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Abstract. An analysis is presented of the recent data 
which are sensitive to the e,/~ and r neutral current 
couplings. A fit combining all results ( e § e , Iz C, re,  e D, 
atoms) selects a unique solution in agreement with the 
standard-model expectation. Assuming lepton univer- 
sality, the vector and axial-vector couplings are deter- 
mined to be v = -  0.013 + 0.048 and a = -  0.520+ 
0.014. Similarly we find (s in20=0.213+0.012,  
p=1.015_+0.038) or ( s in /0=0 .211_+0 .012 ,p -1 )  
which, combined with all other values, gives an average 
of sin z 0 = 0.216 + 0.006. 

1. Introduction 

It has been the aim of many neutral current experi- 
ments [1] during the last years to determine the 
coupling constants of various elementary fermions (f) 
to the Zo-boson. In a general S U(2) • U(1) theory the 
vector and axial-vector couplings are defined as 

v I = I ~ ( f )  + I ~ ( f )  - 2Qssin 2 0, a I = I ~ ( f )  - I ~ ( f )  
(1) 

with I~ <R) the left-handed (r.h.) weak isospin charges, QI 
the electric charge and 0 the Weinberg angle. Due to 
recent experimental progress in the leptonic sector it 
becomes now possible to uniquely determine all (v, a) 
lepton couplings, apart from v~. The basic aim of this 
paper is to use the available neutral current data for a 
consistent and simultaneous determination of the 
lepton couplings, which so far has not been undertaken 
[2,3]. This yields additional constraints on the 
standard-model parameters p and sin/0 as well. 

2. Data Summary and Treatment 

The following types of experiments are sensitive to 
some lepton couplings: 

i) parity violating transition amplitudes in heavy 
atoms are proportional to a~. These data are now 
consistent with each other and becomes more useful 

numerically. For our purpose they determine the weak 
charge 

Q~ = 2ae (N  - Z(1 - 4 sin 2 Oh)) (2) 

where 0 h denotes the mixing angle entering the had- 
ronic current. We have used data for Bi, T1, Cs [4] and 
Pb [5] adding the still sizeable theoretical uncertainties 
( ~  25%) in quadrature to the experimental ones. 

ii) the asymmetry measured at SLAC in polarized 
eD scattering [6] is sensitive to a parity violation 
combination of vector and axial-vector coupling ac- 
cording to 

A - / Q 2  = ~:(ae V - veAog(y )  ) (3) 

with V =  1 . 2 ( 2 v , - v a ) , A o =  1 . 2 ( -  2 a ,  + aa)/(1 + 4) 
and g(y) = (1 - (1 -- y)Z)/(1 + (1 - y)2). Here ~ denotes 
the ratio of sea to valence quark distributions which 
was calculated using the parametrizations of [7]. The 
resulting correction is known to be a small effect only 
because of ve" O(Y) < 0.05 in the kinematic region of the 
experiment. The size of the 7Z interference effects is 
given by the parameter x = G/xf22rtc~ with G the 
Fermi constant and e the fine structure constant. Using 
Qw and A - to get Ve and ae requires to preset sin 2 Oh in 
order to calculate the hadronic vector current contri- 
bution. We assumed sin / 0 h = 0.224 _+ 0.012, the recent 
average value from deep inelastic neutrino scattering 
[8] multiplied by 1.006 [9]. The sin 2 Oh uncertainty has 
been included into the resulting errors. 

iii) elastic neutrino-electron scattering [10]. Recent 
v, data represent a serious constraint for our analysis. 
The cross-sections at given energy E are described by 

a / E  = G2me [(V e q- a~) 2 +1(vr -y a,) 2] (4) 
2~ 

where m e is the electron mass. For the qee reactor data 
we used the formula of [11] with the coefficients 
readjusted according to [2]. 

iv) The /~• asymmetry measurement of the 
BCDMS collaboration [ 12] determines a combination 
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of muon  couplings according to 

B - c~ + ( _ 2) + ~ ( + 2) = - tc(au - -  2 v j . A o . g ( y ) . Q  2 

(5) 
where 2 is the longitudinal muon  beam polarization. 

v) The e + e -  ---,/~ + # - ,  z + ~-  asymmetry  data  from 
P E P  and P E T R A  [13] provide us essentially with a ~ a ,  
and a ,a~ ,  al though we have included the ~c 2 contri- 
butions containing the vector couplings as well, i.e. the 
fo rward -backward  asymmetry  is 

A r B  = - -  ~ t c a e a u ' s  2 
M ~  - s 

1 - ~c.2v~%, 
" 2 2 + au ~ (6) 
1 - K2VeV. + K2(V~ + a~)(v. 

For the Zo-mass we assumed M z = (93.0 + 2.0)GeV 
based on recent UA1,2  results [14] and included 6 M  z 
into the resulting errors. We have disregarded Bhabha  
scattering data  results as they are still less significant 
[15]. 

A consistent t reatment of the data  requires to correct 
for electroweak second order  effects. In the on-mass 
shell renormalizat ion scheme [9] electroweak radia- 
tive corrections are almost completely absorbed into a 
redefinition of c~. We have correspondingly modified 
the ~c value (3) by a factor 0.9304 [16] in order  to 
account  for these effects in the 7Z asymmetry  data. 
Further  radiative contributions due to the energy and 
process variations amoun t  to a few per cent of the 
correction which is negligible compared  to the present 
experimental errors. Note  for example that even the 
precise A -  data  determine sin 2 0 only at the 5% level 
[17]. Restricting the corrections to a redefinition of c~ 
implies the assumption that  the present v e  data  can be 
considered to be free of  electro-weak corrections. This 
approximat ion is justified by detailed calculations 
[18]. Similarly, recent evaluations of electroweak 
corrections for the e + e -  asymmetry data  find a factor 
of about  0.93 for the effect of  the one-loop corrections 
on the lowest order asymmetry at P E T R A  energies 
[19]. For  the atomic data use has been made of the 
corrected Q~ expression, (2), as calculated in [21]. Thus 
all subsequent results can be considered to be related to 
the on-mass shell renormalizat ion scheme. Whenever 
needed, statistical and systematic errors have been 
added in quadrature.  

3. F i t  Resu l t s  

For  the derivation of results a M I N U I T  [23] fitting 
procedure has been used minimizing the ;(2 based on a 
sum over all data. A five-parameter fit uniquely 
determines the v and a couplings to be 

Ve = --0.033 --+0.059 VU= --0.103 -+0.172 

a~ = - 0.501 -+ 0.031 a.  = - 0.587 -+ 0.052 

a~ = - 0.474 -+ 0.076 (7) 
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Table 1. Corre la t ion coefficients for general  
(v,a) fit 

v e a e v~ a u a~ 

ve 1 
ae - 0.53 1 
v u 0.12 - 0 . 2 2  1 
au 0.31 - 0 . 5 6  0.37 1 
a t 0.16 - 0 . 3 1  0.07 0.19 I 

Table 2. Correla t ion coefficients for (p, sin 2 0, I~) fit 

p sin 2 0 l~(e)  I~ ( t0  l ~ ( J  

p 1 
sin z 0 0.65 1 

l~(e) - 0 . 9 5  - 0 . 5 0  1 

I~(p) 0.18 - 0 . 2 6  0.01 1 
I~(r) - 0 . 0 2  - 0 . 0 5  - 0 . 0 8  0.06 

with a ){2 per degree of freedom (X 2) of 0.75. The 
errors quoted for multidimensional fits define the 
one-standard deviation for a given parameter  inde- 
pendently of the others [23]. The correlation matrix 
for (7) is given in Table 1. The v and a values are 
in very good agreement with the s tandard-model  pre- 
dictions (1) ve = v, = - . 0 6  at sin20 = 0.22 and ae = 

a u = a s = - 1 / 2 .  Yet, one still misses v~ and a more  
accurate v,. Natura l  current lepton universality is 
confirmed also by an equivalent determination of 
p, sin 2 0 and the r.h. weak charges yielding 

p = 0.80 +_ 0.12 sin 2 0 = 0.19 _ 0.02 

I ~ ( e )  = 0.13 _+ 0.09 I~(/x) = 0.09 ___ 0.05 (8) 

I ~ ( J  = - 0.03 + 0.08 

Note  that  here sin 2 Oh (2, 3) has been considered as a 
free parameter.  The correlation matrix (Table 2) 
reveals a strong negative correlation between p, sin 2 0 
and I ~ ( e )  which means that  the somewhat  high I ~ ( e )  

value compensates for the rather low values of p and 
sin 2 0 (see below). F r o m  this joint fit the existence of 
r.h. doublets, i.e. I~ = + 1/2, is excluded at the level 
of 4, 8, 6 s tandard deviations for e,/~ and ~ respectively. 
The I~ errors can be reduced if p and sin 2 0 are kept 
constant.  For  p = 1 and sin z 0 = 0.22, for example, we 
find I ~ ( e )  -- 0.06 + 0.02, I~(~) = 0.07 + 0.04 and 
I~(z) = - 0.03 + 0.08. Assuming lepton universality 
the r.h. weak charge is determined to be zero with 
high precision, i.e. I ~ = . 0 2 + . 0 2  at s i n 2 0 = 0 . 2 2  
and p = 1. 

Subsequently, e, /~ and r are assumed to have 
identical coupling constants v and a. A two-parameter  
fit to all data finds 

v- -  --0.013-t-0.048 a =  --0.520-t-0.014 (9) 

with a ;(2 of 0.75 and a correlation coefficient of 0.37. 



M. Klein and S. Schlenstedt: Determination of the Leptonic Neutral Current Couplings 

T a b l e  3. Summary of (v, a) fits assuming v~ = v . ,  a~ = a .  = a~, 
sin 2 0 = 0.223 M z = 93.0 GeV/c 

v a z~ 

All data - 0.013 _+ 0.048 - 0.520 4- 0,014 0.75 
no ve  - 0 . 0 8 2 + 0 . 0 9 4  -0 .516-+0 ,016  0.88 
no e+e - - 0 . 0 2 8  _+0.050 -0 .503  4-0.024 1.04 
only leptonic 
data 0.011 4- 0.049 - 0.529 4- 0.015 0.43 
ve  only 
(v~, a~) 0.011 4- 0.052 - 0.529 _4- 0.035 0.28 

a) 

-.6 "*,~.) at, 

qe 

!V 

- .2  

.1 

Q 
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We have excluded one by one the more accurate data 
sets (ve, eD, e+e -) and find always similar central 
values though with differing accuracy, see Table 3. 
These fits are illustrated in Fig. la presenting 90~o 
confidence level contours in the (v, a) plane. The two 
solutions of the neutrino data (dashed-dotted) are 
resolved by any of the other experiments. Fitting the ve 
and the e § e -  data together, i.e. using the leptonic data 
only, we essentially reduce the error of a about twice 
(dashed curve in Fig. 1,a, Table 3). The consideration of 
the "hadronic data" (atoms, eD,#C) is seen to have 
only a slight influence on the (v, a) contour leading to 
the shadowed central region. 

Let us finally turn to a determination of the p 
parameter and sin20 assuming I ~ = 0 .  A two- 
parameter fit to all data yields 

p = 1.0t5 _ 0.038 sin 2 0 = 0.213 + 0.012 (10) 

with ~2 =0.77 and a correlation coefficient of 0.37. 
These numbers are in remarkable agreement with 
recent vN and/~p results [13, 16]. Contrary to the (v, a) 
contour, for (p, sin 2 0) the hadronic data considered 
here are important. This is due to the fact that the eD 
asymmetry essentially determines sin 2 0 which explains 
the slight shift and reduction of the (p, sin 2 0) contours 
due to the (re) and leptonic data only (see Fig. lb). 

The superposition of all data apart from e + e-  yields 
sin20=0.211___0.011 in the on-mass shell scheme 
setting p to be one. Rewriting the x factor as 

1 

- 4 sin z 0 cos z OM z (11) 

allows to derive a sin20 measurement from the e + e-  
asymmetry data as well. Using (11) leads to negligible 
electroweak higher-order corrections to AvB at 
PETRA energies, i.e. this factor has not been multiplied 
by 0.93. Note that independently of the way x is 
expressed, the theoretical predictions for ArB agree at 
the one-loop level although the Born term asymmetries 
differ from each other [20]. Using the recent data set 
including ArB(z) we find sin z 0 = 0.186 _+ 0.021 in good 
agreement with the original result [22]. 

Combining these two values with sin z 0 from v N 
scattering as quoted above [8] and with the sin 2 0 
values from the W mass measurements [13] we find for 
the weighted average sin 2 0 = 0.216 + 0.006. Treating 

1.2 

b) 

Ve  a n d  e+e - 

"qe 

Fig. la  and b. 90~o confidence level contours for two-parameter fits 
to neutral current data for: a) vec to r - -and  axial-vector leptonic 
couplings, b) p and sin 2 0. Dashed curves: ~,e and ~ee (The v e  data 
yield a second solution (v ~ 0.5, a ~ 0.0) not  shown here); Solid 
curves: Leptonic data (re,  e § e-); Shadowed region: all data (atoms, 
e D , # C  and leptonic) 
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Fig. 2. Sin 2 0 determinations in the on-mass shell renormalization 
scheme using data  from (eD,  ve,  a t o m s , # C ) ,  ( e+e  - and Mz), UA1 
and UA2 1-14] and v N  I-8]. The error bars are the combined 
statistical and systematic errors 

systematic and statistical errors separately yields sin 2 0 
= 0.219 _+ 0.004(stat) + 0.010(syst). Figure 2 displays 
all sin20 measurements which are in remarkable 
agreement with each other. The central value is very 
close to the SU(5) prediction sin20=0.215 +0.003 
[23] at AMs = 160 MeV. Future single experiments will 
achieve similar accuracies which should allow to 
precisely test the standard model at the O(~) level. 
Simultaneously, these experiments will yield the lepton 
couplings with much improved precision. 
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