CERN Yellow Reports: Monographs, CERN-2021-XXX

5 Energy-Recovery Linacs

Editor: M. Klein^b

Panel members: M. Klein^{b,*} (Chair), A. Hutton^a (Co-Chair), D. Angal-Kalinin^c, K. Aulenbacher^d, A. Bogacz^a, G. Hoffstaetter^{e, f}, E. Jensen^g, W. Kaabi^h, D. Kayran^f, J. Knoblochⁱ, B. Kuskeⁱ, F. Marhauser^a, N. Pietralla^j, O. Tanaka^k, C. Vaccarezza^l, N. Vinokurov^m, P. Williams^c, F. Zimmermann^g

Associated members: G. Burtⁿ, M. Bruker^a, P. Evtushenko^o, B. Militsyn^c, A. Neumannⁱ, [incomplete 29.10.]

Sub-Panel on CERC and ERLC: A. Hutton^a (Chair), C. Adolphsen^p, O. Brüning^g, R. Brinkmann^q, M. Klein^b, S. Nagaitsev^r, P. Williams^c, A. Yamamoto^k, K. Yokoya^k F. Zimmermann^g

5	Energy-Recovery Linacs
5.1	Executive summary of findings to date
5.2	Introduction
5.3	Motivation
5.4	Panel activities
5.5	State of the art and Facility plans-Roadmap Part A
5.6	R&D objectives - Key technologies - ERL Roadmap Part B .
5.7	New facilities - Roadmap Part C
5.8	Delivery Plan for European ERL R&D
5.9	Collaboration and organisation

Max Klein, Andrew Hutton

in conjunction with Interim Report and our presentations to the LDG 30.9. + 12.10.21

LDG Meeting, November 2nd, 2021

Roadmap on Energy Recovery Linacs

Long Write-Up on ERLs For publication end of 21 to accompany ERL roadmap ~ 250 pages, ~50 authors

Contents

1. Introduction 1.1. The Magic Principle of Energy Recovery, its Promises and Past 1.2. Particle Physics and the Importance of ERLs 2. ERL—Facilities and Current Status 2.1. Completed Facilities 2.1.1. ALICE at Daresbury 2.1.3. CEBAF Single-pass Energy Recovery Experiment (CEBAF 2.2. Ongoing Activities 2.2.1. CBETA at Cornell 2.2.2. S-DALINAC at Darmstadt 2.2.3. bERLinPro 2.2.4. cERL at KEK 2.2.5. Recuperator at Novosibirsk

3. ERL - New Facilities in the Twenties

э.	LIVE	- New Facilities in the Twenties
	3.1.	MESA
		PERLE at Orsay
		3.2.1. Facility Overview
		3.2.2. Injector
		3.2.3. Accelerator Characteristics
	1	3.2.4. Prospect
	3.3.	CEBAF 5-pass Energy Recovery Experiment
		Electron Cooler at BNL
4.	Key	Challenges—a Concerted Effort
	4.1.	Low-Emittance, High-Current Sources
		4.1.1. Introduction
		4.1.2. Electron guns
		4.1.3. High Current Photocathodes
		4.1.4. Buncher and Booster
		4.1.5. Merger
		4.1.6. Conclusion

LDG-XXX-YYY DRAFT 0.1

November 1, 2021

The Development of **Energy Recovery Linacs**

4.2.	Challenges of SRF Cavities and Cryomodules	
4.3.	Multi-turn ERL Operation and the Art of Arcs	
	4.3.1. Multi-turn Recirculating Linacs and their Extension to Multi-turn ERLs	
	4.3.2. Topology and Recovery Transport Choices	
	4.3.3. Are Lattice Choices	
	4.3.4. The Spreader-Arc-Recombiner as a Single System	
44	ERL Operation Challenges	
1. 1.	4.4.1. Introduction	
	4.4.2. Challenges	
	4.4.3. Space Charge	
	4.4.5. Coherent Synchrotron Radiation	
	4.4.6. Microbunching Instability	
	4.4.7. Halo	
	4.4.8. RF Transients	
	4.4.9. Wakefields and Interaction of Beam with Environment	
	4.4.10. Magnet Field Quality	
	4.4.11. Multi-turn, Common Transport	
4.5	Interaction Region	
4.6	Power to ERLs	
	Cryogenics	
	cit/ogenica	
Ene	rgy and Intensity Frontier Physics	
5.1.	High-Energy Colliders	
	5.1.1. LHeC and FCC-eh	
	5.1.2. CERC: FCC-ee as an ERL	
	5.1.3. LERC: ILC as an ERL	6. Applications
	5.1.4. Photon-Photon Collider	6.1. ERL-Di
	5.1.5. Electrons and X-rays to Muon Pairs (EXMP)	6.2. EUV-FI
5.2.	Low-Energy Particle Physics	6.3. ICS Ga
	5.2.1. Elastic Electron-Hadron Scattering	
1	5.2.2. Weak Interaction at Low Energy	7. ERL and Su
	5.2.3. Dark Photons	7.1. Introdu
5.3.	Low-Energy Electron-Ion Scattering	7.1.1.
	5.3.1. Introduction, physical and historical contexts	7.2. Beam E
	5.3.2. The Luminosity challenge	7.3. Technol
5.4.	Photonuclear Physics	8. Conclusions
	5.4.1. Testing Fundamental Symmetries	o. Conclusions
	5.4.2. Constraining Nuclear Models	A. Overview on
	5.4.3. New Phenomena of Nuclear Collective Modes	The order of the off
	5.4.4. Key Reactions for Stellar Evolution and Cosmic Nucleosynthesis	B. On the Pros
	5.4.5. Technological and Commercial Applications	B.1. Sub-Par
		B.2. FCC-ee
		D . DDLC

ility	
Radiation	
ility	
ction of Beam with Environment	
Transport	
iysics	
ERL	
	6. Applications
	6.1. ERL-Driven High-Power FEL
er	
to Muon Pairs (EXMP)	6.2. EUV-FEL Semiconductor Lithography
	6.3. ICS Gamma Source
on Seattering	
ow Energy	7. ERL and Sustainability
and Land St.	7.1. Introduction
	7.1.1. Power consumption
ttering	7.2. Beam Energy Recovery
and historical contexts	
nge	7.3. Technology and Infrastructure
Symmetries	8. Conclusions
Models	
	A. Overview on ERL Facilities
uclear Collective Modes	
llar Evolution and Cosmic Nucleosynthesis	B. On the Prospects of ERL-based e ⁺ e ⁻ Colliders
mmercial Applications	B.1. Sub-Panel Charge
	B.2. FCC-ee
	B.3. ERLC
	D.J. ERLAU

R&D Goals and Motivation as described in roadmap 28.10.

-- Sustainability: Limitation of power consumption despite orders of magnitude higher luminosity need in electron based colliders

- -- The near term 10 MW, 2K program: 100 mA currents, Niobium SRF at optimum frequency, Q₀ 3 10¹⁰ to 10¹¹, beam based
- Next step in ERL technology
- Crucial development for Europe to stay as recognised partner for US, Russia and Japan
- Technology base for decision on LHeC and FCC-eh, 802 MHz cryomodule demonstrator for FCC-ee feasibility
- Low energy particle and nuclear physics: nuclear photonics, exotic isotope spectroscopy, elastic ep (p radius, weak i.a.), dark photons
- Industrial applications such as Photolithography at nm scale, FELs (low and high E), inverse gamma sources, pico-second Xray sources

-- **The longer term 4.4K program**: R&D for power economy, 20 MV/m, 5 10¹⁰ Q₀: ambition comparable to high field magnet program

- Next generation ERL technology: power (heat transfer) efficiency enhanced by factor of three: $300 \rightarrow 100$ MW
- Enabling a 500 GeV 10³⁶ cm⁻²s⁻¹ luminosity ERL based linear collider for per cent measurement of Higgs self-coupling [backup]
- Transfer of superconducting RF technology to smaller labs → revitalisation of the field and its industrial base

3-fold Roadmap Structure (executive summary)

The ERL roadmap presented here rests upon three major, interrelated elements:

A) Facilities in progress, including crucial technological developments and operational experience. These comprise sDALINAC (Darmstadt, Germany), MESA (Mainz, Germany) + cBETA (Cornell, US), cERL (KEK, Japan) and the normal-conducting, lower-frequency Recuperator facility (Novosibirsk, Russia);

B) A key technology R&D program focused on high-current electron sources and high-power SRF technology and operation in the years ahead. Next generation ERLs lead to the major goal of being able to operate at 4.4 K cryogenic temperature ⁴ with high Q_0 , and also including higher-order mode damping at high temperature, dual-axis cavity developments and novel means for high-current ERL diagnostics and beam instrumentation to deal with effects such as beam break-up or RF transients;

C) New ERL facilities in preparation for reaching higher currents and electron beam energies at minimum power consumption. These are, in Europe, bERLinPRO (Berlin, Germany) with the goal to operate a 100 mA, 1.3 GHz facility, and PERLE (hosted by IJCLab Orsay, France), as the first multi-turn, high-power, 802 MHz facility with novel physics applications. In the coming years, the US will explore ERL operation near 10 GeV with CEBAF5 (Jefferson Lab, Newport News) and develop the challenging 100 mA electron cooler for hadron beams at the EIC (BNL, Brookhaven).

First presented to LDG 30.9.21

⁴The 4.4 K R&D program, hosted by the SRF panel, would also allow universities to adopt small superconducting accelerators for inverse Compton back-scattering, FELs, isotope production, etc. Apart from the societal aspect, this would provide a steady product line for SRF cavity and cryomodule production by industry, which would in turn benefit future HEP colliders.

5.5 State of the art and Facility plans-Roadmap Part A

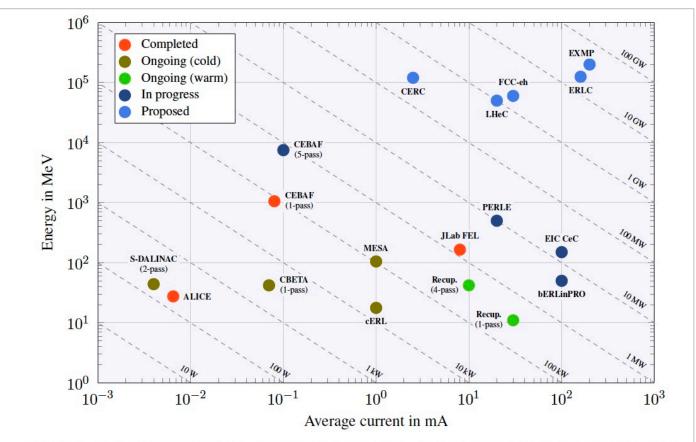


Fig. 5.1: Electron energy E vs. electron source current I for classes of past, present and possible future ERL facilities as are introduced in the text. Dashed diagonal lines are equi-power lines, $P[kW] = E[MeV] \cdot I[mA]$. A brief account of the ERL history is presented in Sect. 5.2.1.

A challenging international ERL development program (no roadmap resource required).

Ongoing/forthcoming facilities

Training, operation S-DALINAC - Darmstadt

In August 2021, S-DALINAC was successfully operated in a twice-recirculating ERL mode. Full energy-recovery efficiencies of up to 81.8% had been measured for beam currents of up to 8μ A at a beam energy of 41 MeV. The beam load of the SRF cavities in the two situations— with the beam either being accelerated only once or being accelerated twice and decelerated once— resulted in the same beam load within measurement uncertainties. The measurements, thus, indicate complete energy recovery in the first deceleration passage through the main linac with an efficiency of 100% within uncertainties.

Support EIC CeC CBETA - Cornell

After achieving all Key Performance Parameters of CBETA's NYSERDA-funded construction and commissioning phase, operation was interrupted in the spring of 2020. The accelerator is now available to test single-turn and multi-turn ERL technology. Especially tests for the 100 mA hadron-cooling ERL of the EIC are of interest, as several key design parameters of CBETA's main components match that future accelerator well.

Exps, polarised, HOM MESA- Mainz (from 2024)

It will represent a sustained infrastructure for such experiments but also be available for further research on ERLs for a long time to come. The civil construction for the new machine will be finalised in 2022. Following the installation and commissioning of the machine, first ERL tests are expected in 2025. External-beam experiments are expected to start somewhat earlier. The ERL

- Improving the higher-order mode damping capabilities of the cavities.

rents, HOM heating of the damping antennas will lead to a breakdown of superconductivity in the antenna and hence inhibit operation. This can be improved by coating the HOM antennas with layers of material with a high critical temperature, e.g. Nb₃Sn. The MESA research group has recently received funding to start corresponding investigations within a larger joint effort of German universities.

Industry, 10mA, Nb₃Sn CERL – KEK (50 years..)

- Realization of energy-recovery operation with 100% efficiency at a beam current of 10 mA at cERL and the FEL light production experiment.
- Development of an irradiation line for industrial applications (carbon nanofibers, polymers, and asphalt production) based on the CW cERL operation.
- Realization of a high-efficiency, high-gradient Nb₃Sn accelerating cavity to produce a superconducting cryomodule based on the compact freezer. We are targeting a general-purpose compact superconducting accelerator system that that can be operated at universities, companies, hospitals,

90MHz, FEL Recuperator – BINP (warm)

The current of the Novosibirsk ERL is now limited by the electron gun. A new RF gun was built and tested recently [41]. It operates at a frequency of 90 MHz. An average beam current of more than 100 mA was achieved. In brief, the following work is planned for the next years:

 Installation of the RF gun in the injector, while the existing electrostatic gun will be kept there. The RF gun beamline has already been manufactured and assembled in the test setup. It includes an RF chopper for the beam from the electrostatic gun.

4

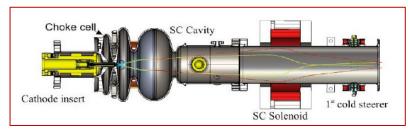
See roadmap and long write-up for much more info.

5.6 **R&D** objectives - Key technologies - ERL Roadmap Part B

5.6.2 SRF Technology and the 4.4 K Perspective Near-Term 2 K Developments

p.155

- Operation at 20 MV/m with $Q_0 > 3 \ 10^{10}$
- Extraction of HOM power from Helium bath
- Damping of HOMs to prevent beam break up
- Reduction of RF power via Fast Reactive Tuners (FRT)


Roadmap integrates high current current source and 2K developments

into the two facilities (part C):

bERLinPRO: 1.3 GHz, 100mA, 1-pass & PERLE: 802 MHz, 20mA, 3 passes

- 100mA sources (SRF and DC photocathode)

5.6.1 High-Current Electron Sources

SRF elliptical cavity gun at bERLinPro: new 100mA module

Photocathode

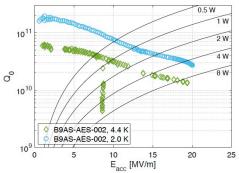
preparation facility

500 kV power

supply

ALICE (20mA) PERLE:

Towards 4.4 K


A significant part of the power consumption of ERLs is related to the dynamic cavity load in CW operation, which can be estimated by

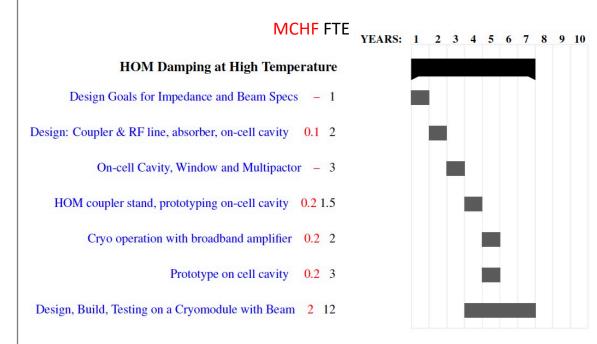
$$P = \frac{V_{\rm acc}^2}{(R/Q) \cdot Q_0} \cdot N_{\rm cav} \cdot \eta_T \tag{5.1}$$

where $V_{\rm acc}$ is the acceleration of a cavity, R/Q the shunt impedance, Q_0 the cavity quality factor, $N_{\rm cav}$ the number of cavities and η_T the heat transfer, i.e. combined technical and Carnot, efficiency, which is proportional to the ratio of the cryo temperature, T, and its difference to room temperature, 300 K - T.

Boost cryogenic efficiency and chill cavities with cryocoolers, no IHe

- Nb₃SN coating via vapour infusion, sputtering or ALD
- Evaluation of other superconductors as NbN, NbTiN, V3S
- Cavity tuners to avoid detachment of coating

In parallel: nitrogen diffusion and doping to reach 10¹¹


Fig. 13: Performance of 650 MHz single cell cavity B9AS-AES-002. The multipacting at 9 MV/m was processed during the test arXiv:2008.00599

Roadmap: long term cavity R&D towards 4.4K: SRF Panel ERL: full module in beam test (2030?) PERLE or bERLinPRO

R&D: HOM@hiT, Twins, Diagnostics

5.8.1 Higher-order mode damping at high temperature

Dynamic higher-order mode losses appear proportional to the beam intensity squared and to the number of cavities, which for ERLC reaches about 10^4 . This dynamic load leads to a heat transfer related to a power "amplification" factor $\propto T/(300 \text{ K} - T)$. The power requirement for compensating dynamic HOM losses is therefore the smaller the higher the temperature T is, as has been sketched in the key technology section 5.6. The diagram below summarises the sequence of steps and estimated effort for developing this area further.

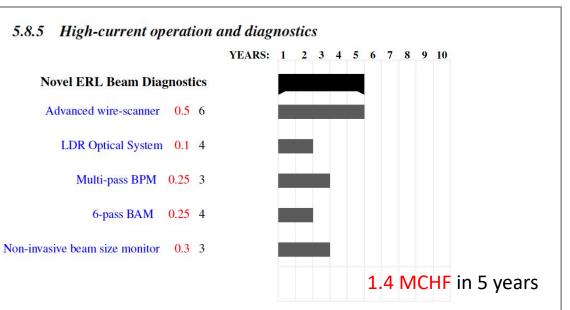
Chart 1: Development of HOM damping technology for high temperature. Funding 2.7 MCHF (red column) over 6 years, 24.5 FTEs (black). Year 1 for this development is chosen to be 2023 for giving time for interested laboratories to embark on it.

2.7 MCHF in 6 years

5.8.2 Dual-axis cavity developments

Twin-axis cavities are required when the accelerating and decelerating beams are traveling in opposite directions through long linacs. Initial developments have been done at JLab and the John Adams Institute a few years ago. For cost efficiency of a new generation e^+e^- linac, availability of high- Q_0 twin cavities is considered to be an important economy factor. The roadmap thus includes the design and production of a multi-cell twin cavity followed by a complete cryomodule.

3.5 MCHF in 6 years


YEARS: 1 2 3 4 5 6 7 8 9 10

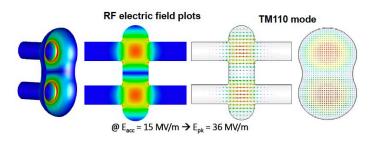
Single Multi-Cell Cavity 0.5 4.5

Dressed Multi-Cell Cavity in a Horizontal Cryostat 3 8

Chart 2: Development of dual-axis cavity and cryomodule technology. Funding 3.5 MCHF (red column) over 6 years, 12.5 FTEs (black). Year 1 for this development is chosen to be 2023 for giving time for interested laboratories to embark on it.

Twin Cavities

Chart 5: Development plan for high current ERL beam diagnostics. Funding 1.4 MCHF (red column) over 5 years, 20 FTEs (black). Year 1 for this development is set to 2023 for interested parties to organise.


6

HOM damping to room T

Input to roadmap being written, link to LHC: Extract 1kW per HOM coupler at 400 MHz to warm via RF Higher may need waveguide (Graeme Burt)

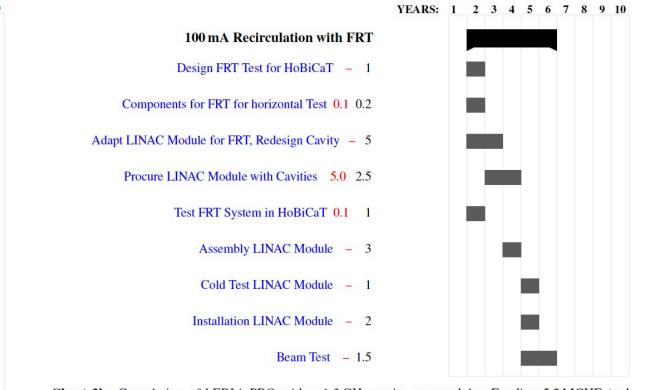
Twin Cavities

HyeKyoung Park SRF2017 Lanzhou

"compatible with Nb₃SN vapor deposition process"

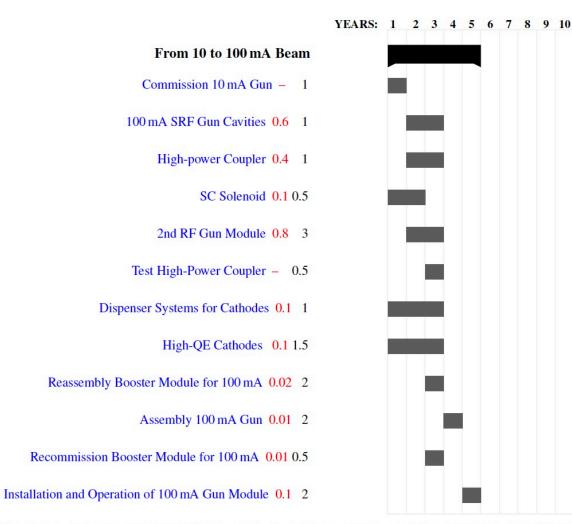
1.5 GHz twin axis Nb cavity

7-cell cavity in Al

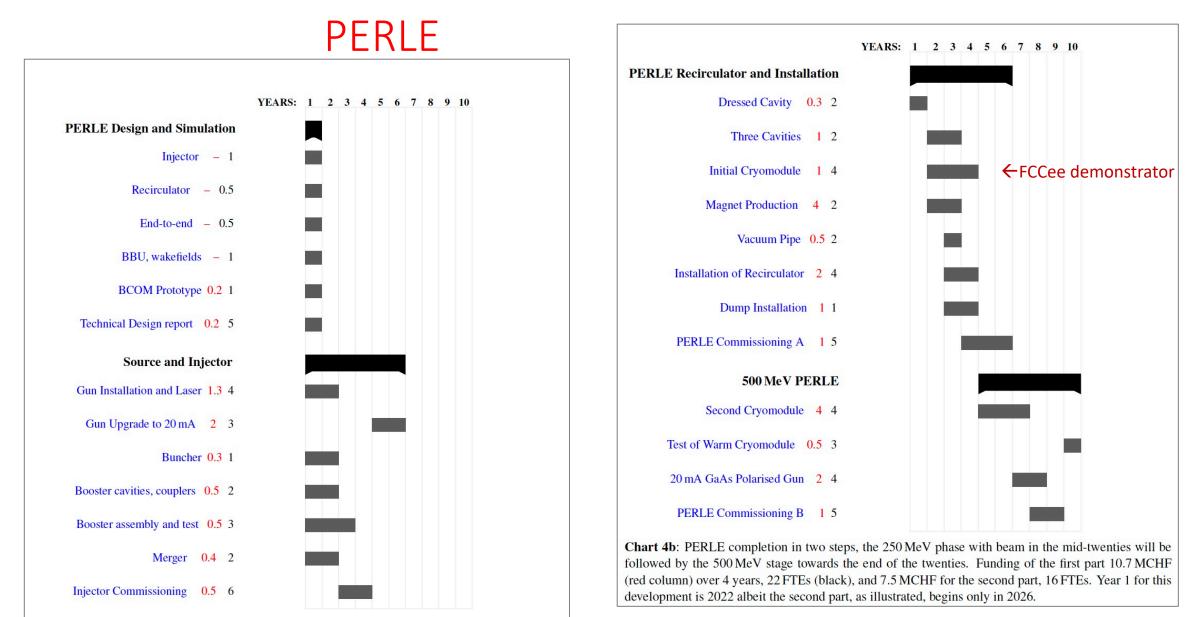


H. Park, S. De Silva, J. Delayen, A. Hutton and F. Marhauser, "Development of a Superconducting Twin Axis Cavity, doi:10.18429/JACoW-LINAC2016-THPLR037.

V. Konoplev, K. Metodiev, A. J. Lancaster, G. Burt, R. Ainsworth and A. Seryi, "Experimental studies of 7-cell dual axis asymmetric cavity for energy recovery linac", Phys. Rev. Accel. Beams 20 (2017) no.10, 103501.


Reduce bbu, cost, ..:R&D for a decade for cryomoduleExperience at Jlab + Old Dominion U and John Adams + Cockcroft7

bERLinPRO


Chart 3b: Completion of bERLinPRO with a 1.3 GHz cavity-cryomodule. Funding 5.2 MCHF (red column) over 4 years, 17 FTEs (black). Year 1 for this development is 2023, a year after part a) started, for the program to succeed by 2025/6.

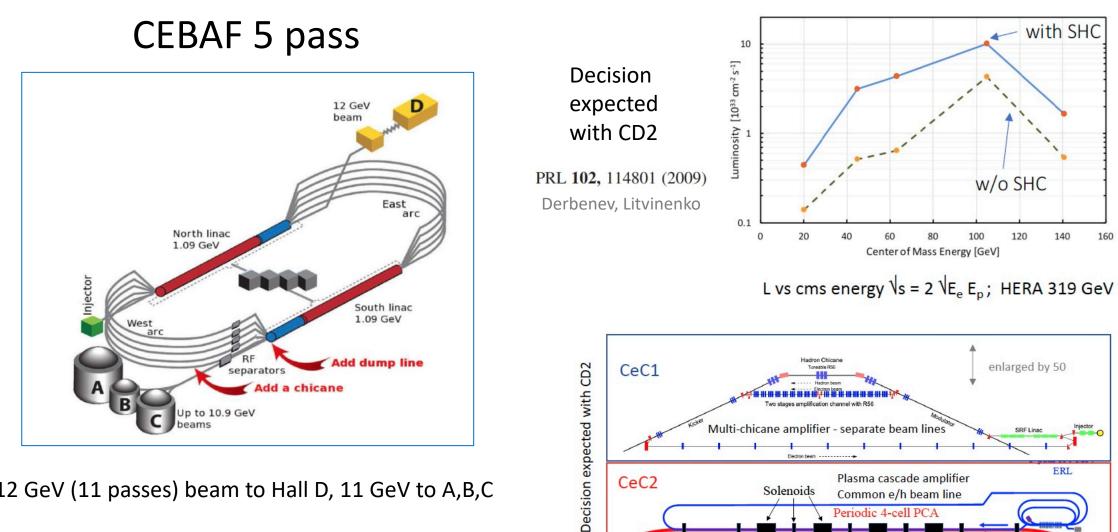
Goal: 10m A operation, 100 mA SRF gun, full, 1.3 GHz cavity cryostate module with FRT (CERN) by mid 20ies. \rightarrow High current ERL operation (single pass) and study

Chart 3a: Upgrade of bERLinPRO to 100 mA electron current operation. Funding 2.2 MCHF (red column) over 4 years, 16 FTEs (black). Year 1 for this development is 2022 for the program to succeed by 2025.

7.4 MCHF in 5 years

Chart 4a: The path to the PERLE technical design report and commissioning of the injector including the gun upgrade to full current. Funding 3.9 MCHF (red column) over 4 years plus 2 MCHF for the gun upgrade in the following two years, 27 FTEs (black). Year 1 for this development is 2022.

13.9 MCHF in 4 years (250 MeV)


10 MW 3-pass operation in two steps; development of

802 MHz technology; physics and further R&D (4.4K)

Two ERL facilities in progress in the US Important for, but not part of this Roadmap

Electron Cooler for EIC

12 GeV (11 passes) beam to Hall D, 11 GeV to A,B,C

Experiment Run schedule for 2024 Important test of ERLs for high energy application

0.78 T

10 m

Common e/h beam line

30 m

Modulator

Solenoids

0.32 T

2 m

Kicker

SHC = strong hadron cooling

160

5.8.6 Annual Investments

The total investment corresponding to this roadmap is 43.1 MCHF for 10 years. This may be reduced to 37.1 MCHF if the polarised 20 mA gun and the 4.4 K 802 MHz cryomodule were postponed to beyond 2030 as these developments are clearly aspirational when projected to be available towards the end of this decade. The total cost of bERLinPRO and PERLE 250 MeV are 7.4 and 13.9 MCHF, respectively, for the coming 4 years, 2022 to 2025. Fig. 5.4 displays the annual spendings as a stacked histogram for PERLE (blue), bERLinPRO (grey) and basic R&D (green) as described. A substantial part of future ERL

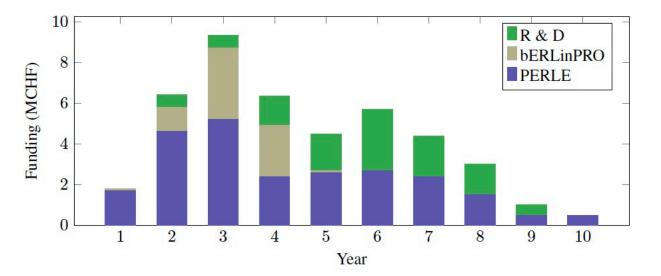


Fig. 5.4: Funding profile: annual spending in MCHF for the various parts of the ERL roadmap.

developments is covered by the existing or soon forthcoming (MESA) facilities and their development plans. The investments for 4.5 K base technology developments, such as sputtering and infusion as described in Sect. 5.6, are covered by the SRC roadmap. Until and including the year 2025, a total of 24 MCHF is required, composed of 13.9 MCHF for PERLE, 7.4 MCHF for bERLinPRO and 2.7 MCHF for R&D. The funding profile peaks for both facilities in 2024 which is due to the indeed ambitious schedule developed for providing high current ERL operation evidence in the mid twenties, when the European HEP strategy will be re-evaluated.

Total of 43.1 MCHF in 10 years

92 FTE in total (labs contributing too)

37.1 if less aspirational (4.4K CM after 2030, no polarised gun for PERLE soon)

24 MCHF up to 2026

The panel recommends the ERL Program as here presented for support :

Funding for coming 5 years:

< 5 MCHF / year PERLE 2.8 M/y (besides IJCLab infrastructure) bERLinPRO 1.5 M/y R&D 0.6 as we tried to describe here. ERLs are one of the few ways for innovation of future accelerators, a technology with stringent advantages and the opportunity to eventually and experimentally lead particle physics indeed beyond its Standard Model. Their general physics and impact potential is outstanding. They are surely worth most sincere efforts.

Concluding sentences of roadmap

Acknowledgment

The authors most gratefully acknowledge information, insight and guidance they received in discussions with Roy Aleksan, Jean-Luc Biarotte, Phil Burrows, Dimitri Delikaris, Grigory Emereev, Eric Fauve, Rao Ganni, Frank Gerigk, Karl Jakobs, Vladimir Litvinenko, Maria Chamizo Llatas, Jan Lüning, Eugenio Nappi, Sam Posen, Guillaume Rosaz, Thomas Roser, Herwig Schopper, Mike Seidel, Alexander Starostenko, Valery Telnov [incomplete - 29.10]. They thank the members of the LDG group and especially its chair, Dave Newbold, for direction and support. They also thank the other panels for a pleasant cooperation.

Status: Draft still read by ERL Panel and authors: deadline 4.4. Updates Friday, very latest Monday 8.11. Publication of Long Write-UP: end of November (includes long version of e⁺e⁻ evaluation, facility tables..)

backup

Tentative Conclusions

• What R&D needs to be done towards future facilities? What are the priorities?

Priority is the 10 MW frontier: bERLinPRO fully equipped and PERLE 250 MeV, both by ~2026

→ new generation of low energy experiments, technology for medium energy (50 GeV) ERL for ep, impact on industry and ERL itself Next generation of High Energy (> 100 GeV) electron accelerators (e^+e^- , HE FCC-eh) needs key technologies to be developed → Nb₃SN and 4.4 K (sputtering Europe/CERN, thin film rather US), high T HOM damping, high(er) current OP and diagnostics, Twin cavities

• How long might it take? What is the fastest technically limited schedule?

A facilities are operational but have important programs, MESA (polarized) coming up; **B** beam by 2026; **C** 2032 Note that A,B,C are all interlinked.

- How much will it cost?
 - A operational facilities: sDALINAC, MESA in Europe, cBETA (US), Recuperator (Ru), cERL (J). European facilities basically covered
 - **B** new facilities and their technology: bERLinPRO (m MEuro) and PERLE (nn MEuro cost + time reduced by in kind components)
 - **C** 4.4K and Nb₃SN (cost depends on technology chosen [m sputtering, n Sn vapor diffusion]); high T HOM damping (?); diagnostics (?); twin cavity (depends on whether there will be a European development –JAI?)
- What different options and trade-offs exist?

The field, especially in Europe, needs funding, coordination and inclusion. The genuine sustainability development we have.

• What are the linkages between activities?

A,B,C and developments at other places (e.g. HZ Rossendorf) are much interlinked. ERLs are global (missing China, so far) ERLs are required for high E+L ep, yy, e⁺e⁻, muon? colliders. Links exist to SRF, Plasma, Muons. Technology for FCC-ee, ...

• What science can be done using demonstrators, or intermediate-scale facilities?

Huge opportunities with very high intensity (PERLE = 1000 ELI) and small emittance: MESA (> 2024), PERLE (>2027) Weak interactions, dark matter, nuclear photonics through IGS, exotic isotope spectroscopy, ...

*) Questions posed by Dave Newbold in ECFA Newsletter No 7 (28.9.21)

Key Technology R&D longer term

4.4K and Nb₃SN program

Motivation

Technology perspective (long recognized, envisaged applications in waste water treatment or medical isotope production) increase T from 2K to 4.4K which makes technology widely accessible - leads to Nb₃Sn or other superconductor instead of pure Niobium Nb: $T_c 9K \rightarrow high Q_0$ and small heat dissipation [but few 10⁸ at 4K]. Nb₃Sn: $T_c 18$ K potentially higher Q₀

HEP Collider perspective:

single pass electron energy accelerator in ERL mode with E > 100 GeV costs few 100 MW of cryopower, i.e. loose the energy recovery gain 4.4 K has 3 times better performance than 2K, lower frequency than ILC (not too low for size), higher Q_0 \rightarrow Then reach 500 GeV with 10³⁶ cm⁻²s⁻¹ and O(100) MW total power, the ERL design of **a next generation e⁺e⁻ collider**

Requirements

4.4 K cryo-cavity technology for 600-800 MHz frequency. Aim at $Q_0 \sim 5 \ 10^{10}$ and gradients about 20 MV/m

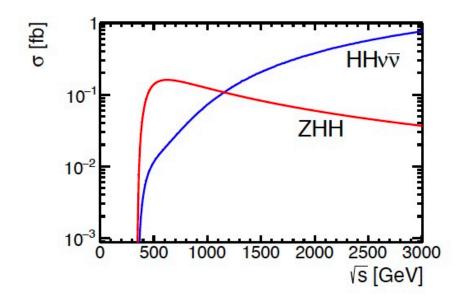


Fig. 1 Cross section as a function of centre-of-mass energy for $e^+e^- \rightarrow ZHH$ and $e^+e^- \rightarrow HHv\bar{\nu}$ production for a Higgs boson mass of $m_{\rm H} = 126$ GeV. The values shown correspond to unpolarised beams including initial state radiation but not including the effect of beamstrahlung [16].

arXiv:1901.05897

CLIC: 1.4 TeV 2.5 ab⁻¹ and 3 TeV 5 ab⁻¹ 10% error on tri-linear H-HH coupling [-29 - +67% for 1.4 TeV alone]

Tri-Linear Higgs Coupling in e⁺e⁻

Kinematic limit of e e \rightarrow Z H H : M(Z) + 2 M(H) = 341 GeV

ZHH unpolarised cross section maximum at 500 GeV: O(0.1) fb

 $O(10^{34})$ cm⁻²s⁻¹ luminosity gives 1 ab⁻¹ in ten years: 100 events (A=1)

O(10³⁶) cm⁻²s⁻¹ luminosity should produce 10 000 events → few % and 300 fb * 100 ab⁻¹ = 3 10⁷ ZH events, → opens rare H decay channel programme in e⁺e⁻

This is a strong case for a next generation linear ee collider

Gradient 20*f MV/m: two 25/f km linacs:

It needs: Twin cavities, 4.5K, Nb₃SN, Q_0 towards 10¹¹

On CERC and ERLC: cf slides shown to LDG 8.9., subpanel report imminent: neither of the two concepts is ready to "just" replace the canonical FCC-ee or ILC designs \rightarrow leads to a known R&D program.

Report on CERC and ERLC

Overall Conclusions

The sub-Panel was presented with two, extremely interesting ideas to evaluate. While neither is ready to be adopted now, they point to the future in different ways. The CERC aims for multiple passes in a tunnel with an extremely large bending radius to minimize the synchrotron radiation loss. The ERLC proposes a single acceleration and deceleration, separating the two beams by using twin-axis cavities. Both of these ideas provide an indication of the variety of different ERL layouts that might be developed in the future.

A particularly interesting prospect is to design an energy efficient, ultra-high luminosity ERL-based electron-positron collider at 500 GeV, which would enable the exploration of the Higgs vacuum potential with a measurement of the tri-linear Higgs coupling in e+e-.

The most important R&D activity that would make this kind of development viable is to be able to operate at 4.5K with high Q₀. We strongly recommend R&D on this topic as it would also allow universities to adopt small superconducting accelerators for inverse Compton back-scattering, FELs, isotope production, etc. Apart from the societal aspect, this would provide a steady product line for SRF cavity and cryomodule production by industry, which would in turn benefit future HEP colliders.

A 5-pages report drafted and agreed by sub-Panel – out for factual check to the authors and for comments to Panel Include in Roadmap report and (possibly and extended version) as an Appendix in the ERL long write-up

4

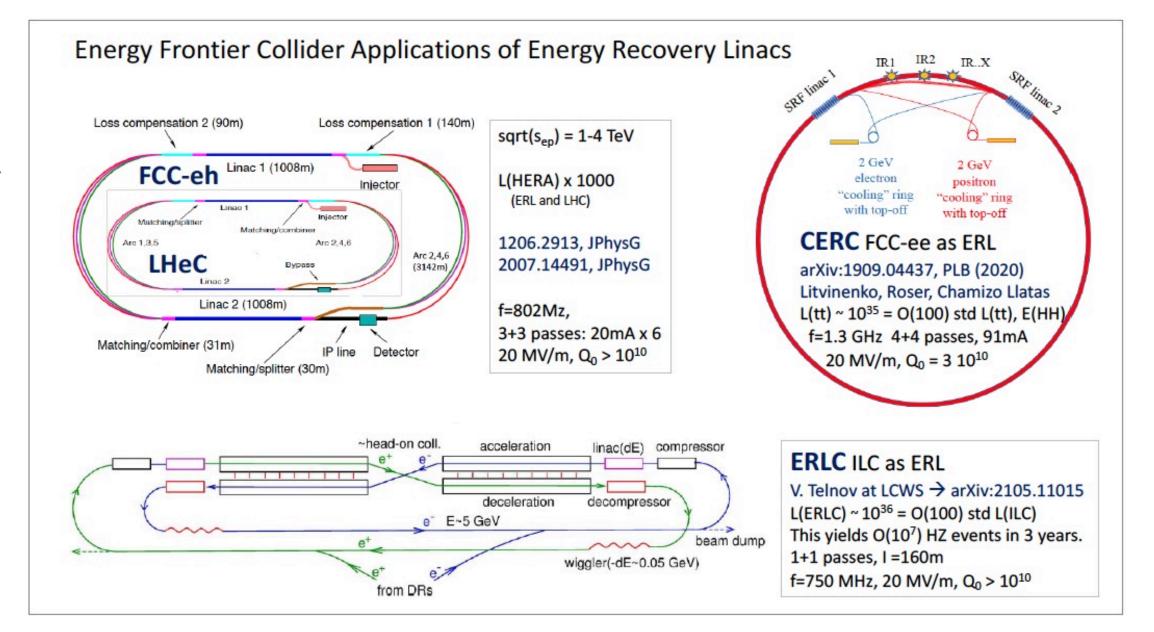
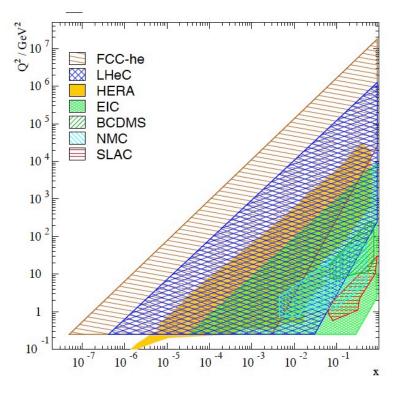
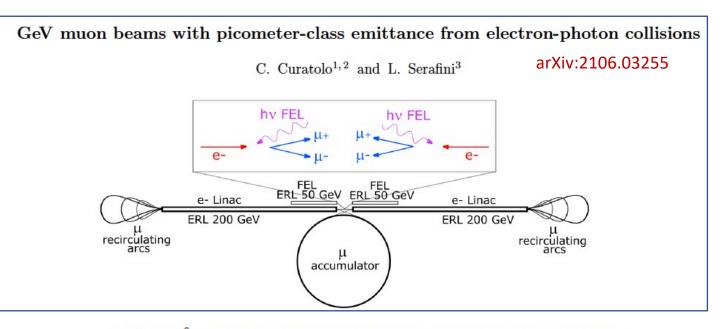
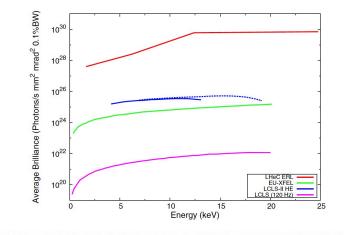
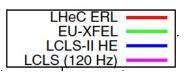



Figure 2: Sketch of possible future colliders based on ERLs: left top: LHeC and FCC-eh; right top: CERC; bottom: ERLC. For more information see the arXiv references displayed. [from a report to LDG 5/21] 4



Energy frontier DIS has been part of HEP and is necessary for going beyond the SM. The EIC has obviously a different role.


LHeC and FCC-eh are partners of LHC and FCC. The **cleanest high resolution telescopes world can build.** Rechecking the power economy of LHeC (100MW).


ERL technology concept of LHeC has wide range of HEP applications: yy collider, FCCee injector, HE XFEL \rightarrow

Remarks on ERL based Colliders (eh, muons)

Bright Ångstrom and picometer free electron laser based on the Large Hadron electron Collider energy recovery linac

	163																				
				FTE Cost (MEUR)	Infusion 5.971					dule	Sputtering 5.543				Module						
	Cost (MEUR)	Invest (MEUR)			Sample recipe development	Vapor diffusion system readying	Single cell development	Multicell development	Proof of principle Test Module	Accelerator Motdule	Sample recipe development	Miukicel Sputtering Setup	Single cell development	Multicell develop ment						Proof of principle Test module	
Year	Cost	Inves	E	FTEC	Sample	Vapor	Single (Multice	Proof o	Acceler	Sample	Miultic	Single (Multice	Task	Invest (TEUR)	FTE Total	FTE Cost (MI	Total cost	Proof of	
	22,3	11,1	69	11,2	0,5	3,4	0,7	1,4	3,8	7,0	1,3	1,5	1,1	1,7		6.000	30	4.809	10.809	3.771	1 7
1	4942	3475	9	1467											Test Module design work		4	652	652	4	
2	3758	1150	16	2608			rformance						g				4				
3	3243	1450	11	1793			l cavities prove per		2				s prove performan		Test Module design work Procurement Test Module	1000	4				
4	1874,5	0	11,5	1874,5			Single Cell cavities	Multicell cavities prove performance	Proof of principle test aryostat				Single Cell cavities prove perfo		Installation Test Module "Test Module Testing" Design Accelerator Module		2 2 2,5	326	326	1	
5	1467	0	9	1467				Multicell cavities	Proof of p	(2uu				rove performance	"Test Module Testing" Design Accelerator Module		2 2,5				
6	6222,5	5000	7,5	1222,5						elerator module operated (with beam?)				Multicell cavities prove performance	"Test Module Testing" Procurement Accelerator Module Assembly Accelerator module	5000	2,5	0	5000		
7	815	0	5	815						elerator module					SRF Testing Accelerator Module Beam testing accelerator module		2,5 2,5				

To SRF