Large Hadron Electron Collider Progress Report to ECFA

DRAFT 26.11. 7pm CERN

Max Klein

for the LHeC Group

CERN Geneva 27. November 2009

www.lhec.cern.ch

Electron-Nucleon Scattering at the Tera Scale

CERN-ECFA-NuPECC: Preparing a Conceptual Design Report on the LHeC

Recent Developments

2008

September	Divonne workshop; NuPECC Meeting at Glasgow
October	ICFA Seminar at SLAC
November	ECFA Plenary at CERN
December	Convenor's Meeting at CERN
2009	
March	Visit at SLAC [Linac]
April	DIS09 at Madrid: LHeC premeeting, parallel, SAC plenary panel (M.K. arXiv:0908.2877 [hep-ex])
April	PAC09 at Vancouver - Papers, Talk, Proceedings
May	Visit at BNP Novosibirsk [Ring Magnets]
June	Low x / HPD meeting at CERN, pre-Blois
July	Talk and Poster at EPS09 and Lepton-Photon
September	Divonne II (CERN-ECFA-NuPECC Workshop)
October	NuPECC Long Range Planning Workshop

Conceptual Design Report Large Hadron Electron Collider (LHeC) at CERN

DRAFT - February 2009

Extended version by Mid December09

1. Introduction

2. Particle Physics and Deep Inelastic Lepton-Nucleon Scattering

DIS from 1 to 100 GeV
 Status of the Exploration of Nucleon Structure
 Tera Scale Physics

3. The Physics Programme of the LHeC

New Physics at Large Scales
 Precision QCD and Electroweak Physics
 Physics at High Parton Densities

4. Design Considerations

Acceptance and Kinematics
 A Series of Measurements
 Compatibility with the LHC
 Proton, Deuteron and Ion Beams

5. A Ring-Ring Collider Concept

Injector
 Lepton Ring
 Synchrotron Radiation
 Interaction Region
 Installation
 Infrastructure and Cost

6. A Linac-Ring Collider Concept

- 1. Electron and Positron Sources, Polarisation 2. Linac
- 2. Lina
- 3. Interaction Region
- 4. Beam Dump
- 5. Infrastructure and Cost

7. A Detector for the LHeC

- 1. Dimensions and General Requirements
- 2. Coil
- 3. Calorimeters
- 4. Tracking
- 5. Options for the Inner Detector Region
- 6. Detector Simulation and Performance

8. Summary

- Physics Highlights
 Parameters
- 3. Concluding Remarks

Appendix

Tasks for a TDR
 Building and Operating the LHeC

Physics Programme of the LHeC

- + Unfolding completely the **parton structure of the proton** (and of the neutron and photon) and search for sub-substructure down to ten times below HERA's limit
- + Exploration of **new symmetries and the grand unification** of particle interactions with electroweak and strong interaction measurements of unprecedented precision.
- + Search for and exploration of **new, Terascale physics**, in particular for singly produced new states (RPV SUSY, LQ, excited fermions) complementary to the LHC
- + Exploration of **high density matter** [low x physics beyond the expected unitarity limit for the growth of the nucleon gluon density]
- + Unfolding the substructure and **parton dynamics inside nuclei** by an extension of the kinematic range by four orders of magnitude [initial state of the QGP]

Huge amount of studies done and ongoing. Follows one example per point each

Strange and Anti-Strange Quark Distributions

Strong Coupling Constant

Simulation of α_{s} measurement at LHeC

 α_s least known of coupling constants Grand Unification predictions suffer from $\delta \alpha_s$

DIS tends to be lower than world average

LHeC: per mille accuracy indep. of BCDMS. Challenge to experiment and to h.o. QCD

High Precision Electroweak Physics

Precision measurement of weak neutral current couplings (+pdf's): access to new el.weak physics.

40 TeV limits on Contact Interactions and correspondingly on extra dimensions

Search for eq bound states and sub-substructure to 6 10⁻²⁰m – LHeC: the world's new microscope

Cf Divonne 09 for QCD bgd studies + btagging

In MSSM Higgs production is b dominated

First measurements of b at HERA can be turned to precision measurement of b-df.

LHeC: higher fraction of b, larger range, smaller beam spot, better Si detectors

Beauty - MSSM Higgs

Complete determination of nPDFs into nonlinear regime LHeC is bound to discover parton saturation in eA AND ep Determination of the initial state of the Quark Gluon Plasma

Physics – Work in Progress

Various subjects are being completed

Higgs background Single top reconstruction RPVSUSY 4th generation fermions Photoproduction (real and virtual) ...

Closer link to detector (Simulation efforts)

Closer look to LHC-LHeC complementarity

Ring-Ring ep/eA

 $E_e = 10 \dots 80 \text{ GeV.}$ $L_{ep} \sim 10^{33} \text{ cm}^{-2} \text{s}^{-1}$ (100 times HERA)

1/x and $Q^2 \sim 10^{4(2)}$ times larger in eA (ep) than so far

Collaborations of CERN with Cockcroft, DESY, Lausanne, Novosibirsk, SLAC accelerator experts

RR Luminosity and Parameters

$$L = \frac{N_p \gamma}{4\pi e \varepsilon_{pn}} \cdot \frac{I_e}{\sqrt{\beta_{px} \beta_{py}}} = 8.310^{32} \cdot \frac{I_e}{50mA} \frac{m}{\sqrt{\beta_{px} \beta_{pn}}} cm^{-2} s^{-1}$$

$$I_e = 0.35 mA \cdot \frac{P}{MW} \cdot \left(\frac{100 GeV}{E_e}\right)^4$$

Luminosity for e[±]p safely above 10³³cm⁻²s⁻¹

Used "ultimate" LHC beam parameters

Energy limited by injection and rf (<80 GeV)

Power limit set to 100 MW

Small p tuneshift – simultaneous pp and ep

Ultimate	Protons	Electrons	
Parameter			
	$Np=1.7*10^{11}$	Ne=1.4*10 ¹⁰	nb=2808
	Ip=860mA	Ie=71mA	
Optics	βxp=230 cm	βxe=12.7 cm	
	$\beta yp = 60 \ cm$	$\beta ye=7.1 \ cm$	
	exp=0.5 nm rad	exe=9 nm rad	
	εyp=0.5 nm rad	εye=4 nm rad	
Beamsize	$\sigma x=34 \ \mu m$		
	$\sigma y=17 \ \mu m$		
Tuneshift	<i>∆vx=0.00061</i>	∆vx=0.056	
	<i>∆vy=0.00032</i>	∆vy=0.062	
Luminosity	$L=1.03*10^{33}$		

e Ring – Optics

Optics in the arcs

23.7

s(m) [*10**(3)]

FODO optimisation

30

50

40

Dipole Magnets

O-shaped magnet with ferrite core [BNP-CERN]

Accelerator	LEP	LHeC
Cross Section/ cm ²	50 x 50	20 x 10
Magnetic field/ T	0.02-0.11	0.02-0.135
Energy Range/GeV	20-100	10-70
Good Field Area/cm ²	5.9 x 5.9	6 x 3.8
FODO length/m	76	53
Magnet length/m	2 x 34.5	2 x 14.76
segmentation	6 cores	14
Number of magnets	736	488
Weight / kg/m	800	240

Prototype design under way at Novosibirsk, May 2010

Ring – Work in progress

Interaction region design

Installation study

Systematic investigation of clashes with LHC installation and possible ways 'around'

Polarisation

Three LINAC Configurations in Two Tunnels [CERN-SLAC]

LINAC-Ring Parameters

Configuration	60 GeV, pulsed	60 GeV CW ERL	140 GeV pulsed
N _e /bunch/ 10 ⁹ /50ns	4	1.9	2
gradient MV/m	30	13	30
normalised $\epsilon/\mu m$	50	50	100
cryo power/MW	3	20	6
effective beam power/MW	50	40/(1-η _{ERL})	50

Luminosity for ultimate beam

$$L = \frac{1}{4\pi} \cdot \frac{N_p}{\varepsilon_p} \cdot \frac{1}{\beta^*} \cdot \gamma \cdot \frac{I_e}{e}$$
$$\gamma = \frac{E_p}{M_p}, \frac{I_e}{e} = \frac{P}{E_e} = fN_e$$
$$I_e = mA \frac{P/MW}{E_e/GeV}$$

$$N_{p} = 1.7 \cdot 10^{11}, \varepsilon_{p} = 3.8 \mu m, \beta^{*} = 0.2m, \gamma = 7000/0.94$$
$$L = 8 \cdot 10^{31} cm^{-2} s^{-1} \cdot \frac{N_{p} 10^{-11}}{1.7} \cdot \frac{0.2}{\beta^{*}/m} \cdot \frac{P/MW}{E_{e}/GeV}$$

[intend some graphics to do]

Optics and Emittance Growth

LINAC Work in Progress

Muon chambers (fwd,bwd,central)

Coil (r=3m l=11.8m, 3.5T) [Return Fe not drawn, 2 coils w/o return Fe studied]

Central Detector

Pixels Elliptic beam pipe (~3cm - or smaller)

Silicon (fwd/bwd+central)

[Strip or/and Gas on Slimmed Si Pixels] [0.6m radius for 0.03% * pt in 3.5T field]

El.magn. Calo (Pb,Scint. 9-12X₀) Hadronic Calo (Fe/LAr; Cu/Brass-Scint. ~30)

Fwd Detectors

(down to 1°) Silicon Tracker [Pix/Strip/Strixel/Pad Silicon or/and Gas on Slimmed Si Pixels]

Calice (W/Si); dual ReadOut - Elm Calo

FwdHadrCalo: Cu/Brass-Scintillator

Bwd Detectors

(down to 179°)

Silicon Tracker [Pix/Strip/Strixel/Pad Silicon or/and Gas on Slimmed Si Pixels] Cu/Brass-Scintillator, Pb-Scintillator (SpaCal - hadr, elm)

LHeC Detector: version for low x and eA

Extensions in fwd direction (tag p,n,d) and backwards (e, $\!\gamma\!)$ under study.

Scientific Advisory Committee

Guido Altarelli (Rome) Sergio Bertolucci (CERN) Stan Brodsky (SLAC) Allen Caldwell -chair (MPI Munich) Swapan Chattopadhvav (Cockcroft) John Dainton (Liverpool) John Ellis (CERN) Jos Engelen (CERN) Joel Feltesse (Saclav) Lev Lipatov (St.Petersburg) Roland Garoby (CERN) Roland Horisberger (PSI) Young-Kee Kim (Fermilab) Aharon Levy (Tel Aviv) Karlheinz Meier (Heidelberg) Richard Milner (Bates) Joachim Mnich (DESY) Steven Myers, (CERN) Tatsuya Nakada (Lausanne, ECFA) Guenter Rosner (Glasgow, NuPECC) Alexander Skrinsky (Novosibirsk) Anthony Thomas (Jlab) Steven Vigdor (BNL) Frank Wilczek (MIT) Ferdinand Willeke (BNL)

Steering Committee

Oliver Bruening	(CERN)
John Dainton	(Cockcroft)
Albert DeRoeck	(CERN)
Stefano Forte	(Milano)
Max Klein - chair	(Liverpool)
Paul Newman (B	Birmingham)
Emmanuelle Perez	z (CERN)
Wesley Smith	(Wisconsin)
Bernd Surrow	(MIT)
Katsuo Tokushuku	(KEK)
Urs Wiedemann	(CERN)

Completion of the CDR

Steps to go in 2010

- 1. Finalise physics and technical studies
- 2. DIS10 Firenze [April] and IPACC Japan [May]
- 3. Draft CDR June 2010
- 4. Divonne III Updates and Discussion with referees
- 5. November 10: Final report to ECFA
- 6. Submit CDR to CERN, ECFA, NuPECC

LHeC relies on expertise and enthusiasm of many colleagues and support by ECFA, NuPECC and CERN

LHeC barack 561

Working Group Convenors

Accelerator Design [RR and LR] Oliver Bruening (CERN), John Dainton (CI/Liverpool) Interaction Region and Fwd/Bwd Bernhard Holzer (DESY), Uwe Schneeekloth (DESY), Pierre van Mechelen (Antwerpen) **Detector Design** Peter Kostka (DESY), Rainer Wallny (UCLA), Alessandro Polini (Bologna) **New Physics at Large Scales** George Azuelos (Montreal) Emmanuelle Perez (CERN), Georg Weiglein (Durham) Precision QCD and Electroweak Olaf Behnke (DESY), Paolo Gambino (Torino), Thomas Gehrmann (Zuerich) Claire Gwenlan (Oxford) **Physics at High Parton Densities** Nestor Armesto (Santiago), Brian Cole (Columbia), Paul Newman (Birmingham), Anna Stasto (PennState)

Backup slides

Dipole Magnet Comparison

Accelerator	LEP	LHeC
Cross Section/ cm ²	50 x 50	20 x 10
Magnetic field/ T	0.02-0.11	0.02-0.135
Energy Range/GeV	20-100	10-70
Good Field Area/cm ²	5.9 x 5.9	6 x 3.8
FODO length/m	76	53
Magnet length/m	2 x 34.5	2 x 14.76
segmentation	6 cores	14
Number of magnets	736	488
Weight / kg/m	800	240

Quark Gluon Plasma

Landau 1953. **RHIC**: QGP strongly coupled plasma with liquid behaviour instead of weakly interacting gas of partons

M.Tannenbaum, Rept.Prog.Phys 65 (2006) 2005

Collective flow in non-central collisions anisotropic

Anisotropy proportional to 1/viscosity of fireball, dominantly elliptic ("v₂" coefficient)

QGP most perfect liquid – smallest shear viscosity/entropy

Conclusions depend on initial fireball eccentricity

eA to measure the initial conditions of QGP.

Related to cold atoms and to superstring theory [AdS/CFT]

Quark-Gluon Dynamics - Diffraction and HFS (fwd jets)

Crucial measurements for QCD, and for QCD at the LHC

Electron-Boson Resonances : excited electrons

Determination of LQ properties in single production: e.g. Fermion Number

In pp: look at signal separately when resonance is formed by $(e^+ + jet)$ and $(e^- + jet)$:

Sign of the asymmetry gives F, but could be statistically limited at LHC. (*)

Easier in ep ! Just look at the signal with incident e+ and incident e-, build the asymmetry between $\sigma(e_{in}^{+})$ and $\sigma(e_{in}^{-})$.

If LHC observes a LQ-like resonance, M < 1 - 1.5 TeV, LHeC could determine F if λ not too small.

(*) First rough study done for the 2006 paper. Need to check / refine with a full analysis of signal and backgrounds.

Quark-Gluon Dynamics (saturation, GPDs) - ep

