Quark^{*)} **Distributions with the LHeC**

Project Scenarios Statistics Systematics Light Quarks Heavy Quarks

Max Klein DESY, 7.4.2010 Meeting on QCD at the LHeC

*) For the gluon see previous talks by
E. Perez at DIS07
C. Gwenlan at DIS09

Some plots old, some plots new. All is preliminary and here shown for discussion.

Ring-Ring Parameters

$$L = \frac{N_p \gamma}{4\pi e \varepsilon_{pn}} \cdot \frac{I_e}{\sqrt{\beta_{px} \beta_{py}}} = 8.310^{32} \cdot \frac{I_e}{50mA} \frac{m}{\sqrt{\beta_{px} \beta_{pn}}} cm^{-2} s^{-1}$$

$$I_e = 0.35 mA \cdot \frac{P}{MW} \cdot \left(\frac{100 GeV}{E_e}\right)^4$$

Luminosity for e[±]p safely above 10³³cm⁻²s⁻¹

Used "ultimate" LHC beam parameters

Energy limited by injection and syn.rad losses

Power limit set to 100 MW

Small p tuneshift: simultaneous pp and ep

Ultimate	Protons	Electrons	
Parameter			
	$Np=1.7*10^{11}$	Ne=1.4*10 ¹⁰	nb=2808
	Ip=860mA	Ie=71mA	
Optics	βxp=230 cm	βxe=12.7 cm	
	$\beta yp = 60 \ cm$	$\beta ye = 7.1 cm$	
	exp=0.5 nm rad	εxe=9 nm rad	
	εyp=0.5 nm rad	εye=4 nm rad	
Beamsize	$\sigma x = 34 \ \mu m$		
	$\sigma y=17 \ \mu m$		
Tuneshift	$\Delta vx = 0.00061$	<i>∆vx=0.056</i>	
	<i>∆vy=0.00032</i>	∆vy=0.062	
Luminosity	$L=1.03*10^{33}$		

LINAC-Ring Parameters

Configuration	60 GeV, pulsed	60 GeV CW ERL	140 GeV pulsed
N _e /bunch/ 10 ⁹ /50ns	4	1.9	2
gradient MV/m	32	13	32
normalised $\epsilon/\mu m$	50	50	100
cryo power/MW	3	20	6
effective beam power/MW	50	40/(1-η _{ERL})	50

An Electron-Proton Collider in the TeV Range

M. Tigner, Cornell Univ., Ithaca, NY B. Wiik, F. Willeke, DESY, Hamburg, FRG

As the era of e-p colliders begins we need to begin a search for practical schemes for increasing the available center of mass energies. The use of an SC linac on SC proton ring approach may offer a practical possibility while maintaining a favorable electron to proton beam energy ratio.

The LR combination yet requires a still better p beam or/and E_e recovery to come to luminosity beyond 10^{32} cm⁻²s⁻¹

Luminosity for ultimate beam

$$N_{p} = 1.7 \cdot 10^{11}, \varepsilon_{p} = 3.8 \mu m, \beta^{*} = 0.2m, \gamma = 7000/0.94$$
$$L = 8 \cdot 10^{31} cm^{-2} s^{-1} \cdot \frac{N_{p} 10^{-11}}{1.7} \cdot \frac{0.2}{\beta^{*}/m} \cdot \frac{P/MW}{E_{e}/GeV}$$

Simulated Default Scenarios, April 2009

http://hep.ph.liv.ac.uk/~mklein/simdis09/Ihecsim.Dmp.CC, readfirst

config.	E(e)	E(N)	Ν	$\int \mathbf{L}(\mathbf{e}^{+})$	∫L(e⁻)	Pol	L/10 ³²	P/MW	yea	rs type
А	20	7	р	1	1	-	1	10	1	SPL
В	50	7	р	50	50	0.4	25	30	2	RR hiQ ²
С	50	7	р	1	1	0.4	- 1	30	1	RR lo x
D	100	7	р	5	10	0.9	2.5	40	2	LR
Е	150	7	р	3	6	0.9	1.8	40	2	LR
F	50	3.5	D	1	1		0.5	30	1	eD
G	50	2.7	Pb	0.1	0.1	0.4	4 0.1	30	1	ePb
Н	50	1	p		1		2	5 30	1	lowEp

4

Largest energy is crucial for low x and high masses and high Q². The LHC may set the scale for everything, perhaps.

The HERA CC data are restricted to x < 0.5. There follow substantial pdf uncertainties in the (new) HERA pdf QCD fits. High integrated luminosity is thus necessary to unfold partons and study dynamics at large x and high masses. LHeC also prrovides larger s: win-win for CC

Kinematics – high Q²

E_=100 GeV E_=7000 GeV

E_=100 GeV E_=7000 GeV

The electron kinematics at high Q² Is no big problem, apart from extreme backscattering at very high Q² of electrons of a few TeV energy.

→Need forward elm. calorimeter of few TeV energy range down to 10° and below with reasonable calibration accuracy.

High x and high Q²: few TeV HFS scattered forward:
→Need forward had. calorimeter of few TeV energy range down to 10° and below.
Mandatory for charged currents. Strong variations of cross section at high x demand hadronic energy calibration as good as 1%

Kinematics – large x

Low proton beam energy: access large x. Needs high luminosity: $L \sim 1/E_p^2$

angle acceptance for accessing large x

Nominal proton beam energy: need very fwd.

8

Kinematics – low Q²,x

Low electron beam energy: access low x. Needs only small luminosity. SPL for low Q^2 physics, however, lowest x require max s. Nominal proton beam energy: need very bwd angle acceptance for accessing low x and Q²

E_=20 GeV E_=7000 GeV

Max Klein - Scenarios and Measurements

Detector requirements

High luminosity to reach high Q^2 and large x $10^{33} - 10^{34}$ 1-5 10^{31}

Largest possible acceptance 1-179° 7-177°

High resolution tracking0.1 mrad0.2-1 mrad

Precision electromagnetic calorimetry 0.1% 0.2-0.5%

Precision hadronic calorimetry 0.5% 1%

High precision luminosity measurement0.5%1%

LHeC

HERA

The LHeC detector

has to be at least 2 times better than the good old H1

Detector parameters were put in simulation of NC and CC (LO) cross sections with analytic calculation of systematic uncertainties.

NLO QCD fits to these 'data' were performed, on pdfs by Emmanuelle Perez, on alphas by Thomas Kluge and on electroweak couplings (and pdfs) by Claire Gwenlan

Detector under Design (low x, high Q², eA)

P.Kostka, A.Pollini, R.Wallny et al, 9/09

high precision, large acceptance, LHC/ILC/HERA related, Forward tagging of p, n, d

Valence Quarks

Electroweak NC Cross Section Measurements

Electroweak NC Cross Section Measurements

D, x=0.2

2 charges and 2 polarisations very desirable for electroweak physics and the new spectroscopy should that appear.

Z effects depend on charge and polarisation.

from yZ interference

G₂ = $F_2^{\gamma Z}$ = 2x $\Sigma v_q e_q$ (q+qbar)

Constraints at Low x

Simulated F_L Measurement at the LHeC

 F_{L} and F_{2} provide crucial information at low x \rightarrow strong constraint on gluon

d/u at low x from deuterons

Heavy Quarks

b-c-t-s

Beauty

Charm

Charm

27

Intrinsic Charm ??

CTEQ6 with (solid) and w/o (dashed) intrinsic charm

To access the high x region one needs to tag charm in fwd direction and lower the proton beam energy and get high luminosity. Worth a remark in the CDR

Cf D0 PRL 102, 192002 (2009) Thanks to Stan.

Top and Top Production at the LHeC (CC)

Strange Quark

 $W^{+}s \rightarrow c$ $1 fb^{-1}$ $\varepsilon_{c} = 0.1$ $\varepsilon_{q} = 0.01$ $\delta_{syst} = 0.1$ $\circ - \vartheta_{h} \ge 1^{o}$ $\bullet - \vartheta_{h} \ge 10^{o}$

Anti-Strange Quark

Summary

The LHeC is the first DIS machine with the potential to completely unfold the partonic structure of the proton. This should remove the assumptions inherent to QCD fits on the behaviour of the sea quarks (strange, anti-strange, up, down) and provide precision information on the charm and beauty quarks around and much beyond threshold. The valence quarks follow from NC and CC measurements and may be accessed most accurately for x between 10⁻³ up to nearly 1.

The detector must cover a maximum range of polar angles, which is much helped by lower energy runs, electron for large θ_e and protons for small θ_h . For such runs (as for the F_L run at HERA) the luminosity of the machine must be high.

For the CDR a coherent set of plots is required on the structure function measurements (HERA + LHeC) and the parton distributions.