Precision Measurements with the LHeC

Max Klein for the LHeC Study Group

Precision at the LHC, Workshop, Paris, 17.12.10

http://cern.ch/lhec

Rolf Heuer: 3/4. 12. 09 at CERN: From the Proton Synchroton to the Large Hadron Collider 50 Years of Nobel Memories in High-Energy Physics

LHeC Accelerator: Collaborating Institutes

Two Options

$$L = \frac{N_p \gamma}{4\pi e \varepsilon_{pn}} \cdot \frac{I_e}{\sqrt{\beta_{px} \beta_{py}}}$$

$$N_p = 1.7 \cdot 10^{11}, \varepsilon_p = 3.8 \,\mu m, \beta_{px(y)} = 1.8(0.5)m, \gamma = \frac{E_p}{M_p}$$

$$L = 8.2 \cdot 10^{32} cm^{-2} s^{-1} \cdot \frac{N_p 10^{-11}}{1.7} \cdot \frac{m}{\sqrt{\beta_{px} \beta_{py}}} \cdot \frac{I_e}{50mA}$$

$$I_e = 0.35mA \cdot P[MW] \cdot (100/E_e[GeV])^4$$

Ring-Ring

Power Limit of 100 MW wall plug "ultimate" LHC proton beam **60 GeV** e[±] beam

$$\rightarrow$$
L = 2 10³³ cm⁻²s⁻¹ \rightarrow O(100) fb⁻¹

LINAC Ring

Pulsed, **60 GeV**: ~10³² High luminosity: **Energy recovery**: $P=P_0/(1-\eta)$ $\beta^*=0.1m$ [5 times smaller than LHC by reduced I*, only one p squeezed and IR quads as for HL-LHC] $L = 10^{33} \text{ cm}^{-2}\text{s}^{-1} \rightarrow O(100) \text{ fb}^{-1}$

$$\begin{split} L &= \frac{1}{4\pi} \cdot \frac{N_p}{\varepsilon_p} \cdot \frac{1}{\beta^*} \cdot \gamma \cdot \frac{I_e}{e} \\ N_p &= 1.7 \cdot 10^{11}, \varepsilon_p = 3.8 \,\mu m, \beta^* = 0.2 m, \gamma = 7000 / 0.94 \\ L &= 8 \cdot 10^{31} cm^{-2} s^{-1} \cdot \frac{N_p 10^{-11}}{1.7} \cdot \frac{0.2}{\beta^* / m} \cdot \frac{I_e / mA}{1} \\ I_e &= mA \frac{P / MW}{E_e / GeV} \end{split}$$

Synchronous ep and pp operation (small ep tuneshifts) The LHC p beams provide 100 times HERA's luminosity

Statistics

Need much higher luminosity than HERA to cover largest Q². Huge rates in electroweak region.

Ring Dipole Magnets

-		
Parameter	Value	Units
Beam Energy	10-60	GeV
Magnetic Length	5.35	Meters
Magnetic Field	0.127-0.763	Tesla
Number of magnets	3080	
Vertical aperture	40	mm
Pole width	150	mm
Number of turns	2	
Current @ 0.763 T	1300	Ampere
Conductor material	copper	
Magnet inductance	0.15	milli-Henry
Magnet resistance	0.16	milli-Ohm
Power @ 60 GeV	270	Watt
Total power consumption @ 60 GeV	0.8	MW
Cooling	air or water	depends on tunnel ventilation

BINP & CERN prototypes

Table 3.2: Main parameters of bending magnets for the RR Option.

5m long (35 cm)² slim + light for installation

LINACs

Two 10 GeV Linacs, 3 returns, ERL, 720 MHz cavities, rf, cryo, magnets, injectors, sources, dumps...

Linac-Ring Cryogenics

Interaction Region(s)

RR -Small crossing angle ~1mrad (25ns) to avoid first parasitic crossing (L x 0.77) LR – Head on collisions, dipole in detector to separate beams Synchrotron radiation –direct and back, absorption simulated (GEANT4) ..

Focus of current activity

2nd quad: 3 beams in horizontal plane separation 8.5cm, MQY cables, 7600 A

Double Solenoid Detector

Double Solenoid

Muon tracker + iron return yoke

- 2 big Solenoids +5T/-1.5T outside HCAL (evaluated by H.Ten Kate) saving ~10kTons steel for return yoke (~10M\$)
- superior muon track measurement in between the 2 magnets

Fwd/Bwd asymmetry in energy deposited and thus in technology [W/Si vs Pb/Sc..] Present dimensions: LxD =17x10m² [CMS 21 x 15m², ATLAS 45 x 25 m²] Taggers at -62m (e),100m (γ,LR), -22.4m (γ,RR), +100m (n), +420m (p)

Beam Pipe Design

Momentum Resolution

 $H1: CJC: \frac{\delta p_T}{p_T^2} := 3 \cdot 10^{-3} GeV^{-1}$ $B = 1.2T, \Delta \approx 200 \mu m, N \approx 20: L = 1m$

$\delta p_T = \Delta$	720 1.7.10 ⁻⁴ $C_{2}V^{-1}$
$\overline{p_T^2} = \overline{0.3BL^2} \cdot \sqrt{10}$	$\frac{1}{N+4} = 1.7 \cdot 10 \text{GeV}$
$B = 3.5T, \Delta \approx 10\mu$	$um, N \approx 2 * 5 + 3 : L = 0.6m$

Calorimeter - Resolutions and Scales

	backward	barrel	forward
approximate angular range / degrees	179 - 135	135 - 45	45-1
electron energy/GeV	3-100	10-400	50-5000
x_e	$10^{-7} - 1$	$10^{-4} - 1$	$10^{-2} - 1$
elm scale calibration in %	0.1	0.2	0.5
elm energy resolution $\delta E/E$ in $\% \cdot \sqrt{E/GeV}$	10	15	15
hadronic final state energy/GeV	3-100	3-200	3-5000
x_h	$10^{-7} - 10^{-3}$	$10^{-5} - 10^{-2}$	$10^{-4} - 1$
hadronic scale calibration in $\%$	2	1	1
hadronic energy resolution in $\% \cdot \sqrt{E/GeV}$	60	50	40

Table 6.1: Summary of calorimeter kinematics and requirements for the default design energies of $60 \times 7000 \,\text{GeV}^2$, see text. The forward (backward) calorimetry has to extend to $1^{\circ}(179^{\circ})$.

Acceptance and Calibration

High luminosity to reach 1033	high Q ² and large x 1-5 10 ³¹	
Largest possible acceptan 1-179°	ice 7-177°	Acceptance
High resolution tracking 0.1 mrad	0.2-1 mrad	Modern Si
Precision electromagnetic 0.1%	c calorimetry 0.2-0.5%	DA, kin peak, High statistics
Precision hadronic calorir	netry	may be possible
0.5%	1%	track+calo, e/h
High precision luminosity 0.5%	measurement 1%	Lumi will be hard
LHeC	H1	

Gluon Distribution

Strong Coupling Constant

Simulation of α_s measurement at LHeC

α_s least known of coupling constants

Grand Unification predictions suffer from $\delta \alpha_s$

DIS tends to be lower than world average

LHeC: per mille accuracy indep. of BCDMS. Challenge to experiment and to h.o. QCD

J.Bluemlein and H. Boettcher, arXiv 1005.3013 (2010)

Beauty - MSSM Higgs

HERA: First measurements of b to ~20% LHeC: precision measurement of b-df

LHeC: higher fraction of b, larger range, smaller beam spot, better Si detectors

Charm – α_s

Strange (=? anti-strange) Quark

Some dimuon and K data never properly measured

Top and Top Production at the LHeC (CC)

Weak NC Couplings of Light Quarks

Per cent accuracy of NC couplings

For H1, CDF, LEP cf Z.Zhang DIS10

Neutron Structure (ed \rightarrow eX)

(13) There are five color-singlet combinations of the deuteron wavefunction in QCD, only one of which is the standard proton-neutron state. The "hidden color" [13] components will lead to high multiplicity final states in deep inelastic electron-deuteron scattering.

crucial constraint on evolution (S-NS), improved $\alpha_{\rm s}$

Plenary ECFA, LHeC, Max Klein, CERN 30.11.2007

In eA at the collider, test Gribovs relation between shadowing and diffraction, control nuclear effects at low Bjorken x to high accuracy

Electron-Ion Scattering: $eA \rightarrow eX$

paris

Organisation + Status for the CDR

Scientific Advisory Committee

Guido Altarelli (Rome) Sergio Bertolucci (CERN) Stan Brodsky (SLAC) Allen Caldwell -chair (MPI Munich) Swapan Chattopadhyay (Cockcroft) John Dainton (Liverpool) John Ellis (CERN) Jos Engelen (CERN) Joel Feltesse (Saclay) Lev Lipatov (St.Petersburg) Roland Garoby (CERN) Roland Horisberger (PSI) Young-Kee Kim (Fermilab) Aharon Levy (Tel Aviv) Karlheinz Meier (Heidelberg) **Richard Milner (Bates)** Joachim Mnich (DESY) Steven Myers, (CERN) Tatsuya Nakada (Lausanne, ECFA) Guenther Rosner (Glasgow, NuPECC) Alexander Skrinsky (Novosibirsk) Anthony Thomas (Jlab) Steven Vigdor (BNL) Frank Wilczek (MIT) Ferdinand Willeke (BNL)

Accelerator Design [RR and LR] Oliver Bruening (CERN), **Steering Committee** Oliver Bruening (CERN) John Dainton (Cockcroft) Albert DeRoeck (CERN) Stefano Forte (Milano) Max Klein - chair (Liverpool) Paul Laycock (secretary) (L'pool) Paul Newman (Birmingham) Emmanuelle Perez (CERN) (Wisconsin) Wesley Smith Bernd Surrow (MIT) (KEK) Katsuo Tokushuku Urs Wiedemann (CERN)

Frank Zimmermann (CERN)

John Dainton (CI/Liverpool) Interaction Region and Fwd/Bwd Bernhard Holzer (DESY), Uwe Schneeekloth (DESY), Pierre van Mechelen (Antwerpen) **Detector Design** Peter Kostka (DESY), Rainer Wallny (U Zurich), Alessandro Polini (Bologna) **New Physics at Large Scales** George Azuelos (Montreal) Emmanuelle Perez (CERN), Georg Weiglein (Durham) **Precision QCD and Electroweak** Olaf Behnke (DESY), Paolo Gambino (Torino), Thomas Gehrmann (Zuerich) Claire Gwenlan (Oxford) Physics at High Parton Densities Nestor Armesto (Santiago), Brian Cole (Columbia), Paul Newman (Birmingham), Anna Stasto (MSU)

Today: writing ... for the

Referees of CERN

<u>QCD/electroweak:</u>
Guido Altarelli, Alan Martin, Vladimir Chekelyan
BSM:
Michelangelo Mangano, Gian Giudice, Cristinel Diaconu
<u>eA/low x</u>
Al Mueller, Raju Venugopalan, Michele Arneodo
Detector
Philipp Bloch, Roland Horisberger
Interaction Region Design
Daniel Pitzl, Mike Sullivan
Ring-Ring Design
Kurt Huebner, Sasha Skrinsky, Ferdinand Willeke
Linac-Ring Design
Reinhard Brinkmann, Andy Wolski, Kaoru Yokoya
Energy Recovery
Georg Hoffstatter, Ilan Ben Zvi
<u>Magnets</u>
Neil Marx, Martin Wilson
Installation and Infrastructure
Sylvain Weisz

Expect CDR in spring 2011

Working Group Convenors

LHeC_DRAFT_Timeline

Based on LHC constraints, ep/A programme, series production, civil engineering etc

Year	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
	Protot	yping- t	esting				_				
				Production main components							
Civil en				ngineeri	ng						
								Installa	ation		
										Opera	tion

Variations on timeline:

- ➔ production of main components can overlap with civil engineering
- → Installation can overlap with civil engineering
- → Additional constraints from LHC operation not considered here
- ➔ in any variation, a start by 2020 requires launch of prototyping of key components by 2012

[shown to ECFA 11/2010: mandate to 2012]

Summary

The LHeC has the potential to become an exciting 5th big experiment at the LHC

It needs a new polarised electron/positron beam, and two options are under consideration, a 'Linac' and a ring, with a 'linear' injector.., both promising to deliver O(50) fb⁻¹ thus reaching $Q^2 = 1$ TeV², high x and x=10⁻⁶ in DIS..

The .. MORE/BETTER needed..

THANKS to ..

backup

Heavy Flavours at the LHeC

HERA - 'an unfinished business'

Low x: DGLAP holds though ln1/x is large Saturation not proven High x: would have required much higher luminosity [u/d ?, xg ?] Neutron structure not explored Nuclear structure not explored New concepts introduced, investigation just started: -parton amplitudes (GPD's, proton hologram) -diffractive partons -unintegrated partons Instantons not observed Odderons not found • • • Lepton-quark states not observed

Try to see charm at large x

Even in the most favourable beam energy setting, a search for intrinsic charm at x >=0.1 would require charm tagging down to few degrees...