Prospects to measure xQ (Q=s,c,b,t) at the LHeC

Max Klein

LIVERPOOL

Light Charm Beauty Top Strange LHeC

http://lhec.web.cern.ch CDR 2012, Update 2018 ep (and eA) at the LHC

For the LHeC Study Group

Presentation to the HL-HE LHC Workshop, CERN, 31.10.2017

The LHeC PDF Programme

Resolve parton structure of the proton completely: u_v, d_v, s_v ?, u, d, s, c, b, t and xgUnprecedented range, sub% precision, free of parameterisation assumptions, Resolve p structure, solve non linear and saturation issues, test QCD, N³LO...

Note that LHC is about to reach its own limits on PDFs. pp is NOT DIS, cf ATLAS W,Z to 0.5%

M.Klein at DIS17

- Many other important QCD/EW measurements possible: strong coupling to 0.1% (exp), 0.5% (theor), electroweak couplings....
- Possibility for $N^{3}LO$ PDF extraction (given splitting functions).

- LHeC PDFs available in LHAPDF format.
- Work **actively ongoing** on studies/projections. Expect updates next year for input to European Strategy.

For global PDF progress and ep discussion: see Lucian Harland-Lang, talk today in SM session

Charm

FFNS: massive charm, 3 active flavours, c from hard scattering, y/Z-g fusion to $O(\alpha_s)$

VFNS: low Q^2 : FFNS, high $Q^2 >> m_c^2$ VFNS at zero mass

 m_c (MS) = m_c (pole) [1 – α_s/π -..) M_c in GM VFNS QCD analysis is 'effective parameter'

Treatment of heavy flavour and size of heavy quark densities are very important for QCD, electroweak and Higgs interpretations

HERA Charm

LHeC Detector 2016

P.Kostka: Status 11/16

Full acceptance collider detector, derived from HERA and LHC detectors, being updated Three main challenges: interaction region, forward region and hadronic fs resolution

Silicon Tracker and EM Calorimeter

Figure 13.18: Tracker and barrel Electromagnetic-Calorimeter rz view of the baseline detector (Linac-Ring case).

LHeC-LHC: no pile-up, less radiation, smaller momenta, apart from forward region

Forward Tracking at LHeC

September LHeC workshop : <u>https://indico.cern.ch/event/639067</u>

Charm F_2^{cc} and Mass

 ϵ (c) assumed 10%, 1% light background, ~3% δ (syst)

Heavy Flavour with LHeC

Beam spot (in xy): 7μ m Impact parameter: better than 10μ m Modern Silicon detectors, no pile-up Higher E, L, Acceptance, ε , than at HERA \rightarrow Huge improvements predicted

	HERA	LHeC
m _c (m _c)/GeV	1.26	?
δ(exp)	0.05	0.003
δ(mod)	0.03	~0.002
δ(par)	0.02	~0.002
δ(α _s)	0.02	0.001

LHeC determines strong coupling to 0.1% High precision PDF data will reduce the mod and par errors by a very large amount.

Determination of charm mass to 3 MeV: crucial for M_W in pp or $H \rightarrow cc$ in ep cf also NNPDF3.1 (arXiv:1706.00428) and refs

Bottom F₂^{bb} and Mass

Bottom density not well known

Scheme dependence affects LHC interpretations

In MSSM: Higgs from $bb \rightarrow H$ not gg (we only miss the MSSM..)

 $m_b(m_b)$ with LHeC to 10 MeV

Strange Strange

Strange quark suppression [dimuons in neutrino data] vs light flavour democracy [W,Z LHC]

FIG. 2. Predictions for the ratio $r_s = 0.5(s + \bar{s})/\bar{d}$, at $Q^2 = 1.9 \,\text{GeV}^2$, x = 0.023. Points: global fit results using the PDF uncertainties as quoted; bands: this analysis inner band, experimental uncertainty; outer band, total uncertainty.

ATLAS: 1203.4051, PRL

ATLAS discovered large strange fraction, at a mean Bjorken x \sim 0.01, in joint QCD analysis of HERA+ATLAS data (3/2012) still a surprise vs neutrino dimuon data.

FIG. 3. Distribution of the light sea quarks, $x\Sigma = 2x(\bar{u} + \bar{d} + \bar{s})$, in the NNLO analysis of HERA and ATLAS data with a fixed fraction of strangeness (lower, green curve) and with a fitted fraction of about unity (upper blue curve). The bands represent the experimental uncertainties.

Light quark sea is strongly fixed by $F_2/x = 4 U + D$. \rightarrow if you change s, then u+d must follow, +8%

Strange Strange

Strange quark suppression [dimuons in neutrino data] vs light flavour democracy [W,Z LHC]

ATLAS: 1612.0301, PRD

Expect LHeC+HL LHC to be 10 x better from +2-3% to surely 0.5% or below

Strange Strange

Strange quark suppression [dimuons in neutrino data] vs light flavour democracy [W,Z LHC]

NNPDF3.1 arXiv:1706.00428, note: "xFITTER16" = ATLAS: 1612.0301 Also look at MMHT and other results

The strange quark density, after 60 years of DIS, has remained unknown. Is there a valence s?

xs(x,Q), comparison

Strange Quark Distribution from LHeC

Initial study (CDR): Charm tagging efficiency of 10% and 1% light quark background in impact parameter

Тор

Cross sections and kinematic range base of unique SM and BSM top physics program in ep See for example talk by U Klein today and by H Sun at DIS2017 at Birmingham. Here a note on the "top PDF"

proton's momentum – need to understand what a "top PDF" is. Scheme dependence

LHeC: Add an Electron Beam (ERL) to LHC (HL+HE)

Conceptual Design Report (2012), Update for next European Strategy

Concurrent operation to pp, LHC/FCC become 3 beam facilities. P(e) < 100 MW 10^{34} luminosity and factor of 15/30 (HL/HE) extension of Q², 1/x reach vs HERA

Collider Luminosities vs Year (pp and ep)

Location + Footprint of the electron ERL LHC (HL and HE) FCC

Energy – Cost – Physics – Footprint are being reinvestigated A 9km ERL is a small add-on for the FCC Doubling the energy to 120 GeV hugely increases cost and effort.

$H \rightarrow bb$ in LHeC Detector

Installation Study

Detector fits in L3 magnet support

LHeC INSTALLATION SCHEDULE

Modular structure

Q1	Q2	Q3	Q4	Q5	Q 6	Q7	Q 8
	Q1	Q1 Q2 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I <th>Q1 Q2 Q3 I<th>Q1 Q2 Q3 Q4 I<!--</th--><th>Q1 Q2 Q3 Q4 Q5 I</th><th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th><th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th></th></th>	Q1 Q2 Q3 I <th>Q1 Q2 Q3 Q4 I<!--</th--><th>Q1 Q2 Q3 Q4 Q5 I</th><th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th><th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th></th>	Q1 Q2 Q3 Q4 I </th <th>Q1 Q2 Q3 Q4 Q5 I</th> <th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th> <th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th>	Q1 Q2 Q3 Q4 Q5 I	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Future Nuclear PDFs with LHeC

cf talk by Nestor Armesto at this workshop

From an eA collider one can determine nuclear PDFs in a novel, the classic way. Currently: use some proton PDF base and fit a parameterised shadowing term R. Then: use the NC and CC eA cross sections directly and get $R(x,Q^2;p)$ as p/N PDFs.

Impact parameter measurement in eA

Heavy Flavour – Charm in eA - from NC

Max Klein nPDFs with LHeC 10.9.2015 POETIC a PARIS

3-5%

Heavy Flavour – Beauty in ePb - from NC

Max Klein nPDFs with LHeC 10.9.2015 POETIC a PARIS

Heavy Flavour – Strange in ePb - from CC

LHO

HE-LHeC detector

September 12 2017

LHeC: The first ep+eA collider with which ALL s,c,b,t flavours can be measured. Note L=O(1000) HERA Huge, unique physics return for LHC facility, the development of the SM and searches beyond

LHeC CDR arXiv:1206.2913

title

Dimensions and Multitudes - LHeC

Tracker	FST_{pix}	FST_{strix}	CFT_{pix}	CPT_{pix}	CST_{strix}	CBT_{pix}	BST_{strix}	BST_{pix}
#Wheels	5		2	_	—	2	3	
#Rings/Wheel	2_{inner}	3_{outer}	3/4	_	_	3/4	3_{outer}	2_{inner}
#Layers	_	—	_	4	5	—	—	—
$ heta_{min/max}$ [⁰]	0.7	3.8	3.0	5.1	24/155	177.8	173.1	178.7
$\eta_{max/min}$	5.1	3.4	3.6	± 3.1	± 1.4	-3.6	-2.8	-4.5
$\operatorname{Si}_{_{pix/strix}} [m^2]$	6.9	9.5	2.8	5.4	33.7	2.8	5.7	4.1
Sum-Si $[m^2]$	70.9 double layers taken into account							
Calo	FHC_{SiW}	FEC_{SiW}	$\mathrm{EMC}_{SciPb/LAr}$		$\operatorname{HAC}_{SciFe}$		$\operatorname{BEC}_{SiPb}$	$\operatorname{BHC}_{{\scriptscriptstyle SiFe}}$
$\theta_{min/max}$ [⁰]	0.61	0.68	8/166		14.2/160		178.7	178.9
$\eta_{max/min}$	5.2	5.1	2.7/-2.1		2.1/-1.7		-4.5	-4.7
Volume $[m^3]$	6.7	1.6	15.1		165		1.6	5.8
Sum-Si $[m^2]$	197.4							

The LHeC Silicon Tracker

Search for intrinsic charm: solid: CTEQ66c, dashed: CTEQ6m; 60 GeV x 1 TeV, 1 fb⁻¹

LHeC CDR arXiv:1206.2913

Kinematics at LHeC

default energies

Kinematics at LHeC

Lower proton energy

Design Report 2012

arXiv:1206.2913

CERN Referees

Ring Ring Design Kurt Huebner (CERN) Alexander N. Skrinsky (INP Novosibirsk) Ferdinand Willeke (BNL) Linac Ring Design Reinhard Brinkmann (DESY) Andy Wolski (Cockcroft) Kaoru Yokoya (KEK) **Energy Recovery** Georg Hoffstaetter (Cornell) Ilan Ben Zvi (BNL) Magnets Neil Marks (Cockcroft) Martin Wilson (CERN) Interaction Region Daniel Pitzl (DESY) Mike Sullivan (SLAC) **Detector Design** Philippe Bloch (CERN) Roland Horisberger (PSI) **Installation and Infrastructure** Sylvain Weisz (CERN) New Physics at Large Scales Cristinel Diaconu (IN2P3 Marseille) Gian Giudice (CERN) Michelangelo Mangano (CERN) **Precision QCD and Electroweak** Guido Altarelli (Roma) Vladimir Chekelian (MPI Munich) Alan Martin (Durham) **Physics at High Parton Densities** Alfred Mueller (Columbia) Raju Venugopalan (BNL) Michele Arneodo (INFN Torino)

600 pages. Physics, Detector and Two Accelerator Options ring-ring which may be of interest in the HE-LHC context and linac-ring, the default LH(e)C

HE-LHC LHeC detector

- Present HE-LHC design of the central detector firs 16.0m x 10.5m
- Dimensions still compatible with the insertion of the detector in the L3/ALICE magnet (11.20 min diameter). More precise studies needed.

September 12 2017