNL) Michele Arneodo (INFN Torino)

Published 600 pages conceptual design report (CDR) written by 200 authors from 60 Institutes and refereed by 24 world experts on physics, accelerator and detector, which CERN had invited.

CDR Model

2008-2012

Scientific Advisory Committee CERN ECFA NuPECC

Steering Group

Accelerator Interaction Detector	New Physics	QCD and	High Parton
Region		Electroweak	Densities

Organisation of the LHeC Conceptual Design Report

LHeC Parameters

electron beam 60 GeV	Ring	Linac
$e^{-} (e^{+})$ per bunch $N_{e} [10^{9}]$	20(20)	1(0.1)
e^{-} (e^{+}) polarisation [%]	40(40)	90(0)
bunch length [mm]	6	0.6
tr. emittance at IP $\gamma \epsilon_{x,y}^{e}$ [mm]	$0.59, \ 0.29$	0.05
IP β function $\beta_{x,y}^*$ [m]	$0.4, \ 0.2$	0.12
beam current [mÃ]	100	6.6
energy recovery efficiency [%]	—	94
proton beam 7 TeV		
protons per bunch N_p [10 ¹¹]	1.7	1.7
transverse emittance $\gamma \epsilon_{x,y}^p$ [µm]	3.75	3.75
collider		
Lum $e^-p (e^+p) [10^{32} \text{cm}^{-2} \text{s}^{-1}]$	9(9)	10(1)
bunch spacing [ns]	25	25
rms beam spot size $\sigma_{x,y}$ [µm]	45, 22	7
crossing angle θ [mrad]	1	0
$L_{eN} = A L_{eA} [10^{32} \text{cm}^{-2} \text{s}^{-1}]$	0.45	1

Source	Power [MW]
Cryogenics (linac)	21
Linac grid power	24
SR compensation	23
Extra RF cryopower	2
Injector	6
Arc magnets	3
Total	78

CDR: Two options for electron beam: Ring or (Racetrack) Linac with E-recovery for $L > 10^{33}$ cm⁻²s⁻¹ Synchronous operation of pp and ep in HL-LHC phase. e Ring required bypassing pp experiments

Ring-Ring

Figure 7.60: Tight space restriction in Point 4 due to the LHC proton RF installation.

Civil engineering studied and reviewed by CH company Amber, both for ring and for linac options. Bypass in ring option used to house rf. ~4years of installation

Quite some interference with LHC: cryo jumpers (asymmetric FODO), connection of bypasses, access to LHC, proton dump area (point 3), RF (point 4), .. Cf CDR

June workshop, after CDR: RR not preferred, design LR

Situation for LEP3 would be much tougher: few km long RF, two rings, much higher synchrotron radiation, hi-jack or bypass CMS/ATLAS...

60 GeV Electron Accelerator

Other GIS Portal

Prévessin site

e (ERN)

Two 1km long LINACs connected at CERN territory Arcs of 1km radius: ~9km tunnel 3 passages with energy recovery

North shaft area

Saint Genis-Pouilly

South shaft area

Meyrin site

John Osborne (June LHeC Workshop)

Chapter 9 of CDR

9 System Design

9.1	Magn	ets for the Interaction Region
	9.1.1	Introduction
	9.1.2	Magnets for the ring-ring option
	9.1.3	Magnets for the linac-ring option
9.2	Accele	erator Magnets
	9.2.1	Dipole Magnets
	9.2.2	BINP Model
	9.2.3	CERN Model
	9.2.4	Quadrupole and Corrector Magnets
9.3	Ring-1	Ring RF Design
	9.3.1	Design Parameters
	9.3.2	Cavities and klystrons
9.4	Linac	-Ring RF Design
	9.4.1	Design Parameters
	9.4.2	Layout and RF powering
	9.4.3	Arc RF systems
9.5	Crab	crossing for the LHeC
	9.5.1	Luminosity Reduction
	9.5.2	Crossing Schemes
	9.5.3	RF Technology
9.6	Vacuu	ım
	9.6.1	Vacuum requirements
	9.6.2	Synchrotron radiation
	9.6.3	Vacuum engineering issues
9.7	Beam	Pipe Design
	9.7.1	Requirements
	9.7.2	Choice of Materials for beampipes
	9.7.3	Beampipe Geometries
	9.7.4	Vacuum Instrumentation
	9.7.5	Synchrotron Radiation Masks
	9.7.6	Installation and Integration
9.8	Cryog	enics
	9.8.1	Ring-Ring Cryogenics Design
	9.8.2	Linac-Ring Cryogenics Design
	9.8.3	General Conclusions Cryogenics for LHeC
9.9	Beam	Dumps and Injection Regions
	9.9.1	Injection Region Design for Ring-Ring Option
	9.9.2	Injection transfer line for the Ring-Ring Option
	9.9.3	60 GeV internal dump for Ring-Ring Option
	9.9.4	Post collision line for 140 GeV Linac-Ring option .
	9.9.5	Absorber for 140 GeV Linac-Ring option
	9.9.6	Energy deposition studies for the Linac-Ring option
	9.9.7	Beam line dump for ERL Linac-Ring option
	9.9.8	Absorber for ERL Linac-Ring option
		01

Components and Cryogenics

	r i i i i i i i i i i i i i i i i i i i		
	Ring	Linac	
magnets			
number of dipoles	3080	3504	
dipole field [T]	0.013 - 0.076	0.046 - 0.264	
number of quadrupoles	968	1514	
RF and cryogenics			
number of cavities	112	960	
gradient [MV/m]	11.9	20	
linac grid power [MW]	_	24	
synchrotron loss compensation [MW]	49	23	
cavity voltage [MV]	5	20.8	
cavity R/Q [Ω]	114	285	Jlab:
cavity Q_0	_	$2.5 \ 10^{10}$	4 10 ¹
cooling power [kW]	5.4@4.2 K	30@2 K	

Need to develop LHeC cavity (cryo-module)

systems will consist of a complex task. Further cavities and cryomodules will require a limited R&D program. From this we expect improved quality factors with respect to today's state of the art. The cryogenics of the L-R version consists of a formidable engineering challenge, however, it is feasible and, CERN disposes of the respective know-how.

R+D Tasks for LHeC

LHCC MAC/LMC

2012-2015

ECFA NuPECC

Coordination

Enable decision by 2015 ("TDR")

Oversight of Physics, Detector, Accelerator Issues. Finances

CERN + International Collaborations on Detector + Accelerator

Response to CERN Directorate and Committees, Conferences etc.

Physics	Detector	Computing	IR	CE	RF+Cryo	ERL	Magnets
Stimulate new DIS physics	Performance (precision, acc.)	Physics processes	Pipe for 1°	Site specific linac design	Cavity-cryo module (Q)	Beam dynamics	Q design and prototypes
t,Higgs,RPV	Technical design	Computing model, support	Syn.radiation, beam backgrd	Junction of e,p beam lines	Cryogenics system design	Protection, dumps	Return arc magnets
Adjust to LHC	Prototypes	Simulations	Masks, collimators	Technical integration	Power, coupler	Electron source	Rotator
Tool development	Installation model	DAQ and Trigger	Fwd and bwd detectors	Power, GS	Test facility	Positron R+D	Integration

Draft

S.Bertolucci June 2012

Physics until 2015

Redo analysis with LHeC detector simulation Consider all accessible decay channels Simulate CP SM and non-SM measurements Optimise b, fwd jet tagging Consider 10³⁴cm⁻²s⁻¹ (F.Zimmermann Chamonix 12)

Top: Simulation in LHeC detector and ultimate M_t and cross section accuracy

Generalised Parton Distributions, Photon structure, ...

The physics case of the LHeC is "persuasive" (Alan Martin in his CDR referee report). Still desirable to further work out a few "top" physics issues and optimise the design of the detector and accelerator correspondingly. Develop link to LHC.

Detector until 2015

Detector concept for high precision, large acceptance DIS. Technical (P.Bloch, R.Horisberger), cost and effort reviewed (M.Nordberg). Next: Full simulation with forward oriented software. Detailed installation study. Further development of various features (fwd tracking, muons,..). Choices of technology based on input and experience from proto-LHeC-Collaboration, which will be formed in 2013 -- **preparation of Lol**

Computing until 2015

Steps towards an LHeC software framework

Status now:

Interaction region simulation \rightarrow synchrotron radiation \leftarrow GEANT4, IRSYN(MadX) Detector volumes, flux calculation: ROOT \rightarrow GDML \rightarrow GEANT4, \rightarrow FLUKA

Computer development & experiences of others → move to: ROOT (TGeo and VMC(GEANT3,4,(5),FLUKA), Cling (interpreter for LLVM, Clang), <u>Fas</u>t code C/C++-like languages, basket definitions - **parallelizing** make use of: Ali-, Fair-, CBM-, Panda-, -Root experiences LHcb - e.g. "swimming" in trigger simulations → optimise detector granularity Incorporate HL-LHC optics → interaction region design

DAQ/Trigger: physics, hardware / software driven decisions depend on granularity needed, pre-processing, trigger & bandwidth requirements

- \rightarrow benchmark channels dictate the required solutions
- \rightarrow b tagging & maximal acceptance

ep physics description requires generator updates: Pythia8, Herwig++

Prototypes for Ring dipoles Fabricated and tested by CERN (top) and Novosibirsk

LR recirculator dipoles and quadrupoles New requirements (aperture, field)? Combined apertures? Combined functions (for example, dipole + quad)? LR linac quadrupoles and correctors New requirements (aperture, field)? More compact magnets, maybe with at least two families for quadrupoles? Permanent magnets / superconducting for quads? A.Milanese, Chavannes workshop

Magnets until 2015

1/2m dipole model Full scale prototype Quadrupole for Linac

Magnets for ERL test stand

Collaboration of CERN, Daresbury and Budker

flux density in the gaps	0.264 T 0.176 T 0.088 T
magnetic length	4.0 m
vertical aperture	25 mm
pole width	85 mm
number of magnets	584
current	1750 A
number of turns per aperture	1/2/3
current density	0.7 A/ mm ²
conductor material	copper
resistance	$0.36~\mathrm{m}\Omega$
power	1.1 kW
total power 20 / 40 / 60 GeV	642 kW
cooling	air

IR until 2015

Have optics compatible with LHC and $\beta^*=0.1m$ Head-on collisions mandatory \rightarrow High synchrotron radiation load, dipole in detector

Specification of Q1 – NbTi prototype (with KEK?) Revisit SR (direct and backscattered), Masks+collimators Beam-beam dynamics and 3 beam operation studies

Optimisation: HL-LHC uses IR2 quads to squeeze IR1 ("ATS" achromatic telescopic squeeze) Start in IR3.? R.Tomas et al.

Beam pipe: in CDR 6m, Be, ANSYS calculations

Composite material R+D, prototype, support.. → Essential for tracking, acceptance and Higgs

Figure 9.32: 3-D view of the LR geometry showing contours of bending displacement [m].

Civil Engineering until 2015

CDR: Evaluation of CE, analysis of ring and linac by Amber Zurich with detailed cost estimate [linac CE: 249,928 kSF..] and time: **3.5 years for underground works** using 2 roadheaders and 1 TBM

More studies needed for

Integration with all services (EL,CV, transport, survey etc). Geology Understanding vibration risks Environmental impact assessment

Tunnel connection in IP2

J.Osborne, Chavannes

RF until 2015

Frequency choice: *n* * 120.237 MHz N=6: 721 MHz, n=11: 1.3GHz (XFEL)

SPL cryomodule 704 MHz

BNL 704 MHz cavity (20 MV/m with high Q0 demonstrated)

Detailed comparison (threshold current, cryo power, Rf power, size, cost, collaboration, synergy..)

ALICE 1.3 GHz, not CW – only EU ERL facility operational Daresbury develops cryomodule for ESS (700 MHz) CERN: in house collaboration with SPL, and eRHIC/BNL

Accelerator physics motivation:
ERL demonstration, FEL, γ-ray source, e-cooling demo!
Ultra-short electron bunches
One of the 1st low-frequency, multi-pass SC-ERL
synergy with SPL/ESS and BNL activities
High energies (200 ... 400 MeV) & CW
Multi-cavity cryomodule layout – validation and gymnastics
Two-Linac layout (similar to LHeC)
MW class power coupler tests in non-ER mode
Complete HOM characterization and instability studies!
Cryogenics & instrumentation test bed ... E.Jensen

Steps: Design of LHeC ERL TF, cavity-cryo module (hi Q),

lattice, optics, magnets, source, Watch out for surprises as humming bird: Building international collaboration (CERN,Daresbury, Jlab, others?)

LHeC - ERL-TF

Tentative study of multipass optics and lattice

LHeC Preparations

The mandate for the technology development **includes** studies and prototyping of the following key technical components:

- Superconducting RF system for CW operation in an Energy Recovery Linac, (high Q0 for efficient energy recovery). The studies require design and prototyping of the cavity, couplers and cryostat.
- Superconducting magnet development of the insertion regions of the LHeC with three beams. The studies require the design and construction of short magnet models.
- Studies related to the experimental beam pipes with large beam acceptance in a high synchrotron radiation environment.
- The design and specification of an ERL test facility for the LHeC.
- The finalization of the ERL design for the LHeC including a finalization of the optics design, beam dynamic studies and identification of potential performance limitations.

The above technological developments require close collaboration between the relevant technical groups at CERN and external collaborators.

Given the rather tight personnel resource conditions at CERN the above studies should exploit where possible synergies within existing CERN studies (e.g. SPL and ESS SC RF, HL-LHC triplet magnet development and collaboration with ERL test facility outside CERN). → Corresponding first steps being taken

Preparation of MoUs by/with CERN

Much increased attention from international community: LINAC12 BNL, Jlab, SLAC, ESS, BESSY, GSI, DESY, ...

At Cracow new expressions of interest in detector collaboration from several institutes in Italy, Sweden, Slovakia

Principal agreement with ALICE about LHeC following ALICE in IP2 (NuPECC meeting at Sevilla 10/12)

Visible support by the ESG process will allow moving the LHeC development to the required next level of support.

The UK ..

UK and the LHeC

... the UK has played a leading role in the initialisation and design of the LHeC concepts, convenors, ideas, advisory board, 4 members and chair of the LHeC steering committee since 2007. For example, out of 5 talks at ICHEP on the LHeC, partially very visible (cf DG ICHEP slides on LHeC and Higgs), 3 had been given by UK physicists. The presentation at Cracow was awarded to P Newman...

By now, 5 UK Universities have worked on or expressed a serious interest in the detector development (Birmingham, Lancaster, Liverpool, Manchester, QMW), also nuclear physics groups from various (UK) institutes as the LHeC links PP with NP in a unique way. It also relates to ATLAS activities (interest in tracking and trigger developments, cf ongoing upgrade preparations).

Sol to come in due time, consultations with STFC, and UK community

UK Accelerator Engagement

Topics of joint interest and priority Meeting ASTEC/CI 5.9.12 at CERN

Electron source for TF

Design of IR, Optics for p beams, synrad tracking

Test facility design (OPAC fellow)

Sc cavity design, coupler, HOM damper, tuner..

Instrumentation for TF...

With only somewhat reduced priority: beam dynamics, positron source, magnets ..

Preparation of MoU, with view also to other partners

Deepa Angal-Kalinin¹, Robert Appleby⁵, Ian Bailey³, Steve Buckley¹, Graeme Burt³, Neil Bliss², Swapan Chattopadhyay^{3,4,5}, Jim Clarke¹, Peter Corlett¹, Philippe Goudket¹, Andy Goulden¹, Joe Herbert¹, Kai Hock⁴, Frank Jackson¹, Steve Jamison¹, James Jones¹, Lee Jones¹, Alexander Kalinin¹, Oleg Malyshev¹, Neil Marks¹, Peter McIntosh¹, Julian McKenzie¹, Keith Middleman¹, Boris Militsyn¹, Andy Moss¹, Bruno Muratori¹, David Newton⁴, Tim Noakes¹, Shrikant Pattalwar¹, Yuri Saveliev¹, Ben Shepherd¹, Susan Smith¹, Rob Smith¹, Trina Thakker¹, Luke Thompson⁵, Reza Valizadeh¹, Carsten Welsch⁴, Alan Wheelhouse¹, Peter Williams¹, Andy Wolski⁴

¹ASTeC/STFC, ²TD/STFC, ³University of Lancaster, ⁴University of Liverpool, ⁵University of Manchester

The LHeC represents a unique opportunity for the Daresbury Campus (ASTEC and CI), but also for the wider UK accelerator community (A.Seryi co-author of CDR) to be at the forefront of accelerator developments, building on their unique expertise, a very welcome strong expression of interest, and its strong links to Universities, CERN and industry.

Summary

"Energy frontier,

Tatsuya Nakada

Precision,

QCD, OGP"

The LHeC has a unique physics programme (QCD, Higgs, BSM, HI). It has a rich synergy with the LHC, SPL,ESS.. and links NP and PP. The now published design report moved the dream of a TeV scale electron-hadron collider to the "real axis" (SB). We can realise it.

Many thanks to CERN, NuPECC, ECFA and to the expanding LHeC Group

J.L.Abelleira Fernandez^{16,23}, C.Adolphsen⁵⁷, A.N.Akay⁰³, H.Aksakal³⁹, J.L.Albacete⁵², S.Alekhin^{17,54}, P.Allport²⁴, V.Andreev³⁴, R.B.Appleby^{14,30}, E.Arikan³⁹, N.Armesto^{53,a}, G.Azuelos^{33,64}, M.Bai³⁷, D.Barber^{14,17,24}, J.Bartels¹⁸, O.Behnke¹⁷, J.Behr¹⁷, A.S.Belyaev^{15,56}, I.Ben-Zvi³⁷, N.Bernard²⁵, S.Bertolucci¹⁶, S.Bettoni¹⁶, S.Biswal⁴¹, J.Blümlein¹⁷, H.Böttcher¹⁷, A.Bogacz³⁶, C.Bracco¹⁶, G.Brandt⁴⁴, H.Braun⁶⁵, S.Brodsky^{57,b}, O.Brüning¹⁶, E.Bulyak¹², A.Buniatyan¹⁷, H.Burkhardt¹⁶, I.T.Cakir⁰², O.Cakir⁰¹, R.Calaga¹⁶, A.Caldwell⁷⁰, V.Cetinkaya⁰¹, V.Chekelian⁷⁰, E.Ciapala¹⁶, R.Ciftci⁰¹, A.K.Ciftci⁰¹, B.A.Cole³⁸, J.C.Collins⁴⁸, O.Dadoun⁴², J.Dainton²⁴, A.De.Roeck¹⁶, D.d'Enterria¹⁶, P.DiNezza⁷², A.Dudarev¹⁶, A.Eide⁶⁰, R.Enberg⁶³, E.Eroglu⁶², K.J.Eskola²¹, L.Favart⁰⁸, M.Fitterer¹⁶, S.Forte³², A.Gaddi¹⁶, P.Gambino⁵⁹, H.García Morales¹⁶, T.Gehrmann⁶⁹, P.Gladkikh¹², C.Glasman²⁸, A.Glazov¹⁷, R.Godbole³⁵, B.Goddard¹⁶, T.Greenshaw²⁴, A.Guffanti¹³, V.Guzey^{19,36}, C.Gwenlan⁴⁴, T.Han⁵⁰, Y.Hao³⁷, F.Haug¹⁶, W.Herr¹⁶, A.Hervé²⁷, B.J.Holzer¹⁶, M.Ishitsuka⁵⁸, M.Jacquet⁴², B.Jeanneret¹⁶, E.Jensen¹⁶, J.M.Jimenez¹⁶, J.M.Jowett¹⁶, H.Jung¹⁷, H.Karadeniz⁰², D.Kayran³⁷, A.Kilic⁶², K.Kimura⁵⁸, M.Klein²⁴, U.Klein²⁴, T.Kluge²⁴, F.Kocak⁶², M.Korostelev²⁴, A.Kosmicki¹⁶, P.Kostka¹⁷, H.Kowalski¹⁷, G.Kramer¹⁸, D.Kuchler¹⁶, M.Kuze⁵⁸, T.Lappi^{21,c}, P.Laycock²⁴, E.Levichev⁴⁰, S.Levonian¹⁷, V.N.Litvinenko³⁷, A.Lombardi¹⁶, J.Maeda⁵⁸, C.Marquet¹⁶, B.Mellado²⁷, K.H.Mess¹⁶, A.Milanese¹⁶, S.Moch¹⁷, I.I.Morozov⁴⁰, Y.Muttoni¹⁶, S.Myers¹⁶, S.Nandi⁵⁵, Z.Nergiz³⁹, P.R.Newman⁰⁶, T.Omori⁶¹, J.Osborne¹⁶, E.Paoloni⁴⁹, Y.Papaphilippou¹⁶, C.Pascaud⁴², H.Paukkunen⁵³, E.Perez¹⁶, T.Pieloni²³, E.Pilicer⁶², B.Pire⁴⁵, R.Placakyte¹⁷, A.Polini⁰⁷, V.Ptitsyn³⁷, Y.Pupkov⁴⁰, V.Radescu¹⁷, S.Raychaudhuri³⁵, L.Rinolfi¹⁶, E.Rizvi⁷¹, R.Rohini³⁵, J.Rojo^{16,31}, S.Russenschuck¹⁶, M.Sahin⁰³, C.A.Salgado^{53,a}, K.Sampei⁵⁸, R.Sassot⁰⁹, E.Sauvan⁰⁴, U.Schneekloth¹⁷, T.Schörner-Sadenius¹⁷, D.Schulte¹⁶, A.Senol²², A.Seryi⁴⁴, P.Sievers¹⁶, A.N.Skrinsky⁴⁰, W.Smith²⁷, H.Spiesberger²⁹, A.M.Stasto^{48,d}, M.Strikman⁴⁸, M.Sullivan⁵⁷, S.Sultansoy^{03,e}, Y.P.Sun⁵⁷, B.Surrow¹¹, L.Szymanowski^{66, f}, P.Taels⁰⁵, I.Tapan⁶², T.Tasci²², E.Tassi¹⁰, H.Ten.Kate¹⁶, J.Terron²⁸, H.Thiesen¹⁶, L.Thompson^{14,30}, P.Thompson⁰⁶, K.Tokushuku⁶¹, R.Tomás García¹⁶, D.Tommasini¹⁶, D.Trbojevic³⁷, N.Tsoupas³⁷, J.Tuckmantel¹⁶, S.Turkoz⁰¹, T.N.Trinh⁴⁷, K.Tywoniuk²⁶, G.Unel²⁰, J.Urakawa⁶¹, P.VanMechelen⁰⁵, A.Variola⁵², R.Veness¹⁶, A.Vivoli¹⁶, P.Vobly⁴⁰, J.Wagner⁶⁶, R.Wallny⁶⁸, S.Wallon^{43,46,f}, G.Watt¹⁶, C.Weiss³⁶, U.A.Wiedemann¹⁶, U.Wienands⁵⁷, F.Willeke³⁷, B.-W.Xiao⁴⁸, V.Yakimenko³⁷, A.F.Zarnecki⁶⁷, Z.Zhang⁴², F.Zimmermann¹⁶, R.Zlebcik⁵¹, F.Zomer⁴²

Title

ERL Test Facilities

IHEP ERL-TF	HZB BERLinPro	BINP	Peking FEL	BNL ERL-TF	KEK cERL	Daresbury ALICE	JAERI	CERN ERL-TF
35 MeV	100 MeV	11-40 MeV	30 MeV	20 MeV	245 MeV	10 MeV	17 MeV	300 MeV
1.3 GHz 9 cell	1.3 GHz	180 MHz	1.3 GHz 9-cell	704 MHz 5-cell	1.3 GHz 9-cell	1.3 GHz 9-cell	500 MHz	721 MHz 2x4x5 cell
10 mA	100 mA	30 mA	50 mA	50-500 mA	10-100 mA	13 μΑ	5-40 mA	2-6 mA
60 pC	10-77 pC	0.9-2.2 nC	60 pC	0.5-5 nC	77 pC	80 pC	400 pC	500 pC
1 pass	1-2 pass	4 passes	1 pass	1 pass	2 passes	1 pass	1 pass	2 passes
under construction	planned / construction	operating		under construction	under construction	operating	operating	first ideas

Project Milestones

2007: Invitation by SPC to ECFA and by (r)ECFA to work out a design concept

2008: First CERN-ECFA Workshop in Divonne (1.-3.9.08)

2009: 2nd CERN-ECFA-NuPECC Workshop at Divonne (1.-3.9.09)

2010: Report to CERN SPC (June)

3rd CERN-ECFA-NuPECC Workshop at Chavannes-de-Bogis (12.-13.11.10) NuPECC puts LHeC to its Longe Range Plan for Nuclear Physics (12/10)

2011: Draft CDR (530 pages on Physics, Detector and Accelerator) (5.8.11) being refereed and updated

2012: Publication of CDR – European Strategy New workshop (Chavannes, June 14-15, 2012)

Goal: TDR by 2015 Perspective: Operation by 2023 (synchronous with pp)

CDR - Time Schedule*)

ICHEP LHeC Max Klein 7.7.2012