Kinematics

Basics

Reactions and Phase Space Units and Dimensions
Kinematics of 2-2 Reaction
3-Body Decay
Cross Sections
Feynman Rules
Deep Inelastic ep Scattering
Drell-Yan pp Scattering

Exercises

Backup

Calculation of a Scattering Cross Section Proton Structure

Kajantie, Byckling: Kinematics, 1975, about Van Schlippe: relativistic Kinematics, 2002 - online

Max Klein, Lectures for Postgraduates at the University of Liverpool
November 3, 2021
phase space
$a+b \rightarrow 1+2+\cdots n$
$p_{a}+p_{b} \rightarrow p_{1}+\cdots \quad p_{n}$

$$
p=(E, \vec{P}), E^{2}=M^{2}+\vec{P}^{2}, c=1 .
$$

$\left.\begin{array}{l}E_{a}+E_{b}=\sum_{i=1}^{n} E_{i} \\ \vec{p}_{a}+\vec{p}_{b}=\sum_{1}^{n} \vec{p}_{i}\end{array}\right] 4$ conditions.
momentum space of $\left\{\vec{p}_{c}\right\}: 3 n$
phase space: $3 n-4$ dim. surface
$\begin{array}{ll}\text { Matrix demean: }\left\langle\vec{p}_{i} \cdots \vec{p}_{n}\right| A\left|\vec{p}_{a} \vec{p}_{b}\right\rangle=A\left(\vec{p}_{i}\right) & \frac{\text { differatial cross section }[a+b \rightarrow 1 \cdots n]}{\frac{\text { do rn }}{d x}=\frac{1}{\phi} \int \prod_{1}^{n} \frac{d^{3} p_{i}}{2 E_{i}} \delta^{4}\left(p_{a}+p_{b}-\sum p_{i}\right) \delta\left(x-x\left(\overrightarrow{p_{i}}\right) \mid \cdot T\left(\vec{p}_{i}\right) .\right.} \\ \text { define } T=\left|A\left(\vec{p}_{i}\right)\right|^{2} . & \end{array}$
distribution: normalised differation cross section

$$
W(x)=\frac{1}{\sigma} \frac{d \sigma}{d x} .
$$

Units

Convention in particle physics:

$h=$ one unit of action (ML²/T), c = one unit of velocity (L/T) mass (m), momentum (mc), energy $\left(\mathrm{mc}^{2}\right)$ are of dimension [GeV] length $(\mathrm{h} / \mathrm{mc})$, time $\left(\mathrm{h} / \mathrm{mc}^{2}\right)$ are of dimension $\left[\mathrm{GeV}^{-1}\right]$

Conventional Mass, Length, Time $\hbar=c=1$ Energy Units	$\hbar=c=1$ Units	Actual Dimension
Conversion Factor	GeV	$\frac{\mathrm{GeV}}{c^{2}}$
$1 \mathrm{~kg}=5.61 \times 10^{26} \mathrm{GeV}$	$\frac{\hbar c}{\mathrm{GeV}}$	
$1 \mathrm{~m}=5.07 \times 10^{15} \mathrm{GeV}^{-1}$	GeV^{-1}	$\frac{\hbar}{\mathrm{GeV}}$
$1 \mathrm{sec}=1.52 \times 10^{24} \mathrm{GeV}^{-1}$	GeV^{-1}	$(\hbar c)^{1 / 2}$
$e=\sqrt{4 \pi \alpha}$	-	

Units and Dimensions

$$
\begin{aligned}
& \hbar=6.6 \cdot 10^{-16} \mathrm{eVs} \\
& c=3 \cdot 10^{8} \mathrm{~m} / \mathrm{s} \\
& \Delta x=\frac{\hbar c}{E}=0.2 \mathrm{fm} \\
& f \cdot E=1 \mathrm{Gw} . \\
& L A \mathrm{~m}=5 \cdot 10^{15} \frac{1}{\mathrm{Gev}} \\
& \frac{1}{\mathrm{GNv}^{2}}=0.04 \cdot 10^{-30} \mathrm{~m}^{2}=0.4 \mathrm{mb} \\
& 1 \mathrm{bam}=10^{-28} \mathrm{~m}^{2} \\
& m e c^{2}=0.51 \cdot 10^{-3} \mathrm{Gw} . \\
& \hbar c=2 \cdot 10^{-16} \mathrm{~m} \mathrm{Gev} .
\end{aligned}
$$

Dimension Counting. Example: dey \rightarrow dey Thompson Scattering

$$
\begin{aligned}
& \sigma=\frac{2}{3} \alpha^{2} \cdot 4 \pi R_{e}^{2} \\
& R_{e}=\frac{\hbar}{m_{e} c} \\
& \alpha=14 \pi / e^{2}=\frac{1}{137} \\
& \sigma=\frac{8 \pi}{3} \alpha^{2} \frac{\hbar^{2}}{m_{e}^{2} c^{2}} .
\end{aligned}
$$

$$
\begin{aligned}
& \sigma=\frac{8 \pi}{3}\left(\frac{\alpha}{m_{e}}\right)^{2} \hbar^{a} c^{b} \\
& a=+2 \quad b=-2 . \\
& \sigma=\frac{8 \pi}{3} \alpha^{2} \frac{(\hbar c)^{2}}{\left(m_{e} c^{2}\right)^{2}} \quad \frac{\left[m(c o]^{2}\right.}{[(\sigma \omega]]^{2}}=m^{2} \\
& \sigma=\frac{8 \pi}{3} \alpha^{2}\left(\frac{\hbar}{m_{e} c}\right)^{2} .
\end{aligned}
$$

in $P P T=1, C=1$

$$
L_{\sigma}=\frac{8 \pi}{3}\left(\frac{\alpha}{\mathrm{me}}\right)^{2} .
$$

$$
\rightarrow \sigma=\text { ? barn }
$$

$\mathrm{R}_{\mathrm{e}}=$ Compton wavelength of the electron

Units and Dimensions

$$
\begin{aligned}
& \hbar=6.6 \cdot 10^{-16} \mathrm{eVs} \\
& c=3 \cdot 10^{8} \mathrm{~m} / \mathrm{s} \\
& \Delta x=\frac{\hbar c}{E}=0.2 \mathrm{fm} \\
& f \cdot E=1 \mathrm{Gw} . \\
& L A \mathrm{~m}=5 \cdot 10^{15} \frac{1}{\mathrm{Gev}} \\
& \frac{1}{\mathrm{Gev}^{2}}=0.04 \cdot 10^{-30} \mathrm{~m}^{2}=0.4 \mathrm{mb} \\
& 1 \mathrm{bam}=10^{-28} \mathrm{~m}^{2} \\
& m e c^{2}=0.51 \cdot 10^{-3} \mathrm{Gw} . \\
& \hbar c=2 \cdot 10^{-16} \mathrm{~m} \mathrm{Gev} .
\end{aligned}
$$

Dimension Counting. Example: dey \rightarrow dey Thompson Scattering

$$
\begin{aligned}
& \sigma=\frac{2}{3} \alpha^{2} \cdot 4 \pi R_{e}^{2} \\
& R_{e}=\frac{\hbar}{m_{e} c} \\
& \alpha=4 \pi^{-1} e^{2}=\frac{1}{137} \\
& \sigma=\frac{8 \pi}{3} \alpha^{2} \frac{\hbar^{2}}{m_{e}^{2} c^{2}}
\end{aligned}
$$

$$
\text { in } P P T=1, c=1
$$

$$
L_{\sigma}=\frac{8 \pi}{3}\left(\frac{\alpha}{m e}\right)^{2} .
$$

$$
\begin{aligned}
& \left(210^{-16} \mathrm{~m} / 0.510^{-3}\right)^{2}=1610^{-26} \mathrm{~m}^{2} \\
& 4 \pi \alpha^{2}=0.00067 \\
& \rightarrow 4 \pi \alpha^{2} R_{e}=1 \text { barn } \\
& \rightarrow \sigma=2 / 3 \text { barn }
\end{aligned}
$$

$R_{e}=$ Compton wavelength of the electron [often $\mathrm{h} / \mathrm{mc}: 2.410^{-12} \mathrm{~m}$]

barn

The etymology of the unit barn is whimsical: during
Manhattan Project research on the atomic bomb during World War II, American physicists at Purdue University needed a secretive unit to describe the approximate cross sectional area presented by the typical nucleus ($10^{-28} \mathrm{~m}^{2}$) and decided on "barn". This was particularly applicable because they considered this a large target for particle accelerators that needed to have direct strikes on nuclei and the American idiom "couldn't hit the broad side of a barn" ${ }^{[2]}$ refers to someone whose aim is terrible. Initially they hoped the name would obscure any reference to the study of nuclear structure; eventually, the word became a standard unit in nuclear and particle physics.

Lifetime

The lifetime of the muon is given as $\tau_{\mu}=192 \pi^{3} / \mathrm{G}_{\mathrm{F}}{ }^{2} \mathrm{M}_{\mu}{ }^{5}$.
$\left(\mathrm{M}_{\mu}=0.11 \mathrm{GeV}, \mathrm{G}=1.1710^{-5} \mathrm{GeV}^{-2}\right)$. Calculate τ_{μ} in seconds. How large is the tau lifetime $\left(\mathrm{M}_{\tau}=1.78 \mathrm{GeV}\right)$?

Decay width

$$
\begin{aligned}
& \Gamma=\frac{\hbar}{\tau} \quad \text { lifetime at rest } \\
& \Gamma=\frac{1}{\tau} \\
& \Gamma=\sum_{f=1}^{n} \Gamma_{f} \quad \mathrm{n} \text { decay channels }
\end{aligned}
$$

Branching ratio

$$
\begin{aligned}
b_{f} & =\frac{\Gamma_{f}}{\Gamma}=\frac{\tau}{\tau_{f}} \\
\mu^{-} \rightarrow v_{\mu} e^{-} \overline{v_{e}} & \mathbf{b}=100 \% \\
\tau^{-} \rightarrow v_{\tau} e^{-} \overline{v_{e}} & \mathbf{b}=17 \%
\end{aligned}
$$

Lifetime

long lived: > 10-16s
Measure decay lengths with high resolution detectors
short lived: determine width of resonant state from invariant mass distribution of decay particle momenta \rightarrow lieftime lifetime $\left(\mathrm{M}_{\tau}=1.78 \mathrm{GeV}\right)$?
$\mu \rightarrow v_{\mu} v_{e}$ e. This decay is nearly 100%, there is also the decay $+\gamma$ to 1.4%.
It is required to restore the dimensions as was explained in lecture 1. Here
$\tau_{\mu}=\frac{192 \pi^{3}}{G_{F}^{2} M_{\mu}^{5}} h^{1} c^{0}$
should be \hbar in the equation
since $[\mathrm{h}]=[\mathrm{eVs}]$.
With the value of $\hbar=6.610^{-16} \mathrm{eV}$ s one finds [\hbar is given in the PDG list of constants]
$\tau_{\mu}=2.14 \mathbf{1 0}^{-6} \mathbf{s} \quad$ (the PDG value is 2.19) in a then straightforward calculation.

τ_{τ}

Mandelstam Variables
$\frac{s, t, u}{\text { stanley Mandestam } 1928-2016}$

ep \rightarrow ep, similar for $p p \rightarrow p p$ to.

$$
\begin{aligned}
& S=(k+p)^{2}=\left(k^{\prime}+p^{\prime}\right)^{2}=(\text { ans energy })^{2} \\
& S=k^{2}+p^{2}+2 k_{0} p_{0}-2 \vec{k} \vec{p} \quad k^{2}=M_{e}^{2}, p^{2}=M_{p}^{2}=p_{0}^{2}-\vec{p}^{2}
\end{aligned}
$$

$$
S=2 E 0 E_{p}(1-\underbrace{\cos \theta_{0 \cdot i j}}_{=-1 \text { for head on collisions }}) \quad \text { large moment }
$$

$$
s \simeq 4 E e E_{p}
$$

$$
t=\left(k-k^{\prime}\right)^{2}=\left(p-p^{\prime}\right)^{2}=(4 \text { momentum transfe })^{2}
$$

$$
u=\left(p-k^{\prime}\right)^{2}=\left(k-p^{\prime}\right)^{2}
$$

$$
s+t+u=(k+p)^{2}+\left(k-k^{\prime}\right)^{2}+(p-k)^{\prime}=f\left(m_{e}, m_{p}\right)=?
$$

$s+t+u=$? for identical masses

Two-body Decay
in facet.

$$
\begin{aligned}
& P^{0} p_{1} \quad p=(M, \vec{p}) \quad \text { at rest. } \\
& p_{1}=0=\left(E_{1}, \overrightarrow{p_{1}}\right) \quad p_{2}=\left(E_{2}, \overrightarrow{p_{2}}\right) .
\end{aligned}
$$

$p=\rho_{1}+p_{2} \rightarrow \vec{p}_{1}=-\vec{p}_{2}=\vec{p}$ beatoback.

$$
\begin{aligned}
& E_{1}+E_{2}=\sqrt{m_{1}^{2}+p^{2}}+\sqrt{m_{2}^{2}+p^{2}}=M . \\
\Leftrightarrow & p=\frac{1}{2 M} \sqrt{\left[M^{2}-\left(m_{-}-m_{2}\right)^{2}\right]\left[M^{2}-\left(m_{1}+m_{2}\right)^{2}\right]}
\end{aligned}
$$

$M \geqslant m_{1}+m_{2}$. if $m_{1}=m_{2}$:

$$
p=\frac{1}{2} \sqrt{m^{2}-4 m^{2}}
$$

$$
E_{1}=\frac{1}{2 M}\left(M^{2}+m_{n}^{2}-m_{2}^{2}\right)=\frac{M}{2} \text { for } m_{1}=m_{2} .
$$

$$
P \underset{P_{P_{2}}}{P=(E \mid c, \vec{P})} \underset{C_{M S}}{P_{1}}{ }_{c}^{P_{1}^{*}}
$$

$$
=\left(E / C, P_{1}, P_{z}\right) \text {. }
$$

Loratz transformation: $\vec{f}=M \cdot \vec{v} \quad$, use $z \cdot a x i s$.

Lab.

$$
\begin{aligned}
& \binom{c t^{*}}{z^{*}}=\left(\begin{array}{c}
\gamma-\beta \gamma \\
-\beta \gamma \\
\gamma
\end{array}\right) \cdot\binom{c t}{z} \Leftrightarrow\binom{E^{*} / c}{p_{z}^{*}}=\underbrace{\left(\begin{array}{c}
\gamma-\beta \gamma \\
-\rho \gamma \\
\hline
\end{array}\right)}_{L}\binom{E / c}{P_{z}}, \beta=\frac{v}{c} \\
& \binom{E / c}{P_{z}}=\left(\begin{array}{cc}
\gamma & \beta \gamma \\
\beta \gamma & \gamma
\end{array}\right) \perp\binom{E^{*} / c}{\operatorname{det}(L)} \quad L \quad \operatorname{det}(L)=\gamma^{2}-\beta^{*} \gamma^{2}=1! \\
& \rightarrow E=\gamma E^{*}+v \gamma p_{z}^{*}=\gamma\left(E^{*}+v p_{z}^{*}\right) \\
& p_{z}=\gamma p_{z}^{*}+\gamma v E^{*}=\gamma\left(p_{z}^{*}+v E^{*}\right)
\end{aligned}
$$

Dalitz Plot (kinematics of 3 -body decay)

$$
\mathrm{J} / \psi \rightarrow \pi^{0} \pi^{0} \gamma
$$

Figure 46.3: Dalitz plot for a three-body final state. In this example, the state is $\pi^{+} \bar{K}^{0} p$ at 3 GeV . Four-momentum conservation restricts events to the shaded region.

Richard Henry Dalitz (1925-2006)

Cambridge
 Bristol
 Birmingham
 Cornell
 Chicago
 Oxford

Dalitz Plot

$$
s_{2 \pm}=m_{1}^{2}+m_{3}^{2}+\frac{1}{2 s_{1}}\left[\left(s-s_{1}-m_{1}^{2}\right)\left(s_{1}-m_{2}^{2}+m_{3}^{2}\right) \pm \lambda^{1 / 2}\left(s_{1}, s, m_{1}^{2}\right) \cdot \lambda^{1 / 2}\left(s_{1}, m_{2}^{2}, m_{3}^{2}\right)\right.
$$

Figure 46.3: Dalitz plot for a three-body final state. In this example, the state is $\pi^{+} \bar{K}^{0} p$ at 3 GeV . Four-momentum conservation restricts events to the shaded region.

$$
\left|\vec{p}_{1}\right|_{\text {max }}=\frac{1}{2 M} \sqrt{\left[M^{2}-\left(m_{1}+m_{2}+m_{3}\right)^{2}\right]\left[M^{2}-\left(m_{2}+m_{3}-m_{1}\right)^{2}\right]}
$$

\max of $|\vec{p}|$ in the rest framed the mater patine.

This formula provides the maximum (minimum) of s_{2} in the $s_{2}-s_{1}$ plane.
Similar for $\mathrm{S}_{1}-\mathrm{S}_{3}$ plane which is illustrated left

$$
S_{1}=\left(p_{2}+p_{3}\right)^{2}=m_{23}^{2} \quad!
$$

Example: Calculation of Elastic ep Scattering Kinematics

$E=E(e)$

$$
E^{\prime}=f(E, M, v)
$$

$$
\begin{aligned}
& \rightarrow=p_{p}^{2} \\
& \left(p_{e}+p_{p}\right)^{2}=p_{e}^{2}+2 p_{e} p_{p}+p_{p}^{2} \\
& \left.p_{e}=\left(E, \overrightarrow{p_{e}}\right), p_{e}^{2}=0: E=\mid p_{e}\right] \\
& p_{p}=\left(p_{0}, \vec{p}\right)=(M, \overrightarrow{0}) . \\
& 2 p_{e} p_{p}=2 E M . \\
& \left(p_{e}+p_{p}\right)^{2}=2 E M+M^{2} .
\end{aligned}
$$

$$
\begin{gathered}
\left(p_{e}^{\prime}+p_{p}^{\prime}\right)^{2}=2 E^{\prime} E_{p}^{\prime}-2 \vec{p}_{\rho} \vec{p}_{p}^{\prime}+y^{2}=2 E M+y^{2}=\left(p_{e}+p_{p}\right)^{2} \\
E M=E^{\prime} E_{p}^{\prime}-\vec{p}_{e}^{\prime} \vec{p}_{p}^{\prime}
\end{gathered}
$$

- energy conservation: $E_{p}^{\prime}=E+M-E^{\prime}$
- 3 momentum conservation: $\vec{P}_{p}^{\prime}=\overrightarrow{P_{e}}-\overrightarrow{P_{e}}$

$$
\begin{aligned}
& E M=E^{\prime}\left(E+M-E^{\prime}\right)+\underbrace{\left(\vec{P} / E^{\prime}\right.}_{E^{\prime \prime}})^{2}-\underbrace{|\vec{P}| \overrightarrow{P e} \mid}_{E E^{\prime}} \mid \cos v \\
& E M=E^{\prime}(E+M-E \cos v) \\
& E^{\prime}=E \cdot \frac{1}{1+\frac{E}{M}(1-\cos v)}
\end{aligned}
$$

Deep Inelastic ep Scattering

$$
\begin{array}{ll}
q=\left(k-k^{\prime}\right) & \text { 4-momentum transfer } \\
(x P+q)^{2}=m^{2}, P^{2}=M_{p}^{2} & \text { Conservation of 4-momentum } \\
Q^{2}=-q^{2}>0 & \\
\text { if }: Q^{2} \gg x^{2} M_{p}^{2}, m^{2}: & \text { Deep inelastic scattering } \\
q^{2}+2 x P q=0: & \text { Bjorken } \mathrm{x} \\
x=\frac{Q^{2}}{2 P q} &
\end{array}
$$

"fixed target":

$$
\begin{array}{ll}
P=\left(M_{p}, 0,0,0\right) & \text { Proton at rest } \\
2 P q=2 M_{p}\left(E-E^{\prime}\right) & \text { Energy transfer } \\
=2 M_{p} E \cdot \frac{v}{E} \equiv s \cdot y & \begin{array}{l}
\text { y=relative E transfer } \\
=\text { inelasticity }
\end{array}
\end{array}
$$

$$
Q^{2}=s x y \leq s
$$

$$
s=2 M_{p} E
$$

cms energy squared

Calculate the cms energy squared for a head-on ep collider of beam energies E_{e}, E_{p}

Deep Inelastic ep Scattering

$$
q=\left(k-k^{\prime}\right)
$$

$$
(x P+q)^{2}=m^{2}, P^{2}=M_{p}^{2}
$$

$$
Q^{2}=-q^{2}>0
$$

$$
\text { if }: Q^{2} \gg x^{2} M_{p}^{2}, m^{2}:
$$

$$
q^{2}+2 x P q=0
$$

$$
x=\frac{Q^{2}}{2 P q}
$$

LHeC: arXiv:2007.14491
"fixed target":

$$
\begin{array}{ll}
P=\left(M_{p}, 0,0,0\right) & \text { Proton at rest } \\
2 P q=2 M_{p}\left(E-E^{\prime}\right) & \text { Energy transfer } \\
=2 M_{p} E \cdot \frac{v}{E} \equiv s \cdot y & \begin{array}{l}
\mathrm{y}=\text { relative } \mathrm{E} \text { transfer } \\
=\text { inelasticity }
\end{array}
\end{array}
$$

$$
Q^{2}=s x y \leq s
$$

$$
s=2 M_{p} E
$$

cms energy squared

$$
\begin{gathered}
s=(k+P)^{2}=m e^{2}+M p^{2}+2 k P \\
\approx 2\left(E e E p-|\overrightarrow{p e}||\vec{P}| \cos (\vartheta)=4 E_{e} E_{p}\right.
\end{gathered}
$$

Note that the 3-momentum in absolute equals the energy if the mass is negligible

Example: LHeC: $s=4 \times 60 \times 7000 \mathrm{GeV}^{2} \rightarrow$ an equivalent fixed target electron beam would need to have 900 TeV Quarks were discovered with a 2 mile LINAC of 20 GeV . The LHeC equivalent would be 90000 miles long.

Quantum Electrodynamics [QED]

Diagrams
Rules
Integrals
"QED and the men who made it", by S.Schweber, Princeton 1994
Lamb shift: 1947
Renormalisation
Sin-Itiro Tomonaga, Julian Schwinger, Richard Feynman: Nobel 1965

Feynman Diagrams

$e^{-} y \rightarrow e$
$e^{+} \rightarrow e^{+} \gamma$

cf Feynman lectures (video tapes, New Zealand) An introduction to QED by the master, you can listen to

Electron is a line, incoming/outgoing
Photon is a wiggly line
Emission of photon determines a vertex.
Conservation of charge and energy-momentum at the vertex
(yields δ-functions for the sum of 4-momenta)
Probability of this emission is proportional to charge $e=\sqrt{ }(4 \pi \alpha)$

In QED, as in other quantum field theories, we can use the little pictures invented by my colleague Richard Feynman, which are supposed to give the illusion of understanding what is going on in quantum field theory. M.Gell-Mann
cited in "Particles and Nuclei", B.Povh et al.

Feynman Rules

$T \propto u_{e}(k) \gamma_{\mu} \overline{u_{e}}\left(k^{\prime}\right) \cdot \frac{e^{2}}{\left(k-k^{\prime}\right)^{2}} \cdot u_{q}(p) \gamma^{\mu} \overline{u_{q}}\left(p^{\prime}\right)$

Feynman diagrams lead to straightforward calculation of scattering amplitudes. This requires also to sum over incoming and average over final state spin states. The cross section is obtained from the square of the (complex) amplitude (TT*)
taking into account phase space factors.

DIS Cross Section

Electroweak NC interactions in inclusive $e^{ \pm} p$ DIS are mediated by exchange of a virtual photon (γ) or a Z boson in the t-channel, while CC DIS is mediated exclusively by W-boson exchange
 as a purely weak process. Inclusive NC DIS cross sections are expressed in terms of generalised structure functions $\tilde{F}_{2}^{ \pm}, x \tilde{F}_{3}^{ \pm}$and $\tilde{F}_{\mathrm{L}}^{ \pm}$at EW leading order (LO) as

$$
\begin{equation*}
\frac{d^{2} \sigma^{\mathrm{NC}}\left(e^{ \pm} p\right)}{d x d Q^{2}}=\frac{2 \pi \alpha^{2}}{x Q^{4}}\left[Y_{+} \tilde{F}_{2}^{ \pm}\left(x, Q^{2}\right) \mp Y_{-} x \tilde{F}_{3}^{ \pm}\left(x, Q^{2}\right)-y^{2} \tilde{F}_{L}^{ \pm}\left(x, Q^{2}\right)\right] \tag{5.1}
\end{equation*}
$$

where α denotes the fine structure constant. The terms $Y_{ \pm}=1 \pm(1-y)^{2}$, with $y=Q^{2} / s x$, describe the helicity dependence of the process. The generalised structure functions are separated into contributions from pure γ - and Z-exchange and their interference $[96,134]$:

Neutral Current:

Photon and Z exchange

Parton Distributions

(PDFs)
$x q\left(x, Q^{2}\right)$
x dependence
from experiment

$$
\begin{align*}
& \tilde{F}_{2}^{ \pm}=F_{2}-\left(g_{V}^{e} \pm P_{e} g_{A}^{e}\right) \kappa_{Z} F_{2}^{\gamma Z}+\left[\left(g_{V}^{e} g_{V}^{e}+g_{A}^{e} g_{A}^{e}\right) \pm 2 P_{e} g_{V}^{e} g_{A}^{e}\right] \kappa_{Z}^{2} F_{2}^{Z} \tag{5.2}\\
& \tilde{F}_{3}^{ \pm}=-\left(g_{A}^{e} \pm P_{e} g_{V}^{e}\right) \kappa_{Z} F_{3}^{\gamma Z}+\left[2 g_{V}^{e} g_{A}^{e} \pm P_{e}\left(g_{V}^{e} g_{V}^{e}+g_{A}^{e} g_{A}^{e}\right)\right] \kappa_{Z}^{2} F_{3}^{Z} \tag{5.3}
\end{align*}
$$

Similar expressions hold for \tilde{F}_{L}. In the naive quark-parton model, which corresponds to the LO QCD approximation, the structure functions are calculated as

$$
\begin{align*}
{\left[F_{2}, F_{2}^{\gamma Z}, F_{2}^{Z}\right] } & =x \sum_{q}\left[Q_{q}^{2}, 2 Q_{q} g_{V}^{q}, g_{V}^{q} g_{V}^{q}+g_{A}^{q} g_{A}^{q}\right]\{q+\bar{q}\}, \tag{5.4}\\
x\left[F_{3}^{\gamma Z}, F_{3}^{Z}\right] & =x \sum_{q}\left[2 Q_{q} g_{A}^{q}, 2 g_{V}^{q} g_{A}^{q}\right]\{q-\bar{q}\}, \tag{5.5}
\end{align*}
$$

representing two independent combinations of the quark and anti-quark momentum distributions, $x q$ and $x \bar{q}$. In Eq. (5.3), the quantities g_{V}^{f} and g_{A}^{f} stand for the vector and axial-vector couplings of a fermion ($f=e$ or $f=q$ for electron or quark) to the Z boson, and the coefficient κ_{Z} accounts for the Z-boson propagator including the normalisation of the weak couplings. Both

Photon exchange

$$
\sim 1 / Q^{4} F_{2}
$$

Drell-Yan Scattering

$$
p_{1}=\left(E_{1}, \overrightarrow{0}_{\perp}, E_{1}\right)
$$

$$
P_{2}=\left(E_{2}, \vec{o}_{1}, E_{2}\right)
$$

$$
E_{1,2}=x_{1,2} \cdot E_{p}
$$

$$
\begin{aligned}
& x_{1} \cdot x_{2}=\frac{M^{2}}{s}=\tau, s=4 E_{p}^{2} \\
& y=\frac{1}{2} \ln \frac{E+P_{2}}{E-P_{z}}=\frac{1}{2} \ln \left[\frac{E_{1}+E_{2}+\left(E_{1}-E_{2}\right)}{E_{1}+E_{2}-\left(E_{1}-E_{2}\right)}\right] \\
& y=\frac{1}{2} \ln \left[\frac{x_{1}+x_{2}+x_{1}-x_{2}}{x_{1}+x_{2}-x_{1}+x_{2}}\right] \quad y=\frac{1}{2} \ln \left(\frac{x_{1}}{x_{2}}\right) \\
& x_{1} \cdot x_{2}=\tau, e^{y}=\sqrt{\frac{x_{1}}{x_{2}}}=x_{1} \cdot \sqrt{\tau} \\
& x_{1}=\frac{M}{\sqrt{s}} e^{y} \quad x_{2}=\frac{M}{\sqrt{s}} e^{-y}
\end{aligned}
$$

$$
\left(p_{1}+p_{2}\right)^{2}=p^{2}=M^{2}
$$

$y=0$: central production, $M=M_{H i j g s}=125 \mathrm{FeN}$

$$
2 E_{1} E_{2}-2 E_{1} E_{2} \cos \theta
$$

$$
\sqrt{5}=13 \mathrm{TeV}\left(\operatorname{H}(\operatorname{in} 2016): x_{1}=x_{2}=0.01\right.
$$

$$
=4 E_{1} E_{2}=4 x_{1} x_{2} \cdot E_{P}^{2}=x_{1} x_{2} \cdot s=M^{2} \quad \eta \text { ory 2.5: } \eta \simeq 10^{\circ}: x \leq 10^{-3} \text { to } x \simeq 0.1
$$

Rapidity
L transformation

$$
\begin{aligned}
& E=\gamma m c^{2} \quad\left[=\gamma_{m}\right] \\
& |\vec{p}|=\beta \gamma m c \quad[=\beta \gamma m] \\
& \beta=\frac{v}{c} . \quad y \vdots \operatorname{artanh}(\beta) \\
& \cosh y=\frac{1}{\sqrt{1-\beta^{2}}}=\gamma \\
& \sinh y=\frac{\beta}{\sqrt{1-\beta^{2}}}=\beta \gamma . \\
& G E=m \cdot \cosh y,|\vec{p}|=m \sinh y \\
& \left\{\operatorname{artanh} x=\frac{1}{2} \ln \frac{1+x}{1-x}\right\} \\
& \frac{|\vec{E}|}{}=\tanh y \rightarrow y=\frac{1}{2} \ln \frac{E+|\vec{p}|}{E-|\vec{p}|}
\end{aligned}
$$

CMS: $E_{\text {CMS }}=\sqrt{S}, P_{z}=0 ; E^{*}=\gamma \sqrt{S}, p_{z}^{\frac{*}{2}}=\beta \gamma \sqrt{s} \Rightarrow y=\frac{1}{2} \ln \frac{17}{1-\beta}$.
psendorapididy
Mass $\simeq 0: E=E, \rho_{2}=E \cdot \cos \vartheta$

$$
\begin{aligned}
& \eta=y(m=0)=\frac{1}{2} \ln \underbrace{\left(\frac{1+\cos \theta}{1-\cos \theta}\right)}_{=\left(\frac{1}{\left.\ln \theta^{2} / 2\right)^{2}}\right.} . \\
& \eta=-\ln \tan \frac{2}{2} \\
&
\end{aligned}
$$

Drell Yan Cross Section

To leading order, the double differential Drell-Yan scattering cross section [3] for the neutral current (NC) reaction $p p \rightarrow(Z / \gamma) X \rightarrow e^{+} e^{-} X$ and the charged current (CC) reaction $p p \rightarrow W^{ \pm} X \rightarrow e^{ \pm} v_{e}\left(\bar{v}_{e}\right) X$, can be written as

$$
\frac{d^{2} \sigma}{d M d y}=\frac{4 \pi \alpha^{2}(M)}{9} \cdot 2 M \cdot P(M) \cdot \Phi\left(x_{1}, x_{2}, M^{2}\right)
$$

Photon exchange
(1) $\sim 1 / M^{4} F_{y}$

Here M is the mass of the $e^{+} e^{-}$and $e^{+} v$ and $e^{-} \bar{v}$ systems for the NC and CC process, respectively, and y is the boson rapidity. The cross section implicitly depends on the Bjorken x values of the incoming quark q and its anti-quark \bar{q}, which are related to the rapidity y as

$$
\begin{equation*}
x_{1}=\sqrt{\tau} e^{y} \quad x_{2}=\sqrt{\tau} e^{-y} \quad \tau=\frac{M^{2}}{s} \quad s=4 E_{p}^{2} \tag{2}
\end{equation*}
$$

For the NC process, the cross section is a sum of a contribution from photon and Z exchange as well as an interference of them. In the case of photon exchange, the propagator term $P(M)$ and the parton distribution term Φ are given by

$$
\begin{gather*}
P_{\gamma}(M)=\frac{1}{M^{4}} \quad \Phi_{\gamma}=\sum_{q} e_{q}^{2} F_{q \bar{q}} \tag{3}\\
F_{q \bar{q}}=x_{1} x_{2} \cdot\left[q\left(x_{1}, M^{2}\right) \bar{q}\left(x_{2}, M^{2}\right)+\bar{q}\left(x_{1}, M^{2}\right) q\left(x_{2}, M^{2}\right)\right] . \tag{4}
\end{gather*}
$$

Drell Yan Cross Section

The corresponding formulae for the γZ interference term read as

$$
\begin{gather*}
P_{\gamma \mathrm{Z}}=\frac{\kappa_{\mathrm{Z}} v_{e}\left(M^{2}-M_{\mathrm{Z}}^{2}\right)}{M^{2}\left[\left(M^{2}-M_{Z}^{2}\right)^{2}+\left(\Gamma_{\mathrm{Z}} M_{\mathrm{Z}}\right)^{2}\right]} \quad \Phi_{\gamma \mathrm{Z}}=\sum_{q} 2 e_{q} v_{q} F_{q \bar{q}} \tag{5}\\
v_{f}=I_{3}^{f}-e_{f} \sin ^{2} \Theta, a_{f}=I_{3}^{f}[f=e, q] \quad \kappa_{z}=\frac{1}{4 \sin ^{2} \Theta \cos ^{2} \Theta} \quad \cos \Theta=\frac{M_{W}}{M_{\mathrm{Z}}}, \tag{6}
\end{gather*}
$$

where in the weight of the parton distributions one electric charge e_{q} is replaced by twice the neutral current vector coupling v_{q}. The interference contribution is proportional to the vector coupling of the electron v_{e}. Because of $I_{3}^{e}=-1 / 2$ and $\sin ^{2} \Theta$ being close to $1 / 4, v_{e}$ is small and thus the γZ cross section part is also small. One also sees in Eq. 5 that the interference cross section contribution changes sign from positive to negative as the mass increases and passes M_{Z}. The neutral current Drell-Yan cross section formulae are completed by the expressions of P and Φ for the pure Z exchange part, in which the vector and axial-vector couplings enter as sums $v^{2}+a^{2}$ as

$$
\begin{equation*}
P_{Z}=\frac{\kappa_{Z}^{2}\left(v_{e}^{2}+a_{e}^{2}\right)}{\left(M^{2}-M_{Z}^{2}\right)^{2}+\left(\Gamma_{Z} M_{Z}\right)^{2}} \quad \Phi_{Z}=\sum_{q}\left(v_{q}^{2}+a_{q}^{2}\right) F_{q \bar{q}} \tag{7}
\end{equation*}
$$

$p p \rightarrow$ ee X vs $\mathrm{M}(\mathrm{ee})$

Drell Yan

$$
\mathrm{pp} \rightarrow 4 \mid \mathrm{X}
$$

ATLAS-CONF-2019-025
15 July 2019

Exercises

Decay

In an experiment a particle decay at rest is observed into a muon and a neutrino. The mass of the muon is known to be $\mathrm{M}_{\mu}=106 \mathrm{MeV}$ and the kinetic energy of the muon is measured to be $\mathrm{T}=4.4 \mathrm{MeV}$. Determine the mass of the parent particle and identify it with a known particle.

Decay

In an experiment a particle decay at rest is observed into a muon and a neutrino. The mass of the muon is known to be $\mathrm{M}_{\mu}=106 \mathrm{MeV}$ and the kinetic energy of the muon is measured to be $\mathrm{T}=4.4 \mathrm{MeV}$. Determine the mass of the parent particle and identify it with a known particle.

$$
\begin{aligned}
& p_{\pi}^{2}=M_{\pi}^{2}=E_{\pi}^{2}-k_{\pi}^{2} \\
& \rightarrow M_{\pi}=E_{\pi} \\
& E_{\pi}=E_{\mu}+E_{v} \\
& E_{\mu}=M_{\mu}+T_{\mu}=110.4 \mathrm{MeV} \\
& k_{\mu}=\sqrt{E_{\mu}^{2}-M_{\mu}^{2}}=31 \mathrm{MeV} \\
& k_{\pi}=0 \\
& \rightarrow k_{v}=k_{\mu}=31 \mathrm{MeV}=E_{v} \\
& M_{\pi}=E_{\mu}+E_{v}=141.4 \mathrm{MeV}
\end{aligned}
$$

4 vector relation

Pion decays at rest

Energies add up

Kinetic energy T from track
3-momentum of muon
3 -momentum of pion is zero
Neutrino is massless (about)
Energies add up to pion mass lifetime $\left(\mathrm{M}_{\tau}=1.78 \mathrm{GeV}\right)$?
$\mu \rightarrow v_{\mu} v_{e}$ e. This decay is nearly 100%, there is also the decay $+\gamma$ to 1.4%.
It is required to restore the dimensions as was explained in lecture 1. Here
$\tau_{\mu}=\frac{192 \pi^{3}}{G_{F}^{2} M_{\mu}^{5}} h^{1} c^{0}$
should be \hbar in the equation
since $[\mathrm{h}]=[\mathrm{eVs}]$.
With the value of $\hbar=6.610^{-16} \mathrm{eV}$ s one finds [\hbar is given in the PDG list of constants]
$\tau_{\mu}=2.14 \mathbf{1 0}^{-6} \mathbf{s} \quad$ (the PDG value is 2.19) in a then straightforward calculation.

τ_{τ}

Lifetime

The lifetime of the muon is given as $\tau_{\mu}=192 \pi^{3} / \mathrm{G}_{\mathrm{F}}{ }^{2} \mathrm{M}_{\mu}{ }^{5}$.
$\left(\mathrm{M}_{\mu}=0.11 \mathrm{GeV}, \mathrm{G}=1.1710^{-5} \mathrm{GeV}^{-2}\right)$. Calculate τ_{μ} in seconds. How large is the tau lifetime $\left(\mathrm{M}_{\tau}=1.78 \mathrm{GeV}\right)$?
$\mu \rightarrow v_{\mu} v_{e}$ e. This decay is nearly 100%, there is also the decay $+\gamma$ to 1.4%.
It is required to restore the dimensions as was explained in lecture 1. Here

$$
\tau_{\mu}=\frac{192 \pi^{3}}{G_{F}^{2} M_{\mu}^{5}} h^{1} c^{0}
$$

should be \hbar in the equation
since $[\mathrm{h}]=[\mathrm{eV}$ s $]$.
With the value of $\hbar=6.610^{-16} \mathrm{eV}$ s one finds [\hbar is given in the PDG list of constants]
$\tau_{\mu}=2.14 \mathbf{1 0}^{-6} \mathbf{s} \quad$ (the PDG value is 2.19) in a then straightforward calculation.

$$
\tau_{\tau}=\tau_{\mu} \cdot \frac{M_{\mu}^{5}}{M_{\tau}^{5}} \cdot b r\left(v_{\tau} v_{e} e\right) \approx 2.14 \cdot 10^{-6} \cdot 7.5 \cdot 10^{-7} \cdot 0.17 s
$$

$$
\begin{gathered}
\tau_{\tau}=b r \tau \tau(f) \\
\tau_{\mu}=b r \tau \mu(f) \\
\tau_{\tau}=\tau \mu b r(\tau \rightarrow f) \tau \tau(f) / \tau \mu(f) \\
=\tau_{\mu} b r(\tau \rightarrow f) M_{\mu}^{5} / M_{\tau}^{5}
\end{gathered}
$$

$\tau_{\tau} \approx 2.7 \cdot 10^{-13} s$
(the PDG value is 2.9
Emphasize that tau decays only to 17% into this channel, also 17% into the muon channel, point to hadron decays.)

Mandelstam Variables
$\frac{s, t, u}{\text { stanley Mandestam } 1928-2016}$

ep \rightarrow ep, similar for $p p \rightarrow p p$ to.

$$
\begin{aligned}
& S=(k+p)^{2}=\left(k^{\prime}+p^{\prime}\right)^{2}=(\text { ans energy })^{2} \\
& S=k^{2}+p^{2}+2 k_{0} p_{0}-2 \vec{k} \vec{p} \quad k^{2}=M_{e}^{2}, p^{2}=M_{p}^{2}=p_{0}^{2}-\vec{p}^{2}
\end{aligned}
$$

$$
S=2 E 0 E_{p}(1-\underbrace{\cos \theta_{0 \cdot i j}}_{=-1 \text { for head on collisions }}) \quad \text { large moment }
$$

$$
s \simeq 4 E e E_{p}
$$

$$
t=\left(k-k^{\prime}\right)^{2}=\left(p-p^{\prime}\right)^{2}=(4 \text { momentum transfe })^{2}
$$

$$
u=\left(p-k^{\prime}\right)^{2}=\left(k-p^{\prime}\right)^{2}
$$

$$
s+t+u=(k+p)^{2}+\left(k-k^{\prime}\right)^{2}+(p-k)^{\prime}=f\left(m_{e}, m_{p}\right)=?
$$

$s+t+u=$? for identical masses

Mandelstam Variables
$\frac{s_{1}, t, u}{\text { stan nay Manlestan 1928-2016. }}$

$$
\begin{aligned}
& S=(k+p)^{2}=\left(k^{\prime}+p^{\prime}\right)^{2}=(\text { oms energy })^{2} \\
& S=k^{2}+p^{2}+2 k_{0} p_{0}-2 \vec{k} \vec{p} \quad k^{2}=M_{e}^{2}, p^{2}=M_{p}^{2}=p_{0}^{2}-\vec{p}^{2}
\end{aligned}
$$

$$
s=2 E_{0} E_{p}(1-\underbrace{\left.\cos \theta_{0 \text { arp }}\right)}_{=-1 \text { for head on collisions }}
$$

$$
s \simeq 4 E e E_{p}
$$

$e p \rightarrow e p$, similar

$$
t=\left(k-k^{\prime}\right)^{2}=\left(p-p^{\prime}\right)^{2}=(4 \text { momenta transf })^{2}
$$

for $p p \rightarrow p p$ cts.

$$
u=\left(p-k^{\prime}\right)^{2}=\left(k-p^{\prime}\right)^{2} .
$$

$$
s+t+u=(k+p)^{2}+\left(k-k^{\prime}\right)^{2}+\left(p-k^{\prime}\right)^{2}=k^{2}+p^{2}+k^{\prime 2}+(\underbrace{k+p-k^{\prime}}_{p^{\prime 2}})^{2}=2 M_{e}^{2}+2 M p^{2}
$$

$s+t+u=4 m^{2}$ for identical masses

An Exercise

A Higgs particle H may decay into two photons $(H \rightarrow \gamma \gamma)$ with energies E_{1} and E_{2} and an angle of α between the two photons, all measured in the laboratory frame. Calculate the mass m_{H} of the Higgs particle as a function of the measured values of E_{1}, E_{2} and α. Which mass in GeV do you obtain for values of $E_{1}=$ $100 \mathrm{GeV}, E_{2}=225 \mathrm{GeV}$ and $\alpha=49.2^{\circ}$?

An Exercise

A Higgs particle H may decay into two photons $(H \rightarrow \gamma \gamma)$ with energies E_{1} and E_{2} and an angle of α between the two photons, all measured in the laboratory frame. Calculate the mass m_{H} of the Higgs particle as a function of the measured values of E_{1}, E_{2} and α. Which mass in GeV do you obtain for values of $E_{1}=$ $100 \mathrm{GeV}, E_{2}=225 \mathrm{GeV}$ and $\alpha=49.2^{\circ}$?

$$
\begin{aligned}
& \quad \begin{aligned}
p_{\gamma 1}=\left(E_{1}, \vec{p}_{1}\right) & \text { and } p_{\gamma 2}=\left(E_{2}, \vec{p}_{2}\right) \\
m_{H}^{2} & =\left(p_{\gamma 1}+p_{\gamma 2}\right)^{2} \\
& =\left(p_{\gamma 1}\right)^{2}+\left(p_{\gamma 2}\right)^{2}+2 p_{\gamma 1} p_{\gamma 2} \\
& =0+0+2\left(E_{1} E_{2}-\vec{p}_{1} \cdot \vec{p}_{2}\right) \\
& =2 E_{1} E_{2}(1-\cos \alpha)
\end{aligned} \\
& m_{H}=\sqrt{2 \cdot 225 \mathrm{GeV} \cdot 100 \mathrm{GeV}(1-\cos (49.2 / 180 \cdot \pi)} \\
& \approx 124.9 \mathrm{GeV}
\end{aligned}
$$

Kinematics

Good luck to your further research, PhDs and beyond. Thanks.

Calculation of a Cross Section (Born)

backup

Four-Vectors, Energy and Momentum Conservation

e Invariance of $(c t)^{2}-z^{2}$ suggests to combine ($c t, z$)
e This generalises a three vector \vec{x} to a four vector with the notation

$$
\begin{array}{r}
x_{\mu}=\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \\
x_{\mu}=(c t, x, y, z)=(c t, \vec{x})
\end{array}
$$

e Norm (squared) of a three vector \vec{x} is given by the scalar product: $\|\vec{x}\|^{2}=\vec{x} \cdot \vec{x}=\vec{x}^{2}=x^{2}+y^{2}+z^{2}$
a Here $\|\vec{x}\|$ is the Euclidean length
e Norm (squared) of a four vector:

$$
\begin{array}{r}
\left\|x_{\mu}\right\|^{2}=x_{0}^{2}-\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right) \\
=(c t)^{2}-\left(x^{2}+y^{2}+z^{2}\right)=(c t)^{2}-\vec{x}^{2}
\end{array}
$$

a The norm squared is a conserved quantity in Lorentz transformations.

Three-Momentum and Energy

e In Newtonian physics the energy E and three-momentum \vec{p} are conserved quantities
e In SR extended to four-momentum p^{μ} conservation in each component:
a E with the addition of rest mass energy
a three components of \vec{p}
e In a closed system the sum of all particle does not change, can be used to calculate the kinematics of some processes, where a set of incoming particles produces a set of outgoing particles

$$
\sum_{\text {in }} p_{\text {in }}^{\mu}=\sum_{\text {out }} p_{\text {out }}^{\mu}
$$

a Squares of four-vectors are generally interesting, as they are invariant under Lorentz transformation
e Calculate square of p^{μ} :

$$
p^{\mu}=(E / c, \vec{p})
$$

$\left\|p^{\mu}\right\|^{2}=\left(p^{\mu}\right)^{2}=p^{\mu} p_{\mu}=E^{2} / c^{2}-\vec{p}^{2}$
Q In the rest frame of an object:
a $\vec{p}=0$
a $E=m c^{2}$
e Thus:

$$
\begin{aligned}
p^{\mu} p_{\mu} & =m^{2} c^{2}=E^{2} / c^{2}-\vec{p}^{2} \\
E & =\sqrt{m^{2} c^{4}+\vec{p}^{2} c^{2}}
\end{aligned}
$$

a Square of the four momentum is equal to the invariant (rest) mass of a system $\cdot c^{2}$!

4-momenta of scattering diagram kinematics
(1)

$$
\begin{aligned}
& (k+p)^{2}=2 k p=\left(k^{\prime}+p^{\prime}\right)^{2}=2 k_{p}^{\prime}=s \\
& s^{2}=4(k p)\left(k_{p}^{\prime}\right) \\
& \left(k-p^{\prime}\right)^{2}=\left(k^{\prime}-p\right)^{2}=-2 k p^{\prime}=-2 k_{p}^{\prime}=u \\
& u^{2}=4\left(k_{p}^{\prime}\right)\left(k p^{\prime}\right) \\
& t=\left(k-k^{\prime}\right)^{2}=q^{2}=-Q^{2}
\end{aligned}
$$

$$
\begin{aligned}
& s+t+u=0 \\
& s^{2}+u^{2}=2 s^{2}+{b^{2}}^{2}+2 s t \quad, \quad s^{2}-u^{2}=-t^{2}-2 s t
\end{aligned}
$$

Neglect masses

Amplitudes

$$
\begin{aligned}
T_{\gamma}= & \frac{1}{(2 \pi)^{3 / 2}} \bar{\mu}^{S^{\prime}}\left(k^{\prime}\right) i e(2 \pi)^{4} \delta\left(h-k^{\prime}-q\right) \gamma^{m} \mu^{s}(k) \frac{1}{(2 \pi)^{3 / 2}} \\
& \cdot i \int \frac{d q}{(2 \pi)^{4}} \frac{1}{q^{2}+i \varepsilon} g^{m n} \\
& \frac{1}{(2 \pi)^{3 / 2} \bar{q}^{\prime^{\prime}}\left(p^{\prime}\right) \text { ie }(2 \pi)^{4} \delta\left(p^{\prime}-p-q\right) \gamma^{n} Q_{q} q^{r}(p) \frac{1}{(2 \pi)^{3 / 2}}} \\
T_{\gamma}= & \frac{-i e^{2} Q_{q}}{(2 \pi)^{2} q^{2}} \mu^{-s^{\prime}\left(k^{\prime}\right) \gamma^{m} \mu^{s}(k) \cdot \bar{q}^{-1}\left(p^{\prime}\right) \gamma^{m} q^{r}(p)} \\
T_{\gamma}^{+}= & \frac{i e^{2} Q_{q}}{(2 \pi)^{2} q^{2}} \bar{q}^{r}(p) \gamma^{m} q^{r^{\prime}}\left(p^{\prime}\right) \bar{\mu}^{s}(k) \gamma^{m} \mu^{s^{\prime}\left(k^{\prime}\right)}
\end{aligned}
$$

Amplitude Product

$$
\frac{1}{2} \sum_{s_{1}} \frac{1}{2} \sum_{r} \sum_{s_{1}^{\prime} r^{\prime}}
$$

$$
\begin{aligned}
& T^{2}=T_{\gamma} T_{\gamma}^{+}+\text {hic. } \\
& \sum_{s^{\prime}} \mu^{s^{\prime}}\left(k^{\prime}\right) \bar{\mu}^{s^{\prime}}\left(k^{\prime}\right)=k^{\prime} l \ell l=\hat{k}^{\prime} \\
& \text { average } \\
& \text { Average over incoming spins } \\
& \text { Sum over outgoing spins } \\
& \overline{T_{\gamma}^{+} T_{\gamma}}=\frac{1}{4} \frac{e^{4} Q_{q}^{2}}{(2 \pi)^{4} t^{2}}\left\{\sum_{s} \bar{\mu}^{s}(k) \gamma^{n}{\hat{k^{\prime}}}^{m} \gamma^{s}(k)\right\} \\
& \text { - }\left\{\sum_{r} \bar{q}^{r}(p) \gamma^{n} \hat{p} \gamma^{m} q^{r}(p)\right\} \\
& \{\Sigma \quad\}=\operatorname{tr}\left(\gamma^{n} k^{\prime \ell} \gamma^{\ell} \gamma^{m} k^{p} \gamma^{p}\right) \\
& =4\left(k^{\prime n} k^{m}+k^{n} k^{\prime m}-g^{n m} k k^{\prime}\right) \\
& \text { - } 4\left(p^{\prime n} p^{m}+p^{n} p^{m m}-g^{m n} p p^{\prime}\right) \\
& \text { Trace of y matrices }
\end{aligned}
$$

4-Vector Algebra

$$
\begin{gathered}
=4\left(k^{\prime \prime n} k^{m}+k^{n} k^{\prime m}-g^{n m} k k^{\prime}\right) \\
=4\left(p^{\prime n} p^{m}+p^{n} p^{\prime m}-g^{m n} p p^{\prime}\right) \\
=16\left(k_{p}^{\prime}\right)(k p)+\left(k p^{\prime}\right)\left(k^{\prime} p\right)+\left(p^{\prime} p\right)\left(k k^{\prime}\right) \\
+\left(k^{\prime} p\right)\left(k p^{\prime}\right)+(k p)\left(k^{\prime} p^{\prime}\right)-\left(p p^{\prime}\right)\left(k k^{\prime}\right) \\
-\left(k^{\prime} k\right)\left(p p^{\prime}\right)-\left(k k^{\prime}\right)\left(p p^{\prime}\right)+4\left(k k^{\prime}\right)\left(p p^{\prime}\right) \\
=32\left[\left(k^{\prime} p^{\prime}\right)(k p)+\left(k_{p}^{\prime}\right)\left(k p^{\prime}\right)\right]
\end{gathered}
$$

Product of Amplitudes

$$
\begin{aligned}
\overline{T_{\gamma}^{+} T_{\gamma}}= & \frac{1}{4} \frac{e^{4} Q_{q}^{2}}{(2 \pi)^{4} t^{2}}\left\{\sum_{s} \bar{\mu}^{s}(k) \gamma^{n} \hat{k}^{\prime} \gamma^{m} \mu^{5}(k)\right\} \\
& \cdot\left\{\sum_{r} \bar{q}^{r}(p) \gamma^{n} \hat{p^{\prime}} \gamma^{m} q^{r}(p)\right\} \\
& =32\left[\left(k^{\prime} p^{\prime}\right)(k p)+\left(k_{p}^{\prime}\right)\left(k p^{\prime}\right)\right] \\
& =8 \cdot 4[\quad]
\end{aligned}
$$

Cross Section kajantie Buckling
total cross section $p_{a}+p_{b} \rightarrow p_{1} \cdots p_{k},\left(p_{a}+p_{b}\right)^{2}=s, p_{i}^{2}=m_{i}^{2}$

$$
\begin{gathered}
\sigma_{\text {tot }}^{(n)}\left(s, m_{i}\right)=\frac{1}{\phi} \cdot \underbrace{\int_{i=1}^{n} \frac{d^{3} p_{i}}{2 E_{i}} \delta^{4}\left(p a+p_{b}-\sum_{p_{i}}\right)}_{\text {phase space integra }(T=1) .} T\left(\vec{p}_{i}\right)=\frac{I_{n}}{\phi} \\
\phi: \text { "Flux factor" }=\phi=2 \lambda^{1 / 2}\left(s, m_{a}^{2}, m_{b}^{2}\right)(2 \pi)^{3 n-4} \\
\left(\lambda(x, y, z)=x^{2}+y^{2}+z^{2}-2 x y-2 y z-2 z x\right) .
\end{gathered}
$$

differatial cross section $[a+b \rightarrow 1 \cdots n]$

$$
\frac{d \sigma_{n}}{d x}=\frac{1}{\phi} \int_{1}^{n} \frac{d^{3} p_{i}}{2 E_{i}} \delta^{4}\left(p_{a}+p_{b}-\Sigma p_{i}\right) \delta\left(x-x\left(\overrightarrow{p_{i}}\right)\right) \cdot T\left(\overrightarrow{p_{i}}\right) .
$$

Elastic Ip Scattering Cross Section

$$
\begin{aligned}
& \left.\left.\frac{d \sigma}{d t}=\frac{2}{\sqrt{\Delta}}(2 \pi)^{3 \cdot 2-4} \int d p d p^{\prime} \delta^{4}\left(k-k^{\prime}+p-p^{\prime}\right) \delta\left(t-\left(k-k^{\prime}\right)^{2}\right) \right\rvert\, T_{\gamma}\right)^{2} \\
& =\frac{2}{\sqrt{\Delta}}(2 \pi)^{2} \frac{\pi}{8 \sqrt{\Delta}} \cdot\left|T_{\gamma}\right|^{2}=\frac{\pi^{3}}{s^{2}}\left|T_{\gamma}\right|^{2}=\frac{d \sigma}{d t} \\
& \Delta=S^{2} \\
& \frac{d \sigma}{d t}=\frac{2 \pi e^{4} Q_{q}^{2}}{16 \pi t^{2}} \quad \frac{s^{2}+u^{2}}{s^{2}} \quad \alpha=\frac{e^{2}}{4 \pi} \\
& \frac{d \sigma}{d t}=\frac{2 \pi \alpha}{t^{2}} \cdot Q_{q}^{2} \cdot \frac{s^{2}+u^{2}}{s^{2}} \quad \begin{array}{l}
\mu q \rightarrow \mu q \\
\text { impolarised. }
\end{array}
\end{aligned}
$$

Elastic ep Scattering Cross Section

$$
\begin{aligned}
& e, k \\
& p, p, p^{\prime}, k^{\prime} \quad s=(k+p)^{2} \quad t=q^{2}=\left(k-k^{\prime}\right)^{2}=-Q^{2} \\
& \text { Scattering amplitude: } T=-i \frac{e^{2}}{(2 \pi)^{2}}, \quad j_{\text {elm }}^{m}(e) \cdot \frac{1}{q^{2}} \cdot j_{e m m}^{m}(p) \\
& \text { pointlike } e \text { and } p \\
& j_{\text {eln }}^{m}(e)=e^{-s^{\prime}}\left(k^{\prime}\right) \cdot \gamma^{m} e^{s}(k) \quad j_{\text {elm }}^{m}(p)=\bar{p}^{-r^{\prime}}\left(R^{\prime}\right) \gamma^{m} p^{\prime}(P)
\end{aligned}
$$

average over incoming spins s, r. Sum over s^{\prime}, r^{\prime}

$$
\sum_{s^{\prime}} e^{s^{\prime}}\left(k^{\prime}\right) e^{-s^{\prime}}\left(k^{\prime}\right)=k^{\prime n} \gamma^{n}:=\hat{k^{\prime}}
$$

cross section $\frac{d \sigma}{d t}=T^{+} \cdot \frac{\pi^{3}}{s^{2}} \quad$ anplinude ${ }^{2}$. phase space
use $\sum_{s} \bar{e}^{-s}(k) \gamma^{m} \hat{k^{\prime}} \gamma^{m} e^{s}(k)=\operatorname{tr}\left(\gamma^{n} k^{l \ell} \gamma^{l} \gamma^{m} k^{p} \gamma^{p}\right)=4\left(k^{n} k^{m}+k^{n} k^{\prime m}-g^{m u} k k^{\prime}\right)$
$\frac{d \sigma}{d t d u}=\frac{2 \pi \alpha^{2}}{t^{2}} \cdot \underbrace{\frac{s^{2}+u^{2}}{s^{2}}}_{\approx 2 \text { for } E \ll M .} \cdot \delta(s+t+u) \quad . \quad \alpha=\frac{e^{2}}{4 \pi}$
elastic $e P \rightarrow e P$ cross section exactly calculable in QED.
depands only on $S=2 M E_{e}$ and $t=-Q^{2}=-4 E^{2} \sin ^{2} \frac{\theta}{2}$
or the incoming energy E_{e} and the Scattering angle of e, θ

Inelastic ep Scattering in the QPM

$p_{1} P-\overbrace{m}^{e_{1}^{\prime} k^{\prime}}$	$(x p+q)^{2}=m^{2} \quad$
if $q^{2} \gg x^{2} M^{2}, m^{2} \quad: q^{2}+2 x p_{q}=0$	
$x=\frac{Q^{2}}{2 P q} \quad$fraction of p momentum carmied by quark	

$$
\text { fixectarget: } \begin{aligned}
P & =\left(M_{p},-0\right): \quad 2 P_{q}=2 M_{p} \cdot \nu=2 M_{p} \cdot E_{e} \frac{\nu}{E_{e}}=S y \\
\nu & =E_{e}-z_{e}^{\prime} \text { energy transfer }
\end{aligned}
$$

inclastic ep cross section: $P=x P: S=x S \quad t=T \quad u=x U$

$$
\delta(u+t+s) \rightarrow \sum_{q u a r k s} x \underbrace{\delta\left(x+\frac{I}{s+l}\right)}_{q(x)+\bar{q}(x)} \cdot \begin{aligned}
& \begin{array}{l}
e_{q}^{2} \\
\text { charge of quark } \\
\text { in units of } e
\end{array}
\end{aligned}
$$

momentum distribution of

$$
S^{2}+U^{2}=Y_{+} \quad \text { quats andontiquarks in } p .
$$

$$
\overline{s(s+u)}=\bar{y} \quad y_{+}=1+(1-y)^{2}
$$

$d \sigma$
$d Q^{2} d x$
$=\frac{2 \pi \alpha^{2}}{Q^{4} x} \cdot Y_{+} F_{2}(x) \quad$ Bjorken saling

$$
F_{2}\left(Q^{2}, \nu\right) \rightarrow F_{2}\left(x=\frac{Q^{2}}{2 M \nu}\right)
$$

Q^{2}, v large

Verification of the Quark-Parton Model - Fractional Electric Charges

 charges
current
(weak!)

inverse charged current.

$$
F_{2}=\times \sum e_{9}^{2}(q+\bar{q})
$$

proton: aud

$$
\frac{1}{2}\left(F_{2}^{e p}+F_{2}^{e N}\right)=F_{2}^{e N}
$$

$$
\begin{aligned}
& F_{2}^{\nu p}=2 x[d+\bar{u}] \\
& F_{2}^{\nu n}=2 x[u+\bar{d}] \quad F_{2}^{\nu N}=x[u+\bar{u}+d+\bar{d}] \\
& \rightarrow \frac{F_{2}^{e N}}{F_{2}^{\nu N}}=\frac{1}{2}\left(e_{u}^{2}+e d^{2}\right)=\frac{5}{18}=0.28 \\
& \frac{G G M \sim N}{\text { SLAG EN }}: 0.29 \pm 0.05
\end{aligned}
$$

Storage Rings

D.W. Kerst et al "The possibility of producing interactions in stationary coordinates by directing beams against each other has often been considered, but the intensities of beams so far available have made the idea impractical.
............... accelerators offer the possibility of obtaining sufficiently intense beams so that it may now be reasonable to reconsider directing two beams of approximately equal energy at each other."
D. W. Kerst et al., Phys. Rev. 102, 590 (1956).
G. K. O'Neill, interested in p-p collisions, introduces the idea of injecting the beam extracted from a high energy proton synchrotron in two "storage rings" in which particles would be accumulated and stored for a long time. Typically in a figure-of-8 configuration they have a common section in which the two stored beams collide head-on.

fixed target accelerator: $s=2 M E$, collider: $s=4 E^{2}$: gain: $2 E / M$

First $\mathrm{e}^{+} \mathrm{e}^{-}$storage ring ADA at Frascati: Bruno Touschek et al.

