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1. Introduction [Spages]
a short introduction to the project.

2. Particle Physics and Deep Inelastic Lepton-Nucleon Scattering [15]

1. DIS from 1 to 100 GeV

(SLAC, CERN/Fermilab, HERA)
2. Status of the Exploration of Nucleon Structure

(low x, high x. heavy quarks, nuclei and further unknowns)
3. Tera Scale Physics

(the importance of a TeV ep collider to the LHC)

3. The Physics Programme of the LHeC [60]

1. New Physics at Large Scales

(SUSY, excited leptons, contact interactions, LQs . ED, Z7)
2. Precision QCD and Electroweak Physics

(Higgs, top, beauty. gluon, pdf’s, alpha_s.)
3. Physics at High Parton Densities

(low x theory, saturation, ed. nuclear effects and pdf's)
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4. Design Considerations [10]

1. Acceptance and Kinematics
2. A Series of Measurements
(luminosity, beam energy. lepton beam charge and polarisation)
3. Compatibility with the LHC
(operation, installation. radiation, access)
4. Proton, Deuteron and Ion Beams

5. A Ring-Ring Collider Concept [30]

1. Injector

(the SPL and an initial ep/eA phase, alternative injectors)
. Lepton Ring
(magnets, rf, bypasses)
3. Synchrotron Radiation
4. Interaction Region
(for high luminosity and maximum acceptance)
. Installation
6. Infrastructure and Cost

(]

h

6. A Linac-Ring Collider Concept [30]

1. Electron and Positron Sources, Polarisation
2. Linac

3. Interaction Region

4. Beam Dump

5. Infrastructure and Cost
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7. A Detector for the LHeC [20]

1. Dimensions and General Requirements
(accuracy, acceptance, beam pipe)

2. Coil

3. Calorimeters

4. Tracking
(including options as GOSSIP vs full Silicon)

5. Options for the Inner Detector Region

6. Detector Simulation and Performance

8. Summary [5]
1. Physics Highlights
2. Parameters
3. Concluding Remarks
Appendix [fo be seen]
1. Tasks for a TDR
2. Building and Operating the LHeC

March 2™ 2009, The LHeC Steering Committee
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Fig. 5. A possible layout in which an electron linac arrives tangentially

Fig. 4. Sketch of a possible layout to inject an electron beam into the to the LHC, after multiple passes around a “racetrack” that makes full
LHCring, using the SPL and the TI2 connection to the LHC tunnel. use of the linac accelerating structures.
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Luminosity/10®¥cm™2s™

Luminosity Estimates

Ring-Ring: L~P/E*
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F.Willeke, 70GeV * 7TeV, 50MW [JINST 2006]
B.Holzer, A.Kling et al, Divonne08,ECFA08

Scale BH to 50MW: 5 1033 at 50 GeV

Luminosity/10*%cm2s

LINAC-Ring:  L~P/E
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Scale 100 GeV to 50 GeV: 5 1032 cm2s!

Hlgh energy recovery LINAC?



e-Pb collisions

m Present nominal Pb beam for LHC
- Same beam size as protons, fewer bunches
k, = 592 bunches of N, = 7x 10" **Pb*" nuclei

m Assume lepton injectors can create matching

train of e
k, =592 bunches of N, = 1.4x 10" €

m Lepton-nucleus or lepton-nucleon luminosity in
ring-ring option at 70 GeV
L=109x10” em?s’ <« L_=22x10" cm™s”
(gives 11 MW radiated power )

- May be some scope to exploit additional power
by increasing electron single-bunch intensity

J.Jowett (22.4.09). when simply scaled: 11MW, 70 GeV - 30MW, 50GeV: L ,=103%2

Ca is a candidate for a lighter nucleus, may assume same eN luminosity and L, ~1/A
but lighter ions are not part of CERN’s programme so far.
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Very(!) tentative e-d luminosity

m Rough guess for beam via Linac3

- Same beam size as protons, fewer bunches as
for Pb
k, =592 bunches of N, =1.7x10° deuterons

m Assume lepton injectors can create matching
train of e-

k, =592 bunches of N, =1.4x 10" ¢
m Lepton-nucleus or lepton-nucleon luminosity in
ring-ring option at 70 GeV

L=2x10" cm™s" (gives 11 MW radiated power )

- Optimist might hope for maybe 10-50 times
more if Linac4 and other systems work well.
— A lot of further study required!!

J.Jowett with Alessandra Lombardi, Detlef Kuchler, Richard Scrivens, 24.4.09
When scaled to 50 GeV and 30MW gives 103!
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Simulated Default Scenarios, april 2009

http://hep.ph.liv.ac.uk/~mklein/simdis09/lhecsim.Dmp.CC, readfirst

config. E(e) EN) N [L(e") JL(e) |Pol| L/10% P/MW years type
A 20 7 P 1 1 - 1 10 1 SPL
B 50 7 p 50 50 04 25 30 2 RRhiQ?
C 50 7 P 1 1 0.4 1 30 1 RRlox
D 100 7 P 5 10 09 25 40 2 LR
E 150 7 P 3 6 0.9 1.8 40 2 LR
F 50 35 D 1 1 -- 05 30 1 eD
G 50 2.7 Pb 0.1 0.1 04 01 30 1 ¢Pb
H 50 1 p -- 1 -- 25 30 1 lowEp

pe

Not
simulated



NC - events

Electron-Proton Scattering - Rates
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High Luminosity

is short running
time and high
flexibility. Essential
for high x, Q% and
for semiinclusive
processes (e.g.DVCS)

Largest energy

is crucial for low x
and high masses
and high Q2. The
LHC may set the
scale for everything,
perhaps.



CC - events

Electron-Proton Scattering - Rates
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The HERA CC

data are restricted
to x < 0.5. There follow
substantial pdf
uncertainties in the
(new) HERA pdf QCD
fits. High integrated
luminosity is thus
necessary to

unfold partons

and study dynamics
at large x and high
masses. LHeC also
prrovides larger s:

win-win for CC



errors in %

Systematic Error Calculation
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Numeric calculation (J.Bluemlein, MK, 1989) using cross section derivatives to E.’, 0,,E,

assume: 0.2 for E’, 1Imrad for polar angle and 1% for E,
compares ok with MC calculation of H12000 paper [just published] (0.2%, 2mrad, 2%)

cf talk of Jan Kretzschmar

In addition: 0.5% extra efficiency, 1% yp for y>0.7, 0.5% RadCor, noise at y < 0.01



errors in %

Systematic Error Calculation
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Same error requirements for D (100 GeV * 7000 GeV): reach lower x
Polar angle error contribution rises. 0.2 mrad would imply 1% error!

- Need very accurate polar angle measurement at large bwd angles.

10°

10°



errors in %

Systematic Error Calculation
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At high Q2: measure at large x: 0.2% on E_.’ may be relaxed a bit. Polar angle may be much worse
than 1mrad, but for high x need very accurate hadronic energy measurement (CC in particular).
Need 1% of hadronic energy scales at very large E,



Q¥GeV?

Kinematics — high Q?

E,=100 GeV E_=7000 GeV

The electron kinematics at high Q?
Is no big problem, apart from extreme

backscattering at very high Q2 of electrons
of a few TeV energy.

—>Need forward elm. calorimeter of few TeV
energy range down to 10° and below
with reasonable calibration accuracy.

Q%¥GeV?

E,=100 GeV E,=7000 GeV

High x and high Q?: few TeV HFS scattered forward:
—~>Need forward had. calorimeter of few TeV
energy range down to 10° and below.
Mandatory for charged currents. Strong
variations of cross section at high x demand
hadronic energy calibration as good as 1%



Kinematics — large x

Low proton beam energy: access large x. Nominal proton beam energy: need very fwd.
Needs high luminosity: L~ 1/E 2 angle acceptance for accessing large x

E,=100 GeV E,=1000 GeV E_=100 GeV E,=7000 GeV
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Q%/GeV?
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Kinematics — low Q?,x

Low electron beam energy: access low x.
Needs only small luminosity. SPL for low
Q2 physics, however, lowest x require max s.

E,=20 GeV E,=7000 GeV
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Nominal proton beam energy: need very bwd
angle acceptance for accessing low x and Q?
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Electroweak Cross Section Measurements
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Electroweak Cross Section Measurements
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Structure Functions with the LHeC

LHeC simulation 1 20000 GeV’
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(Foreshaw et al, NNPDF group)
F, “data” included in simulation files
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pdf’s and New Physics at the LHC

ratio to preLHC SM

ratio to preLHC SM
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NP may be accommodated by HERA/BCDMS
DGLAP fit. It can not by the fit to also LHeC.

(recall high E; excess at the Tevatron which
disappeared when xg became modified)
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u /c
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Factorisation is violated in production
of high p; particles (IS and FS i.a.s).

Important, perhaps crucial, to measure
pdf’s in the kinematic range of the LHC.
cf also ED limits vs pdf’s.

John Collins, Jian-Wei Qiu . ANL-HEP-PR-07-25, May 2007.
e-Print: arXiv:0705.2141 [hep-ph]
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ﬁ and Top Production at the LHeC (CC)
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LHeC is a single top and
anti-top quark factory

with a CC cross section
of O(10)pb

Top at HERA essentially
impossible to study. Single
top at Tevatron barely seen
and at LHC very challenging



Charm quark distribution
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10 T 66666I3:l T T rorrromg T T Ty T T T rrrrng T T rorrromg 3 |
X=U. 3
. x=0.00007 S ; =y eN, +bgd,oNy.
10° x=0.0003 g =0.1 '
) x=0.0007 bgd, =001 ]
10° 8,y =0.1 | 3
x=0.003 |
o o—1, =1 1
10 ‘ x=0.007 =9, =107 3
10’ o x=0.07 E
10° o e x=0.007 _
10' d/ — x=0.03 ]
& HERA e ot 5 Intrinsic charm
oo ° L o .
10° 007 3 requires dedl.cated
oo : forward tagging
100 b e i ! : I ' and low E in order
10° 10' 10° 10° 10° 10° to reach large x.
£=0.1, bgd,=0.01 Q*/GeV?

Max Klein LHeC pdf DIS07 18.4.07



Try to see charm at large x
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Even in the most
favourable beam
energy setting,

a search for
intrinsic charm
at x >=0.1 would
require charm
tagging down

to few degrees...



Beauty, s and anti-s measurements with the LHeC

strange
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At mid term of the CDR development the LHeC has 3
options for consideration: RR, LR and LR,

The energies and luminosities in all cases substantially

exceed the HERA values with
RR: 50-80 GeV: 1033; LR:50-150 GeV: 1032 times N(ER)

RR will have low polarisation, if any, and the LR will
have a particular luminosity problem for positrons,
both to be considered for the CDR.

Lower energy options are vital to fill the phase space
and for special physics studies as F, or high x physics.

A set of NC and CC measurements has been simulated
which may serve as a CDR basis. For a TDR more
detailed MC detector studies will be needed.

The detector needs maximum coverage. In fwd direction

a few TeV are scattered and the hadronic energy scale
shall be determined to better than 1%. At small Q2
the angle should be known to 0.1mrad.

New levels of luminosity, beam energy, target variety
and measurement accuracy will lead to the full
unfolding of the partonic content of p,n,D,A and

of course to a much deeper understanding of parton
dynamics and if we are lucky of physics BSM, in the
electroweak sector, in QCD and/or their interrelation.
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